De à 4 millions. Khanh Tuong
|
|
|
- Lucienne Rochon
- il y a 10 ans
- Total affichages :
Transcription
1 De à 4 millions Khanh Tuong
2 2
3 Qui suis- Khanh Tuong Maudoux Développeur Java indépendant blog : [email protected] 3
4 Contexte Collecteur Stockage Lecture Traitement 4
5 Contexte 5
6 Contexte Fonctionnel Réception de relevés de compteurs (fichiers xml) Fournir une consolidation (valorisation) des consommations en fonction de différents critères Algorithmes de lissage et de détection à faire sur les données Algorithmes de valorisation à faire sur les données 6
7 Contexte Volumétrie Avant : clients Cible : clients Avec un pas de 30 minutes! ~ fichiers par jours (~156 Go/jour) 7
8 Contexte État des lieux Algorithmes de lissage et de détection fait au moment de la collecte long» => anomalies «courantes» Algorithmes de consolidation exécutés par batch sur les données stockées 8
9 Contexte État des lieux Stockage TimeSeries Stockage Collecteur Consolidation Applicatif Stockage 9
10 Contexte État des lieux 10
11 Contexte Objectifs Objectif : Remplacer la solution de stockage Ne pas oublier la phase le ré-import totale! (~3 ans de données) 11
12 Collecteur 12
13 Collecteur Objectifs Batch de collecte avec stockage dans une solution propriétaire Objectifs : Valider différentes solutions (Cassandra, MySQL Cluster) Valider le modèle de données 13
14 Transformation JAXB Transformation Objet pivot Routage par xpath Transformation JAXB Transformation Objet pivot Collecteur État des lieux XML Java DTO Stockage XML Java DTO 14
15 Collecteur Pistes Pistes : Spring Batch EIP Spring Batch + EIP 15
16 Collecteur Outils / Framework : Spring Integration Metrics JMX / Jolokia Hawt.io Maven! 16
17 Collecteur Spring Integration Architecture «Pipe and Filters» 17
18 Transformation JAXB Transformation Objet pivot Routage par xpath Transformation JAXB Transformation Objet pivot Collecteur Spring Integration XML Java DTO Stockage XML Java DTO 18
19 Collecteur Spring Integration 19
20 Collecteur Spring Integration 20
21 Collecteur Spring Integration 21
22 Collecteur Spring Integration 22
23 Collecteur Spring Integration 23
24 Collecteur Spring Integration Message-history Scalabilité horizontale 24
25 Collecteur Metrics 25
26 Collecteur Jolokia JMX via HTTP/JSON 26
27 Collecteur Hawt.io 27
28 Collecteur Maven maven-jaxb2-plugin (org.jvnet.jaxb2.maven2) appassembler-maven-plugin (org.codehaus.mojo) 28
29 Collecteur endpoint REST pour injection 29
30 Stockage 30
31 Stockage Objectifs Rappels : Remplacer la solution existante de stockage Chaque capteur remonte une donnée toutes les 30 minutes Time series (au plus colonnes par ligne) 31
32 Stockage Cassandra Base de données orientée colonnes Keyspace Column Family Column 32
33 Stockage Cassandra Time series : 1 ligne avec de multiples colonnes (clé composite) capteur_id event temperature event temperature CREATE TABLE capteur ( capteur_id text, event timestamp, temperature text, PRIMARY KEY (capteur_id, event) ) Ordonnée 33
34 Stockage Attention longueur/taille de ligne CREATE TABLE capteur ( capteur_id text, event_period text, event timestamp, value text, PRIMARY KEY ((capteur_id, event_period), event) ) Attention modélisation aggrégation 34
35 Stockage Jolokia Comme agent sur la JVM 35
36 Lecture 36
37 Lecture Objectifs Évaluer la pertinence de la solution de stockage Véloce Simple Remonté de métriques => injecteur! 37
38 Lecture Pistes Pistes : From scratch 38
39 Lecture Outils / Framework : RestEasy Netty Swagger JMX / Jolokia Hawt.io Maven Gatling / AB 39
40 Lecture RestEasy Netty : JAX-RS Netty Simple 40
41 Lecture Swagger : 41
42 Lecture Jolokia 42
43 Lecture Gatling 43
44 Traitement 44
45 Traitement Rappel Stockage TimeSeries Stockage Collecteur Consolidation Applicatif Stockage 45
46 Traitement Objectifs Objectif : Collecte Rapide Pas de pertes de données (sécurisation de la données) Détection des données fausses Faite en aval de la collecte Consolidation Faite sur les données «valides» avec stockage des mesures dans des «batch View» Séparation des concepts! 46
47 Traitement Objectifs Objectif : Lambda architecture Query = function (all data) 47
48 Transformation Objet pivot C*DAO Traitement Objectifs Objectif : collecte C* transformation C* C* Valo All datas Precompute views Batch views Batch Layer Service Layer Query = function (all data) 48
49 Traitement Spark / Hadoop 49
50 Traitement Objectifs? Volumétrie non acceptable pour la production : Duplication de la donnée Souhaite une solution avec calcul à la demande 50
51 Transformation Objet pivot C*DAO Traitement Objectifs? Traitement collecte C* transformation C* C* Valo All datas Precompute views Batch views Service Layer 51
52 Traitement Objectifs? Algorithme de lissage en amont 52
53 Conclusion 53
54 Merci! 54
55 Questions? 55
56 pas le feedback en sortant! ou?
