Source Canal Récepteur



Documents pareils
Chapitre 22 : (Cours) Numérisation, transmission, et stockage de l information

Chapitre 13 Numérisation de l information

Chapitre 18 : Transmettre et stocker de l information

UE 503 L3 MIAGE. Initiation Réseau et Programmation Web La couche physique. A. Belaïd

Transmission de données. A) Principaux éléments intervenant dans la transmission

Puis le convertisseur bloque en mémoire cette valeur pendant une période d échantillonnage.

Chap17 - CORRECTİON DES EXERCİCES

LES CARACTERISTIQUES DES SUPPORTS DE TRANSMISSION

Traitement numérique de l'image. Raphaël Isdant

Q6 : Comment calcule t-on l intensité sonore à partir du niveau d intensité?

Chapitre 2 : communications numériques.

Numérisation du signal

Etudier l influence de différents paramètres sur un phénomène physique Communiquer et argumenter en utilisant un vocabulaire scientifique adapté

LES DIFFÉRENTS FORMATS AUDIO NUMÉRIQUES

G.P. DNS02 Septembre Réfraction...1 I.Préliminaires...1 II.Première partie...1 III.Deuxième partie...3. Réfraction

Acquisition et conditionnement de l information Les capteurs

Chapitre I La fonction transmission

Codage d information. Codage d information : -Définition-

Ecole Centrale d Electronique VA «Réseaux haut débit et multimédia» Novembre 2009

INTRODUCTION A L ELECTRONIQUE NUMERIQUE ECHANTILLONNAGE ET QUANTIFICATION I. ARCHITECTURE DE L ELECRONIQUE NUMERIQUE

TP SIN Traitement d image

I- Définitions des signaux.

2. Couche physique (Couche 1 OSI et TCP/IP)

TS 35 Numériser. Activité introductive - Exercice et démarche expérimentale en fin d activité Notions et contenus du programme de Terminale S

PRODUIRE DES SIGNAUX 1 : LES ONDES ELECTROMAGNETIQUES, SUPPORT DE CHOIX POUR TRANSMETTRE DES INFORMATIONS

Le poids et la taille des fichiers

Partie Agir : Défis du XXI ème siècle CHAP 20-ACT EXP Convertisseur Analogique Numérique (CAN)

Cisco Certified Network Associate

Transmission et stockage de l information

Chaine de transmission

LA COUCHE PHYSIQUE EST LA COUCHE par laquelle l information est effectivemnt transmise.

nom : Collège Ste Clotilde

Outils permettant la diffusion de l information. Un point sur le droit numérique

Cours Informatique 1. Monsieur SADOUNI Salheddine

Les techniques de multiplexage

Leçon 1 : Les principaux composants d un ordinateur

Sur un ordinateur portable ou un All-in-One tactile, la plupart des éléments mentionnés précédemment sont regroupés. 10) 11)

TD1 PROPAGATION DANS UN MILIEU PRESENTANT UN GRADIENT D'INDICE

Le multiplexage. Sommaire

Comme chaque ligne de cache a 1024 bits. Le nombre de lignes de cache contenu dans chaque ensemble est:

Systèmes de communications numériques 2

Usage des photos pour Internet et pour la presse

On distingue deux grandes catégories de mémoires : mémoire centrale (appelée également mémoire interne)

Chapitre 2 Les ondes progressives périodiques

Les périphériques informatiques

Fonctions de la couche physique

Informatique Générale

TD : Codage des images

Mise en pratique : Etude de spectres

L ORDINATEUR. Les composants. La carte mère. Le processeur. Fréquence

Communications numériques

Premiers pas sur l ordinateur Support d initiation

Conservation des documents numériques

Université de La Rochelle. Réseaux TD n 6

Régler les paramètres de mesure en choisissant un intervalle de mesure 10µs et 200 mesures.

Structure de base d un ordinateur

La mémoire. Un ordinateur. L'octet. Le bit

ESPACE MULTIMEDIA DU CANTON DE ROCHESERVIERE

Systèmes de transmission

INFO 2 : Traitement des images

JPEG, PNG, PDF, CMJN, HTML, Préparez-vous à communiquer!