AVRIL 2014. Au delà de Hadoop. Panorama des solutions NoSQL
AVRIL 2014 Panorama des solutions NoSQL QUI SOMMES NOUS? Avril 2014 2 SMILE, EN QUELQUES CHIFFRES 1er INTÉGRATEUR EUROPÉEN DE SOLUTIONS OPEN SOURCE 3 4 NOS EXPERTISES ET NOS CONVICTIONS DANS NOS LIVRES
Prototypage et évaluation de performances d un service de traçabilité avec une architecture distribuée basée sur Hadoop
Prototypage et évaluation de performances d un service de traçabilité avec une architecture distribuée basée sur Hadoop Soutenance de projet ASR 27/01/2011 Julien Gerlier Siman Chen Encadrés par Bruno
Cassandra chez Chronopost pour traiter en temps réel 1,5 milliard d événements par an
Cassandra chez Chronopost pour traiter en temps réel 1,5 milliard d événements par an Qui suis-je? Alexander DEJANOVSKI Ingénieur EAI Depuis 15 ans chez Chronopost @alexanderdeja Chronopost International
20 ans du Master SIAD de Toulouse - BigData par l exemple - Julien DULOUT - 22 mars 2013. 20 ans du SIAD -"Big Data par l'exemple" -Julien DULOUT
20 ans du Master SIAD de Toulouse - BigData par l exemple - Julien DULOUT - 22 mars 2013 20 ans du SIAD -"BigData par l'exemple" -Julien DULOUT Qui a déjà entendu parler du phénomène BigData? Qui a déjà
Youssef LYHYAOUI Ingénieur Java/J2EE, SOA, ESB, Web services 31 ans Statut : Indépendant SITUATION ACTUELLE
Youssef LYHYAOUI Ingénieur Java/J2EE, SOA, ESB, Web services 31 ans Statut : Indépendant Adresse Personnelle : 3, allée du Roussillon 91300 Massy Téléphone : (+33) 06 78 37 34 82 E-mail : [email protected]
BIG Data et R: opportunités et perspectives
BIG Data et R: opportunités et perspectives Guati Rizlane 1 & Hicham Hajji 2 1 Ecole Nationale de Commerce et de Gestion de Casablanca, Maroc, [email protected] 2 Ecole des Sciences Géomatiques, IAV Rabat,
API04 Contribution. Apache Hadoop: Présentation et application dans le domaine des Data Warehouses. Introduction. Architecture
API04 Contribution Apache Hadoop: Présentation et application dans le domaine des Data Warehouses Introduction Cette publication a pour but de présenter le framework Java libre Apache Hadoop, permettant
Déploiement de l infrastructure SOA. Retour d expérience Août 2013
1 Déploiement de l infrastructure SOA Retour d expérience Août 2013 Agenda Contexte et constats Existant chez PSA Cible du chantier SOA Passerelle de sécurisation des services Les offres de service de
Les journées SQL Server 2013
Les journées SQL Server 2013 Un événement organisé par GUSS Les journées SQL Server 2013 Romain Casteres MVP SQL Server Consultant BI @PulsWeb Yazid Moussaoui Consultant Senior BI MCSA 2008/2012 Etienne
Apache Camel. Entreprise Integration Patterns. Raphaël Delaporte BreizhJUG 07.11.2011
Apache Camel & Entreprise Integration Patterns Raphaël Delaporte BreizhJUG 07.11.2011 1 Speaker CTO Zenika Ouest Consultant et formateur Responsable comité technique Architecture d'entreprise Domaine ESB
Titre : La BI vue par l intégrateur Orange
Titre : La BI vue par l intégrateur Orange Résumé : L entité Orange IT&L@bs, partenaire privilégié des entreprises et des collectivités dans la conception et l implémentation de SI Décisionnels innovants,
Network Efficiency Monitoring - version 2
École Polytechnique de l Université de Tours 64, Avenue Jean Portalis 37200 TOURS, FRANCE Tél. +33 (0)2 47 36 14 14 www.polytech.univ-tours.fr Département Informatique 5 e année 2012-2013 Projet de fin
Panorama des solutions analytiques existantes
Arnaud LAROCHE Julien DAMON Panorama des solutions analytiques existantes SFdS Méthodes et Logiciels - 16 janvier 2014 - Données Massives Ne sont ici considérés que les solutions autour de l environnement
L écosystème Hadoop Nicolas Thiébaud [email protected]. Tuesday, July 2, 13
L écosystème Hadoop Nicolas Thiébaud [email protected] HUG France 250 membres sur la mailing liste 30 présentations 9 meetups organisés, de 20 à 100 invités Présence de Cloudera, MapR, Hortonworks,
Vos experts Big Data. [email protected]. Le Big Data dans la pratique
Vos experts Big Data [email protected] Le Big Data dans la pratique Expert Expert Infrastructure Data Science Spark MLLib Big Data depuis 2011 Expert Expert Hadoop / Spark NoSQL HBase Couchbase MongoDB
Cartographie des solutions BigData
Cartographie des solutions BigData Panorama du marché et prospective 1 1 Solutions BigData Défi(s) pour les fournisseurs Quel marché Architectures Acteurs commerciaux Solutions alternatives 2 2 Quels Défis?
HADOOP ET SON ÉCOSYSTÈME
HADOOP ET SON ÉCOSYSTÈME Mars 2013 2012 Affini-Tech - Diffusion restreinte 1 AFFINI-TECH Méthodes projets Outils de reporting & Data-visualisation Business & Analyses BigData Modélisation Hadoop Technos
Programme ASI Développeur
Programme ASI Développeur Titre de niveau II inscrit au RNCP Objectifs : Savoir utiliser un langage dynamique dans la création et la gestion d un site web. Apprendre à développer des programmes en objet.
Fouillez facilement dans votre système Big Data. Olivier TAVARD
Fouillez facilement dans votre système Big Data Olivier TAVARD A propos de moi : Cofondateur de la société France Labs Développeur (principalement Java) Formateur en technologies de moteurs de recherche
Prototypage et évaluation de performances d un service de traçabilité avec une architecture distribuée basée sur Hadoop
Julien Gerlier Siman Chen Rapport de projet de fin d étude ASR 2010/2011 Prototypage et évaluation de performances d un service de traçabilité avec une architecture distribuée basée sur Hadoop Encadrants
Mettez les évolutions technologiques au service de vos objectifs métier
Mettez les évolutions technologiques au service de vos objectifs métier 2 OXIA a pour mission de concevoir et mettre en oeuvre les meilleures solutions technologiques visant à améliorer la productivité,
Le langage SQL pour Oracle - partie 1 : SQL comme LDD
Le langage SQL pour Oracle - partie 1 : SQL comme LDD 1 SQL : Introduction SQL : Structured Query Langage langage de gestion de bases de donn ees relationnelles pour Définir les données (LDD) interroger
MapReduce. Nicolas Dugué [email protected]. M2 MIAGE Systèmes d information répartis
MapReduce Nicolas Dugué [email protected] M2 MIAGE Systèmes d information répartis Plan 1 Introduction Big Data 2 MapReduce et ses implémentations 3 MapReduce pour fouiller des tweets 4 MapReduce
FINI LA RÉCRÉ PASSONS AUX MÉGADONNÉES
1 FINI LA RÉCRÉ PASSONS AUX MÉGADONNÉES «Dans le concret, projets de transformation vers le BigData» V1-10/03/15 ABED AJRAOU CONNAISSEZ-VOUS PAGESJAUNES? CONNAISSEZ-VOUS PAGESJAUNES? LES MEGADONNEES RÉPONDENT
Webinar EBG Nouvelles perspectives d'exploitation des données clients avec le big data
Webinar EBG Nouvelles perspectives d'exploitation des données clients avec le big data Approches & opportunités face aux enjeux de volume, variété et vélocité France, 2012-2014 28 mars 2013 Ce document
SGBDR. Systèmes de Gestion de Bases de Données (Relationnelles)
SGBDR Systèmes de Gestion de Bases de Données (Relationnelles) Plan Approches Les tâches du SGBD Les transactions Approche 1 Systèmes traditionnels basés sur des fichiers Application 1 Gestion clients
Les participants repartiront de cette formation en ayant une vision claire de la stratégie et de l éventuelle mise en œuvre d un Big Data.