Projet Matlab : un logiciel de cryptage

«SESSION 2009» RESEAUX DE TELECOMMUNICATIONS ET EQUIPEMENTS ASSOCIES. Durée : 2 h 00 (Coef. 3)

Rapport. Mesures de champ de très basses fréquences à proximité d antennes de stations de base GSM et UMTS

ESPACE MULTIMEDIA DU CANTON DE ROCHESERVIERE

2. DIFFÉRENTS TYPES DE RÉSEAUX

Dossier 03 Périphériques d acquisition

La conversion de données : Convertisseur Analogique Numérique (CAN) Convertisseur Numérique Analogique (CNA)

CENTRALE DE SURVEILLANCE EMBARQUEE MULTIMEDIA

Les transmissions et les supports

FORMATS DE FICHIERS. Quels sont les différents types d informations numériques dans un document multimédia?

W 12-2 : haute performance et savoir-faire compact

Année Transmission des données. Nicolas Baudru mél : nicolas.baudru@esil.univmed.fr page web : nicolas.baudru.perso.esil.univmed.

Traitement numérique du son

LE MICRO ORDINATEUR. Introduction Architecture Les supports amovibles Les composants Le système d exploitation Les portables

EXERCICE 2 : SUIVI CINETIQUE D UNE TRANSFORMATION PAR SPECTROPHOTOMETRIE (6 points)

ADSL. Étude d une LiveBox. 1. Environnement de la LiveBox TMRIM 2 EME TRIMESTRE LP CHATEAU BLANC CHALETTE/LOING NIVEAU :

Algorithme. Table des matières

Comprendre l Univers grâce aux messages de la lumière

- MANIP 2 - APPLICATION À LA MESURE DE LA VITESSE DE LA LUMIÈRE

Chapitre 02. La lumière des étoiles. Exercices :

xdsl Digital Suscriber Line «Utiliser la totalité de la bande passante du cuivre»

Conversion d un entier. Méthode par soustraction

Le codage informatique

UEO11 COURS/TD 1. nombres entiers et réels codés en mémoire centrale. Caractères alphabétiques et caractères spéciaux.

Spectrophotomètre double faisceau modèle 6800

Caractéristiques des ondes

Numérisation de l information Transmission et stockage de l information

I. TRANSMISSION DE DONNEES

Technique de codage des formes d'ondes

M1107 : Initiation à la mesure du signal. T_MesSig

La Fibre Optique J BLANC

Eternelle question, mais attention aux arnaques Question qui est souvent mise en premier plan => ce n est pas une bonne idée

Dossier technique. Présentation du bus DMX et Utilisation des options EL13 / EL14 ERM AUTOMATISMES INDUSTRIELS 1 LE PROTOCOLE DMX 2

BACCALAURÉAT TECHNOLOGIQUE STD ARTS APPLIQUÉS

Production de documents audio-numériques

THEME 1 : L ORDINATEUR ET SON ENVIRONNEMENT. Objectifs

Fête de la science Initiation au traitement des images

Transcription:

Cours n 18 : Traitement, transmission et stockage de l information Introduction Suivre en direct à la télévision une compétition sportive qui se déroule à l autre bout du monde, envoyer un mail à un ami, transporter dans la mémoire d un baladeur MP3 des centaines d heures de musique..., tous ces gestes peuvent paraître aujourd hui anodins, voire naturels. Mais la maîtrise par l Homme de la transmission et du stockage de l information ne s est pas faite en un jour et réserve encore sans doute nombre d innovations futures. 1) Chaîne de transmission de l information 1.1) Principe de la transmission de l information L acte de communiquer, c'est-à-dire transmettre une information, est au centre des activités humaines. Lorsqu un individu veut transmettre une information à un autre en lui parlant directement, on peut schématiser la chaîne de transmission de cette information ainsi : Source Canal Récepteur La source est ici la voix de l individu contenant l information à transmettre, le canal de transmission est l air, milieu matériel qui permet la propagation du son, et le récepteur est le système auditif de l interlocuteur qui va pouvoir capter le message envoyé. 1.2) Codage et décodage Le mode de communication verbale directe atteint toutefois rapidement ses limites notamment lorsqu il s agit de transmettre des informations à grande distance. L utilisation d instruments de musique puissants (cor, tam-tam ) ou de signaux de fumée a permis il y a bien longtemps de s affranchir de cette limite. L introduction d un codage (et donc d un décodage côté récepteur) est alors devenue nécessaire afin de transmettre des messages à plusieurs kilomètres alentours. Source Codage Canal Décodage Récepteur Par exemple, un message d alerte est codé en une succession déterminée de coups donnés sur un tam-tam. Ce message codé transite par l air (le canal) avant d arriver aux oreilles du récepteur qui pourra alors le décoder (à condition de connaître le code!) afin d acquérir l information envoyée par la source : «alerte»! Dr A. Sicard CapeSup Grenoble Page 1

2) Numérisation 2.1) Signaux analogiques et numériques 2.1.1) Signaux analogiques Les capteurs convertissent la valeur d une grandeur physique quelconque (pression, température, vitesse, etc.) en un signal électrique (une tension ou une intensité) analogique. Un signal analogique est un signal continu dont la mesure à un instant donné peut théoriquement donner un nombre réel quelconque. Ce signal est donc mesurable à tout instant et peut prendre un nombre infini de valeurs différentes. Par exemple, un microphone captant un son le transforme en une tension électrique évoluant au cours du temps. La courbe représentant ce signal est continue et présente une infinité de valeurs différentes : il s agit bien d un signal analogique. 2.1.2) Signaux numériques Un signal numérique n est pas continu et le nombre de valeurs qu il peut prendre n est pas infini. On ne peut donc pas mesurer ce signal à n importe quel instant et cette mesure ne pourra prendre qu un certain nombre de valeurs différentes. Voici à quoi pourrait ressembler le signal précédemment enregistré par le micro s il était de nature numérique (micro USB par exemple) : Dr A. Sicard CapeSup Grenoble Page 2

2.2) Fichier numérique Pour faire subir un traitement informatique au signal (enregistrement, analyse, etc.), il est nécessaire de disposer d un fichier numérique qui seul pourra être traité par un ordinateur. Un fichier numérique est une succession de nombres binaires appelés bits. Un bit (pour BInary digit) est le plus petit élément d information stockable par un système numérique (ordinateur, CD, etc.). Un bit ne peut prendre que deux valeurs (0 ou 1) correspondant à deux états possibles d un élément de circuit électrique (tension haute ou basse). Les informations numériques sont codées en langage binaire. Chaque bit pouvant prendre la valeur 0 ou 1, N bits codent 2 2 2 = 2 N entiers de 0 à 2 N 1. Ainsi, N = 8 bits constituent un octet qui permet de coder 256 entiers de 0 à 2 8 1 = 255. En conséquence, le signal numérique ne peut prendre que des valeurs bien définies, en nombre limité. Par exemple, le codage en langage binaire du nombre 13 sur 8 bits est 00001101 car : 13 = 0 2 7 + 0 2 6 + 0 2 5 + 0 2 4 + 1 2 3 + 1 2 2 + 0 2 1 + 1 2 0 Le nombre de bits constituant un fichier numérique est généralement compté en multiples de l octet. Unité Symbole Valeur 1 kilooctet 1 ko 1024 octets 1 mégaoctet 1 Mo 1024 kilooctets 1 gigaoctet 1 Go 1024 mégaoctets 1 téraoctet 1 To 1024 gigaoctets 2.3) Conversion analogique-numérique 2.3.1) Principe de la conversion Les signaux naturels (sons, images, ) sont de nature analogique, et nos capteurs sensoriels (yeux, oreilles, ) fonctionnent eux aussi de façon analogique. Pour permettre à un système informatique de traiter un signal en provenance d un capteur par exemple, il faut d abord recourir à une conversion analogique-numérique. On doit donc procéder à la numérisation de ce signal. La numérisation des signaux est omniprésente, car les signaux numériques peuvent être manipulés de façon plus simple et plus fiable. De plus un signal numérisé peut être transmis plus rapidement et son stockage requiert moins de place que celui d un signal analogique. Pour numériser un signal analogique s(t), c est-à-dire le transformer en un fichier numérique, il faut recourir à un convertisseur analogique-numérique ou «CAN». Cette numérisation comporte deux étapes : l échantillonnage et la quantification. 2.3.2) Echantillonnage L échantillonnage consiste à capturer les valeurs prises par un signal analogique à intervalle de temps régulier. Le CAN opère donc un échantillonnage du signal s(t) en prélevant à intervalle de temps régulier T e, les valeurs s(n T e ) où n est un entier. Dr A. Sicard CapeSup Grenoble Page 3