Big Data De la stratégie à la mise en oeuvre Description : La formation a pour objet de brosser sans concession le tableau du Big Data. Les participants repartiront de cette formation en ayant une vision
INGÉNIEUR LOGICIEL JAVAEE / GROOVY 8 ANS D EXPÉRIENCE
INGÉNIEUR LOGICIEL JAVAEE / GROOVY 8 ANS D EXPÉRIENCE Igor Rosenberg 30 ans DEA «Image-Vision» de l Université de Nice Sophia-Antipolis POSTES PRECEDENTS MMA: Développement Web/Grails sur démonstrateur
Gildas Le Nadan. Thomas Clavier
Chtijug 2011 Gildas Le Nadan Freelance Thomas Clavier AZAÉ Devops, une définition Devops est un mouvement visant à l'alignement du SI sur les besoins de l'entreprise
Projet de Java Enterprise Edition
Projet de Java Enterprise Edition Cours de Master 2 Informatique Boutique en ligne L objectif du projet de JEE est de réaliser une application de boutique en ligne. Cette boutique en ligne va permettre
C-JDBC. Emmanuel Cecchet INRIA, Projet Sardes. http://sardes.inrialpes.fr
Emmanuel Cecchet INRIA, Projet Sardes http://sardes.inrialpes.fr Plan Motivations Idées principales Concepts Caching Perspectives /ObjectWeb 15 octobre 2002 [email protected] 2 - Motivations
ETUDE ET IMPLÉMENTATION D UNE CACHE L2 POUR MOBICENTS JSLEE
Mémoires 2010-2011 www.euranova.eu MÉMOIRES ETUDE ET IMPLÉMENTATION D UNE CACHE L2 POUR MOBICENTS JSLEE Contexte : Aujourd hui la plupart des serveurs d application JEE utilise des niveaux de cache L1
BIG DATA en Sciences et Industries de l Environnement
BIG DATA en Sciences et Industries de l Environnement François Royer www.datasio.com 21 mars 2012 FR Big Data Congress, Paris 2012 1/23 Transport terrestre Traçabilité Océanographie Transport aérien Télémétrie
Data Tier Application avec SQL Server 2008 R2
Data Tier Application avec SQL Server 2008 R2 Article par David BARBARIN (MVP SQL Server) David BARBARIN est actuellement consultant en bases de données pour une entreprise Suisse GOLD Partner Microsoft
StruxureWare Power Monitoring v7.0. La nouvelle génération en matière de logiciel de gestion complète d énergie
StruxureWare Power Monitoring v7.0 La nouvelle génération en matière de logiciel de gestion complète d énergie Évolution des deux plate-formes originales Power Monitoring v7.0 SMS ION Enterprise 2012 Struxureware
Java à Murex: un retour d'expérience. Jean-Pierre DACHER & Craig MORRISON
1 Java à Murex: un retour d'expérience Jean-Pierre DACHER & Craig MORRISON Résumé Description des défis et contraintes d un grand éditeur de logiciel Le cycle de développement Murex pour atteindre les
SQL. Oracle. pour. 4 e édition. Christian Soutou Avec la participation d Olivier Teste
Christian Soutou Avec la participation d Olivier Teste SQL pour Oracle 4 e édition Groupe eyrolles, 2004, 2005, 2008, 2010, is BN : 978-2-212-12794-2 Partie III SQL avancé La table suivante organisée en
Présentation Alfresco
Présentation d un CMS : Alfresco Présentation Alfresco Ludovic Plantin, Frédéric Sénèque, Xu Zhao Polytech Grenoble Décembre 2008 Plantin, Sénèque, Xu (Polytech) Présentation Alfresco Décembre 2008 1 /
Apache JMeter de A à Z. Antonio Gomes Rodrigues and Bruno Demion a.k.a. Milamber
Apache JMeter de A à Z Antonio Gomes Rodrigues and Bruno Demion a.k.a. Milamber Apache JMeter de A à Z Antonio Gomes Rodrigues and Bruno Demion a.k.a. Milamber This book is for sale at http://leanpub.com/apache-jmeter-de-a-z
NFA 008. Introduction à NoSQL et MongoDB 25/05/2013
NFA 008 Introduction à NoSQL et MongoDB 25/05/2013 1 NoSQL, c'est à dire? Les bases de données NoSQL restent des bases de données mais on met l'accent sur L'aspect NON-relationnel L'architecture distribuée
Proposition d une architecture pour ebay, en mettant l accent sur les notions de scalabilité, de résilience, et de tolérance aux pannes.