La fréquence d échantillonnage, exprimée en hertz, est le nombre de valeurs capturées par le CAN par seconde. La fréquence d échantillonnage s exprime comme : f e = 1 T e Elle doit être suffisamment grande pour pouvoir reconstituer convenablement les variations du signal analogique d origine. Ainsi, plus cette fréquence est élevée et plus le signal numérique sera précis. Si la fréquence d échantillonnage est insuffisante, on perdra une grande partie des informations fournies par le signal analogique original. On parle alors de sous-échantillonnage. Ainsi, si on veut utiliser un signal échantillonné, il faut être sûr que celui-ci contienne toute l'information du signal analogique d'origine. Il est souvent commode de considérer celui-ci comme une somme de sinusoïdes (cf. analyse spectrale). Or il est intuitivement évident qu'une perte d'information se produit si le pas d'échantillonnage est trop grand par comparaison avec les périodes en cause, la fréquence d'échantillonnage étant trop faible par rapport aux fréquences considérées. Théorème de Shannon Pour qu'un signal ne soit pas perturbé par l'échantillonnage, la fréquence d'échantillonnage doit être supérieure au double de la plus haute fréquence f max contenue dans le signal. Cette fréquence limite s'appelle la fréquence de Nyquist. La fréquence d échantillonnage f e doit donc vérifier : f e 2f max L intervalle de temps minimum entre deux prises de mesure correspondant à cette condition est : T e 1 2f max 2.3.3) Quantification A chacune des dates d échantillonnage, le CAN opère en outre une quantification : il produit N bits qui représentent la valeur du signal analogique s(n T e ). Dans une gamme [s min ; s max ], le CAN va faire appel à 2 N niveaux de quantification pour coder les valeurs du signal. Dr A. Sicard CapeSup Grenoble Page 4

Par exemple, si N = 3 bits, s min correspond au niveau de quantification codé par 000 et s max celui codé par 111. Quantifier la valeur du signal s(n T e ), c est définir un nombre binaire dont le niveau est le plus proche possible de s(n T e ). Sur la figure suivante, le niveau le plus proche de s(n T e ) correspond au nombre binaire 101 (5 en décimal). La quantification du signal analogique va donc introduire une perte d information. La plus petite variation de tension que peut repérer un CAN est appelée résolution ou pas du convertisseur. Le pas de quantification est donné par : Δs = plage de mesure 2 N 1 = s max s min 2 N 1 Plus N sera grand et meilleure sera la qualité de la quantification. Si N est fixé, par construction du CAN par exemple, c est s max s min qui doit être le plus faible possible. Cela peut être réalisé en choisissant, parmi celles possibles, la gamme [s min ; s max ] encadrant au plus près l évolution du signal analogique. De manière générale, on pourra retenir que la qualité de la conversion analogique-numérique augmente avec la fréquence d échantillonnage et le nombre de bits de numérisation. 3) Images numériques 3.1) Création d un fichier image à partir d une image Contrairement aux images réelles, constituées d une infinité de points pouvant avoir un nombre infini de couleurs, les images manipulables à l aide de l informatique sont numériques. Un appareil photographique numérique, tout comme un scanner assure la numérisation d une image. Pour cela, l appareil découpe l image en un quadrillage ou trame. Chaque case s appelle pixel (de l anglais picture element). A chaque pixel, on affecte un nombre binaire correspondant à la couleur de la case. Un fichier image est ensuite produit qui permet d avoir accès au nombre binaire associé à chaque pixel. La résolution d un scanner est une mesure de la précision de la numérisation et s exprime en point par pouce (ppp) où 1 pouce vaut 2,54cm. Dr A. Sicard CapeSup Grenoble Page 5

Par exemple, la numérisation d une feuille A4 (21,0 cm x 29,7 cm) en 300 ppp correspond à une 300 300 trame de 21,0 = 2480 pixels sur 29,7 = 3508 pixels soit un fichier numérique de 2,54 2,54 2480 3508 = 8,70 10 6 pixels = 8,7 Mpixels. 3.2) Codages d un fichier image 3.2.1) Codage en niveaux de gris Dans ce mode de codage, on associe à chaque pixel une valeur qui correspond à un niveau de gris. A chaque pixel est donc affecté un nombre binaire variant de 0 pour la couleur noir à 2 N 1 pour le blanc, N étant le nombre de bits pour chaque pixel. Par exemple, si chaque pixel est codé par un octet, il en résulte 2 8 = 256 niveaux de gris. En reprenant l exemple de la numérisation de la feuille A4 du 3.1 la place occupée par le fichier image serait de 8,70 10 6 1 o = 8,70 106 Mo = 8,30 Mo. 1024 1024 3.2.2) Codage RVB Le codage RVB (rouge, vert, bleu) est le codage le plus utilisé pour les images numériques en couleurs. Le principe repose sur la synthèse additive des couleurs : on peut obtenir une couleur quelconque par addition de trois couleurs primaires en proportions convenables. Pour coder les couleurs d un pixel dans le système RVB, le fichier image associe à chaque pixel 3 nombres de N bits, un pour chaque couleur primaire. Au total, 3N bits sont donc utilisés pour le codage de la couleur d un pixel. Ainsi pour un codage RVB sur 24 bits, le nombre de couleurs pouvant être codées est de 2 8 = 256 par couleur primaire, donc au total 2 8 2 8 2 8 = 16 777 216 couleurs disponibles. Comme la différence de nuance entre deux couleurs très proches dans ce mode de représentation est quasiment imperceptible pour l œil humain, on considère que ce système permet une restitution exacte des couleurs, c est pourquoi on parle souvent de couleurs vraies. Le codage en niveaux de gris peut être obtenu à partir du codage RVB en attribuant la même valeur aux trois couleurs rouge, vert et bleu. Plus la valeur est faible et plus le gris sera sombre. En reprenant à nouveau l exemple de la numérisation de la feuille A4 du 3.1 la place occupée par le fichier image avec un codage RVB 24 bits serait de 8,70 10 6 3 o = 8,70 106 3 Mo = 24,89 Mo. 1024 1024 3.2.3) Création d une image à partir d un fichier image La reproduction d une image sur un écran est effectuée par l allumage indépendant de chaque pixel. En fait, chaque pixel d un écran est divisé en trois sous-pixels rouge, vert et bleu. La résolution d un écran est une mesure de la précision de l affichage et s exprime en pixel par pouce (ppp). L impression sur papier d une image numérique faisant apparaître des points, la résolution de l imprimante, qui mesure la précision de l impression, est donnée en nombre de points par pouce (ppp). Dr A. Sicard CapeSup Grenoble Page 6

4) Stockage de l information 4.1) Supports de stockage Le stockage de l information sous forme de données numériques peut se classer en trois catégories : le stockage magnétique (disques durs mécaniques, bandes ), le stockage électronique (clés USB, SSD ou Solid-State Drive ) et le stockage optique. Ce dernier eut en 1982 comme premier représentant le CD audio. Il a ouvert la voie à de nombreux supports de stockage optique comme le CD-ROM, le DVD, le Blu-Ray 4.2) Stockage optique 4.1) Lecture des données Un disque optique est une mince galette plastique. Les informations y sont codées par une succession de creux (les alvéoles ou pits), disposés le long d une piste. Cette piste forme une spirale sur une plaine (ou land) recouverte de polycarbonate. La lecture du disque s effectue grâce à un faisceau lumineux délivré par un laser, focalisé à l aide d une lentille convergente sur une piste. La lumière est réfléchie puis récupérée par un détecteur (une photodiode), capable de convertir le signal lumineux en un signal électrique. Une succession d alvéoles le long d une piste défile devant le faisceau laser grâce à la rotation du disque. Dr A. Sicard CapeSup Grenoble Page 7

La profondeur des trous est choisie de telle sorte que l onde lumineuse réfléchie par une plaine et celle réfléchie par une alvéole sont en opposition de phase. Il y a ainsi interférence destructive entre ces deux ondes lors du passage du faisceau lumineux d une alvéole à la plaine (ou le contraire), appelé front. Chaque front est transformé en une information binaire égale à 1. En dehors d un front, l information binaire est égale à 0. La longueur minimale d'une plaine ou d'une alvéole correspond à 001 et la longueur maximale à 00000000001. 4.2) Capacités de stockage Le faisceau laser focalisé sur la surface réfléchissante du disque n est pas ponctuel : du fait de la diffraction, c est une tache de diamètre d proportionnel à la longueur d onde λ du laser dans le vide. On a : λ d = 1,22 n 0 sin i 0 où n 0 est l indice du milieu de propagation et i 0 l angle du rayon le plus écarté de l axe optique entrant dans la lentille avec d et λ en m. Le produit n 0 sin i 0 est appelé «ouverture numérique de l objectif» et généralement noté O.N. La capacité de stockage d un disque est égale au nombre d informations binaires qu il peut contenir, en mégaoctets ou gigaoctets. Cette capacité de stockage est d autant plus élevée que la longueur d onde λ du laser qui lit le disque optique est petite. Effectivement, en gardant une surface équivalente à celle du CD audio, on peut augmenter la capacité de stockage en diminuant le diamètre du spot : il faut alors diminuer la longueur d onde du laser utilisé et/ou augmenter l ouverture numérique de l objectif utilisé. Certaines technologies exploitent plusieurs couches dans le même disque, augmentant ainsi la capacité de stockage. Dr A. Sicard CapeSup Grenoble Page 8