PROJET «EBAY» V1 MANUEL ROLLAND, SCIA 2009, REMIS LE 7 MARS 2008 1. Rappels sur le projet : Proposition d une architecture pour ebay, en mettant l accent sur les notions de scalabilité, de résilience,
Technologies du Web. Ludovic DENOYER - [email protected]. Février 2014 UPMC
Technologies du Web Ludovic DENOYER - [email protected] UPMC Février 2014 Ludovic DENOYER - [email protected] Technologies du Web Plan Retour sur les BDs Le service Search Un peu plus sur les
Open Source Job Scheduler. Installation(s)
Open Source Job Scheduler Installation(s) Installations Standard Configuration Superviseur Agent SOS-Paris 2 Pré-requis o Base de données o MySQL, MSACCESS, Oracle o JDBC ou ODBC o Connecteurs o Mysql
Paris JUG. Spring Batch. Mardi 14 Mai 2013. Olivier Bazoud Julien Jakubowski
Paris JUG Spring Batch Mardi 14 Mai 2013 Olivier Bazoud Julien Jakubowski Intervenants Olivier Bazoud @obazoud Architecte technique sénior Java EE / Spring, Spring Batch, NoSQL, Node.js Co-auteur de «Spring
Programme «Analyste Programmeur» Diplôme d état : «Développeur Informatique» Homologué au niveau III (Bac+2) (JO N 176 du 1 août 2003) (34 semaines)
Programme «Analyste Programmeur» Diplôme d état : «Développeur Informatique» Homologué au niveau III (Bac+2) (JO N 176 du 1 août 2003) (34 semaines) Module 1 : Programmer une application informatique Durée
OpenPaaS Le réseau social d'entreprise
OpenPaaS Le réseau social d'entreprise Spécification des API datastore SP L2.3.1 Diffusion : Institut MinesTélécom, Télécom SudParis 1 / 12 1OpenPaaS DataBase API : ODBAPI...3 1.1Comparaison des concepts...3
IBM WebSphere Application Server 5.0 : Administration avancée
IBM WebSphere Application Server 5.0 : Administration avancée Slim CHENNOUFI Karim JENZRI [email protected] [email protected] INSAT GL5 2004/2005 WAS 5.0: Pratiques d Administration 1 Plan La plate-forme
Performances. Gestion des serveurs (2/2) Clustering. Grid Computing
Présentation d Oracle 10g Chapitre VII Présentation d ORACLE 10g 7.1 Nouvelles fonctionnalités 7.2 Architecture d Oracle 10g 7.3 Outils annexes 7.4 Conclusions 7.1 Nouvelles fonctionnalités Gestion des
Le NoSQL - Cassandra
Le NoSQL - Cassandra Thèse Professionnelle Xavier MALETRAS 27/05/2012 Ce document présente la technologie NoSQL au travers de l utilisation du projet Cassandra. Il présente des situations ainsi que des
Big Data et Graphes : Quelques pistes de recherche
Big Data et Graphes : Quelques pistes de recherche Hamamache Kheddouci Laboratoire d'informatique en Image et Systèmes d'information LIRIS UMR 5205 CNRS/INSA de Lyon/Université Claude Bernard Lyon 1/Université
Labs Hadoop Février 2013
SOA - BRMS - ESB - BPM CEP BAM - High Performance Compute & Data Grid - Cloud Computing - Big Data NoSQL - Analytics Labs Hadoop Février 2013 Mathias Kluba Managing Consultant Responsable offres NoSQL
Programmation parallèle et distribuée
Programmation parallèle et distribuée (GIF-4104/7104) 5a - (hiver 2015) Marc Parizeau, Département de génie électrique et de génie informatique Plan Données massives («big data») Architecture Hadoop distribution
Catalogue des formations Edition 2015
Antidot - Formations Catalogue des formations Edition 2015 : catalogue_formation_2015 Révision du 06.01.2015 Sommaire!!"##$%&'( )! $*$+,(-'(."##'+.'&( /!,'.0+"1"2%'( /!!."3'( /! $(3&"3"!(-4(5(.$,$1"24'(-'!(6"&#$,%"+!(7('-%,%"+()89:(;(
PROSOP : un système de gestion de bases de données prosopographiques
PROSOP : un système de gestion de bases de données prosopographiques Introduction : Ce document présente l outil en développement PROSOP qui permet la gestion d'une base de donnée prosopographique de la
Méthodes Agiles et gestion de projets
Méthodes Agiles et gestion de projets Eric LELEU Consultant Solutions Collaboratives Contact [email protected] Site Personnel http://home.nordnet.fr/~ericleleu Blog http://ericleleu.spaces.live.fr La
La gestion de la performance applicative dans des environnements complexes et distribués
La gestion de la performance applicative dans des environnements complexes et distribués Juin 2011 Agenda Introduction Problématique Démarche Mise en œuvre Retour d expérience Crédit Agricole Questions
Master Informatique et Systèmes. Architecture des Systèmes d Information. 03 Architecture Logicielle et Technique
Master Informatique et Systèmes Architecture des Systèmes d Information 03 Architecture Logicielle et Technique Damien Ploix 2014-2015 Démarche d architecture SI : structuration en vues Quels métiers?
L offre décisionnel IBM. Patrick COOLS Spécialiste Business Intelligence
L offre décisionnel IBM Patrick COOLS Spécialiste Business Intelligence Le marché du Business Intelligence L enjeux actuel des entreprises : devenir plus «agiles» Elargir les marchés tout en maintenant
NoSQL. Introduction 1/30. I NoSQL : Not Only SQL, ce n est pas du relationnel, et le contexte. I table d associations - Map - de couples (clef,valeur)
1/30 2/30 Anne-Cécile Caron Master MIAGE - SGBD 1er trimestre 2014-2015 I : Not Only SQL, ce n est pas du relationnel, et le contexte d utilisation n est donc pas celui des SGBDR. I Origine : recherche
Big Data, un nouveau paradigme et de nouveaux challenges
Big Data, un nouveau paradigme et de nouveaux challenges Sebastiao Correia 21 Novembre 2014 Séminaire Thématique : Traitement et analyse statistique des données massives, Poitiers. 1 Présentation Sebastiao
Pentaho Business Analytics Intégrer > Explorer > Prévoir
Pentaho Business Analytics Intégrer > Explorer > Prévoir Pentaho lie étroitement intégration de données et analytique. En effet, les services informatiques et les utilisateurs métiers peuvent accéder aux
Le traitement du Big Data inclue la collecte, la curation, le stockage, l enrichissement, le croisement, la partage, l analyse et la visualisation.
Les infrastructure du Big Data Le «Big Data» vise à tirer un avantage concurrentiel au travers de méthodes de collecte, d analyse et d exploitation des données qu on ne pouvait utiliser jusqu à présent
CATALOGUE DE FORMATIONS BUSINESS INTELLIGENCE. Edition 2012
CATALOGUE DE FORMATIONS BUSINESS INTELLIGENCE Edition 2012 AGENDA Qui sommes nous? Présentation de Keyrus Keyrus : Expert en formations BI Nos propositions de formation 3 modes de formations Liste des
Déploiement d une architecture Hadoop pour analyse de flux. franç[email protected]
Déploiement d une architecture Hadoop pour analyse de flux franç[email protected] 1 plan Introduction Hadoop Présentation Architecture d un cluster HDFS & MapReduce L architecture déployée Les
4. Utilisation d un SGBD : le langage SQL. 5. Normalisation
Base de données S. Lèbre [email protected] Université de Strasbourg, département d informatique. Présentation du module Contenu général Notion de bases de données Fondements / Conception Utilisation :
Cyrille GUERIN [email protected] 823, place Soulanges 514 967-3529 Brossard, J4X1L8
Cyrille GUERIN [email protected] 823, place Soulanges 514 967-3529 Brossard, J4X1L8 16 années d expérience dans la conception d applications WEB, JAVA/J2EE/Javascript COMPÉTENCES Architecture, conception
1/ Présentation de SQL Server :
Chapitre II I Vue d ensemble de Microsoft SQL Server Chapitre I : Vue d ensemble de Microsoft SQL Server Module: SQL server Semestre 3 Année: 2010/2011 Sommaire 1/ Présentation de SQL Server 2/ Architerture
Hibernate vs. le Cloud Computing
Hibernate vs. le Cloud Computing Qui suis-je? Julien Dubois Co-auteur de «Spring par la pratique» Ancien de SpringSource Directeur du consulting chez Ippon Technologies Suivez-moi sur Twitter : @juliendubois
Curriculum Vitae de Michel Casabianca
Curriculum Vitae de Michel Casabianca Ingénieur Logiciel Sénior : Développement, Architecture et Conduite de Projet. Michel Casabianca 110 cours Saint Louis Bat B App 44 33300 Bordeaux 06.86.99.63.89 [email protected]
Arian Papillon [email protected]
Arian Papillon [email protected] Eléments de monitoring Compteurs de performances DMV s et DBCC Evènements (jobs, services, ) Stratégies (policies) Traces Plans d exécution Outils de mesure Multiples,
Hadoop, les clés du succès
Hadoop, les clés du succès Didier Kirszenberg, Responsable des architectures Massive Data, HP France Copyright 2015 Hewlett-Packard Development Company, L.P. The information contained herein is subject