4.3) Ecriture des données On distingue : - les disques pressés par l industrie, où les données sont stockées sous forme d alvéoles creusées dans une plaine ; - Les disques gravés par un graveur d ordinateur par exemple, où des zones opaques créées par un laser d écriture dans une couche de matériau photosensible remplacent les alvéoles. Les CD-ROM ou DVD-ROM sont pressés. Les disques optiques nommés CD-R ou DVD-R sont gravés et enregistrables une fois, tandis que les CD-RW ou DVD-RW sont enregistrables un certain nombre de fois : une impulsion laser change l état physique de la couche photosensible, pour la rendre à nouveau transparente avant d effectuer une nouvelle gravure. 5) Transmission de l information 5.1) Procédés physiques de transmission Une fois codée et modulée, l information à transmettre se trouve sous la forme d une onde électromagnétique. La transmission peut être guidée par un support physique (câble électrique, fibre optique) ou être libre (transmission hertzienne, ondes lumineuses). 5.1.1) Propagation guidée La propagation guidée utilise un guide d onde, appelé canal de transmission, dans lequel l onde se propage. Un câble électrique ou une fibre optique sont des guides d ondes par exemple. La bande passante du guide d onde correspond à l intervalle de fréquences pour lesquelles la qualité du signal transmis par ce guide est considérée comme satisfaisante. Largeur de cette bande passante s exprime en hertz. 5.1.1.1) Transmission par câble à paire torsadée Le câble à paire torsadée est constitué de deux fils de cuivre dans un isolant enlacés en torsade afin de limiter les phénomènes parasites. Ce câble est employé en informatique, en particulier pour le transfert à haut débit, mais aussi pour les lignes téléphoniques 5.1.1.2) Transmission par câble coaxial Un câble coaxial est constitué d un conducteur central, appelé «âme» et d une tresse métallique, appelée masse et séparés par un isolant plastique, la «gaine». En englobant l'âme, la tresse joue le rôle d'une cage de Faraday, atténuant grandement la réception de rayonnements extérieurs et l échappement de l onde électromagnétique. Le câble coaxial est donc faiblement sensible aux perturbations électromagnétiques extérieures. Son coût supérieur le limite aujourd hui aux Dr A. Sicard CapeSup Grenoble Page 9

transmissions à longue distance (de l ordre du kilomètre) ou aux transmissions de signaux très sensibles aux interférences (signaux vidéo ou audio ). Isolant Tresse Isolant externe Âme en cuivre 5.1.1.3) Transmission par fibre optique Dans le canal de transmission qu est la fibre optique, les informations circulent sous la forme d ondes lumineuses. Une fibre optique est composée d un milieu transparent central d indice n 1, le «cœur» entouré d une «gaine» d indice n 2. Le tout est inséré dans un revêtement plastique de protection. Les indices de réfraction du cœur et de la gaine diffèrent avec n 1 > n 2. La surface limitant le cœur et la gaine forme un dioptre sur lequel le rayon lumineux se réfléchit. Ainsi, cette différence d indice conduit, sous certaines conditions d incidence, à une réflexion totale des rayons lumineux, qui vont ainsi se propager dans la fibre. On distingue deux types de fibres optiques suivant la propagation de la lumière dans la fibre : - les fibres monomodes dans lesquelles la lumière se propage en ligne droite selon un seul mode c est-à-dire un seul trajet lumineux. - Les fibres multimodes qui ont la caractéristique de pouvoir transporter plusieurs modes. 5.1.1.3.1) Fibre multimode Il existe plusieurs types de fibres multimodes. Fibre multimode à saut d indice Les fibres à saut d indice comportent un cœur d indice n 1 constant et une gaine d indice n 2. Les rayons subissent des réflexions successives et leur trajet est supérieur à la longueur de la fibre. Ainsi, Dr A. Sicard CapeSup Grenoble Page 10