CQP Développeur Nouvelles Technologies (DNT)
ORGANISME REFERENCE STAGE : 26572 20 rue de l Arcade 75 008 PARIS CONTACT Couverture géographique : M. Frédéric DIOLEZ Bordeaux, Rouen, Lyon, Toulouse, Marseille Tél. : 09 88 66 17 40 Nantes, Lille, Strasbourg,
PostgreSQL, le cœur d un système critique
PostgreSQL, le cœur d un système critique Jean-Christophe Arnu PostgreSQLFr Rencontres Mondiales du Logiciel Libre 2005 2005-07-06 Licence Creative Commons Paternité - Pas d utilisation commerciale - Partage
Modélisation et Gestion des bases de données avec mysql workbench
Modélisation et Gestion des bases de données avec mysql workbench par novembre 2011 Table des matières 1 Installation 3 1.1 Ecran de chargement 3 1.2 Page d accueil 3 2 Réalisation d une base de données
Mesures DNS à l ère du Big Data : outils et défis. JCSA, 9 juillet 2015 Vincent Levigneron, Afnic
Mesures DNS à l ère du Big Data : outils et défis JCSA, 9 juillet 2015 Vincent Levigneron, Afnic Sommaire 1. Mesures DNS réalisées par l Afnic 2. Volumes et biais 3. Limitations 4. Pourquoi une approche
Benjamin Cornu Florian Joyeux. Les choses à connaître pour (essayer) de concurrencer Facebook.
Benjamin Cornu Florian Joyeux Les choses à connaître pour (essayer) de concurrencer Facebook. 1 Sommaire Présentation générale Historique Facebook La face cachée de l iceberg (back end) Architecture globale
Création et Gestion des tables
Création et Gestion des tables Version 1.0 Z Grégory CASANOVA 2 Sommaire 1 Introduction... 3 2 Pré-requis... 4 3 Les tables... 5 3.1 Les types de données... 5 3.1.1 Les types de données Sql Server... 5
Spécialité Compétence complémentaire en informatique
STATISTIQUES INFORMATIQUE Sur les 92 diplômés entrant dans le champ d enquête (de nationalité française et en formation initiale), 80 ont répondu au questionnaire soit un taux de réponse de 87%. Développeur
Présentation du module Base de données spatio-temporelles
Présentation du module Base de données spatio-temporelles S. Lèbre [email protected] Université de Strasbourg, département d informatique. Partie 1 : Notion de bases de données (12,5h ) Enjeux et principes
Comment valoriser votre patrimoine de données?
BIG DATA POUR QUELS USAGES? Comment valoriser votre patrimoine de données? HIGH PERFORMANCE HIGH ANALYTICS PERFORMANCE ANALYTICS MOULOUD DEY SAS FRANCE 15/11/2012 L ENTREPRISE SAS EN QUELQUES CHIFFRES
DEMARREZ RAPIDEMENT VOTRE EVALUATION
Pentaho Webinar 30 pour 30 DEMARREZ RAPIDEMENT VOTRE EVALUATION Resources & Conseils Sébastien Cognet Ingénieur avant-vente 1 Vous venez de télécharger une plateforme moderne d intégration et d analyses
Offre formation Big Data Analytics
Offre formation Big Data Analytics OCTO 2014 50, avenue des Champs-Elysées 75008 Paris - FRANCE Tél : +33 (0)1 58 56 10 00 Fax : +33 (0)1 58 56 10 01 www.octo.com 1 Présentation d OCTO Technology 2 Une
Cloud Computing : Utiliser Stratos comme PaaS privé sur un cloud Eucalyptus
Cloud Computing : Utiliser Stratos comme PaaS privé sur un cloud Eucalyptus Mr Romaric SAGBO Ministère de l'economie et des Finances (MEF), Bénin SWD Technologies Email : [email protected] Tél : +229 97217745
Big Data On Line Analytics
Fdil Fadila Bentayeb Lb Laboratoire ERIC Lyon 2 Big Data On Line Analytics ASD 2014 Hammamet Tunisie 1 Sommaire Sommaire Informatique décisionnelle (BI Business Intelligence) Big Data Big Data analytics
Présentation Windows Azure Hadoop Big Data - BI
Présentation Windows Azure Hadoop Big Data - BI Sommaire 1. Architecture Hadoop dans Windows Azure... 3 2. Requête Hive avec Hadoop dans Windows Azure... 4 3. Cas d études... 5 3.1 Vue : Administrateur...