des radiations émises simultanément peuvent avoir des durées de trajet différentes. Le signal de sortie est donc dégradé par rapport au signal d entrée. On sait aujourd hui limiter le phénomène de dispersion modale en utilisant des fibres plus sophistiquées comme les fibres à gradient d indice. Fibre multimode à gradient d indice L'indice de réfraction varie continument entre le cœur et l'extérieur. L'indice de réfraction n = c/v est de plus en plus faible au fur et à mesure que l on s'éloigne de l'axe. La vitesse est donc plus grande lorsqu on s'éloigne de l'axe alors que la distance parcourue est plus élevée. Par conséquent ces 2 paramètres font que des rayons émis au même instant arrivent à peu près au même moment en sortie de la fibre. Dr A. Sicard CapeSup Grenoble Page 11

Fibre monomode Les fibres monomode ne transmettent le signal que sur un seul mode. Elles ne peuvent être utilisées qu en ligne droite. Elles sont préférées aux fibres multimodes pour des plus longues distances et/ou des plus hauts débits. De plus le signal n est pas étalé temporellement en sortie et elles sont moins épaisses du fait de la finesse de leur cœur. Elles sont utilisées dans les câbles sous-marins intercontinentaux. Les fibres multimodes ne sont utilisées que pour les réseaux locaux. 5.1.2) Propagation libre À l inverse des transmissions guidées, les transmissions libres ont lieu sans support confinant la propagation. Cette propagation peut donc se faire dans l atmosphère. Selon les fréquences f utilisées, et les longueurs d ondes associées λ, plusieurs bandes sont définies. La propagation libre est exploitée en particulier par la radio et la télévision hertzienne, ainsi que par les réseaux sans fils de téléphonie (gsm) ou informatique (wifi). La propagation libre permet à un émetteur d envoyer à de nombreux récepteurs une information sans utiliser de fil. Elle reste toutefois sensible aux perturbations. Un canal de transmission pour une transmission hertzienne est défini par une bande de fréquence (en Hz) dont la largeur se nomme bande passante du canal. Des systèmes émettant simultanément dans des bandes de fréquences identiques peuvent se gêner mutuellement. Pour éviter tout brouillage, les canaux de transmission doivent donc être partagés. Ainsi, la propagation libre doit être encadrée par une autorité de régulation qui régit l attribution et l utilisation de canaux. 5.2) Caractéristiques d une transmission 5.2.1) Signal et bruit Toute transmission implique la superposition au signal transmis de perturbations non désirées, appelées bruit ou parasites. Le bruit gêne la bonne réception du signal. Il dépend des caractéristiques du canal de transmission. Dr A. Sicard CapeSup Grenoble Page 12

En un endroit de la chaîne de transmission, le rapport signal sur bruit est le quotient sans dimension de la puissance du signal P s sur celle du bruit P b : rsb = P s P s et P b en W P b rsb sans unité Ce rapport peut aussi s exprimer en décibel (db) : rsb db = 10 log P s P s et P b en W P b rsb db en db 5.2.2) Atténuation La puissance du signal reçu P r est plus faible que celle du signal émis P 0 : il y a affaiblissement du signal et on dit que la transmission se fait avec une certaine atténuation. En particulier, la puissance d un signal le long d un canal de transmission homogène (un câble coaxial, une fibre optique ou bien l atmosphère pour les ondes hertziennes) décroit de façon exponentielle avec la distance d séparant l émetteur et le récepteur. P r et P 0 en W P r = P 0 e d L = P 0 e αd d et L en m α = 1 en m 1 L L est une distance caractéristique de l atténuation de la transmission : pour une même distance d séparant l émetteur et le récepteur, plus L est grande, moins le signal est atténué. Le coefficient d atténuation linéaire α = 1 s exprime en L m 1. L atténuation en décibel A db est définie par : 5.2.3) Débit binaire A db = 10 log P r P 0 = α db d > 0 A db en db α db en db m 1 Les signaux numériques sont constitués d une suite de bits, des nombres binaires. Le débit binaire ou bitrate est la quantité d information qui transite par unité de temps sur un canal de transmission. Il s exprime en bits par seconde (bps). Par exemple, les ports USB autorisent un débit binaire de 12 Mbit s 1 en ce qui concerne l USB1 soit 1,43 Mo/s, et 480 Mbit s 1 pour l USB2 soit 57,22 Mo/s. Le débit binaire d un canal de transmission est limité en particulier par la largeur de sa bande passante. Dr A. Sicard CapeSup Grenoble Page 13