Gestion de tests et tests de performance avec Salomé-TMF & CLIF
Gestion de tests et tests de performance avec Salomé-TMF & CLIF Orange Labs Bruno Dillenseger, Marche Mikael Recherche & Développement 22/05/2008, présentation à LinuxDays 2008 Sommaire partie 1 Salomé-Test
Chef de projet / Architecte JEE 15 ans d expérience
Méallier Eric 33 Traverse de la CNR 30400 Villeneuve les Avignon Mob : 06.20.33.05.39 E-Mail : [email protected] Nationalité Française 38 ans, 2 enfants Permis B Chef de projet / Architecte JEE 15 ans d
Big data et données géospatiales : Enjeux et défis pour la géomatique. Thierry Badard, PhD, ing. jr Centre de Recherche en Géomatique
Big data et données géospatiales : Enjeux et défis pour la géomatique Thierry Badard, PhD, ing. jr Centre de Recherche en Géomatique Événement 25e anniversaire du CRG Université Laval, Qc, Canada 08 mai
Augmenter la disponibilité des applications JEE grâce au clustering : Le projet open source JShaft
Augmenter la disponibilité des applications JEE grâce au clustering : Le projet open source Jérôme Petit, Serge Petit & Serli Informatique, ITMatic Jérôme Petit, Serge Petit & SERLI & ITMatic Serli : SSII
QLIKVIEW ET LE BIG DATA
QLIKVIEW ET LE BIG DATA Livre blanc sur la technologie QlikView Juillet 2012 qlikview.com Introduction Le Big Data suscite actuellement un vif intérêt. En l exploitant dans un cadre opérationnel, nombre
Pratique de la prémétrologie à Orange Labs à travers l'utilisation de la plate forme de test en charge CLIF
Pratique de la prémétrologie à Orange Labs à travers l'utilisation de la plate forme de test en charge CLIF Bruno Dillenseger, Orange Labs, laboratoire MAPS/AMS 28, chemin du Vieux Chêne, 38243 Meylan
Expert technique J2EE
EHRET Guillaume 25, rue de la Richelandiere 42100 SAINT ETIENNE 32 ans - Célibataire Expert technique J2EE Domaines de compétences Environnement et langages Expertise en programmation Java et en architecture
Professeur superviseur ALAIN APRIL
RAPPORT TECHNIQUE PRÉSENTÉ À L ÉCOLE DE TECHNOLOGIE SUPÉRIEURE DANS LE CADRE DU COURS LOG792 PROJET DE FIN D ÉTUDES EN GÉNIE LOGICIEL OPTIMISATION DE RECHERCHE GRÂCE À HBASE SOUS HADOOP ANNA KLOS KLOA22597907
Évolution de la supervision et besoins utilisateurs
Évolution de la supervision et besoins utilisateurs 09/07/2014 Maximilien Bersoult Présentation Maximilien Bersoult Développeur sur le projet Centreon Travaillant chez Merethis, éditeur de Centreon Twitter
Paul FLYE SAINTE MARIE
Paul FLYE SAINTE MARIE ASSISTANT CHEF DE PROJET DANS LE DÉVELOPPEMENT INFORMATIQUE Domaines de compétences Conduite de projet (échange avec la maitrise d ouvrage, maitrise d œuvre, rédaction des spécifications
Missions réalisées. Team Leader. Scrum Master (certifié)
Thomas Sauzedde [email protected] www.sauzedde.net sur demande Missions réalisées Team Leader Scrum Master (certifié) 14 ans d'expérience Spécialisé dans les technologies Java et Web 37 ans (7 octobre
Acquisition des données - Big Data. Dario VEGA Senior Sales Consultant
Acquisition des données - Big Data Dario VEGA Senior Sales Consultant The following is intended to outline our general product direction. It is intended for information purposes only, and may not be incorporated
KPI (Key Performance Indicator) dans MOSS
KPI (Key Performance Indicator) dans MOSS Introduction Un KPI (Key Performance Indicator), Indicateur de Performance ou Indicateur Clé est un concept permettant de présenter à un utilisateur une information
