CHAPITRE 1 NOTIONS FONDAMENTALES SUR LES HYPERFREQUENCES, LES TELEPHONES MOBILES CELLULAIRES ET LEURS STATIONS RELAIS



Documents pareils
Champ électromagnétique?

PRODUIRE DES SIGNAUX 1 : LES ONDES ELECTROMAGNETIQUES, SUPPORT DE CHOIX POUR TRANSMETTRE DES INFORMATIONS

Champs électromagnétiques

Journal officiel des Communautés européennes CONSEIL

Etude RFPro Exposition professionnelle

PARCE QU IL N Y A RIEN DE PLUS PRÉCIEUX QUE VOTRE FUTUR BÉBÉ

Radiofréquences émises par certaines antennes cellulaires dans l arrondissement d Outremont : Évaluation de l exposition et effets sur la santé

CULTe Le samedi 9 février2008 à 15h. Conf 1 : WIFI, les bases

LECTEURS - RFID. RFID-tags

L identification par radio fréquence principe et applications

POLLUTION ELECTROMAGNETIQUE. CRIIREM Valence, le 26 janvier

UTILISATION DU WI-FI DANS LES ÉCOLES. Évaluation des risques à la santé

Sensibilisation à la Sécurité LASER. Aspet, le 26/06/2013

Chapitre 02. La lumière des étoiles. Exercices :

Module HVAC - fonctionnalités

Approche expérimentale du rayonnement électromagnétique émis par un téléphone portable

Objet : Radiofréquences émises par les compteurs intelligents : position des directeurs régionaux de santé publique du Québec

Résonance Magnétique Nucléaire : RMN

Communications mobiles et santé

Comprendre l Univers grâce aux messages de la lumière

DIPLÔME INTERUNIVERSITAIRE D ECHOGRAPHIE. Examen du Tronc Commun sous forme de QCM. Janvier h à 16 h

Du bon usage de la téléphonie mobile

Correction ex feuille Etoiles-Spectres.

Proposition de résolution

DIFFRACTion des ondes

PROTOCOLE DE MESURE DOCUMENTATION DE REFERENCE : ANFR/DR

Chapitre1: Concepts fondamentaux

Téléphone mobile et risques de cancer

Etude «RLAN et Champs électromagnétiques» : synthèse des études conduites par Supélec

Champs Electromagnétiques & Qualité Environnement Bâtiment

ETUDE REALISEE A LA DEMANDE DE LA REGION DE BRUXELLES-CAPITALE. W. PIRARD, Ingénieur Civil en Electronique, Chef de la Section Electronique Appliquée.

La CUSSTR. Rayonnements non-ionisants

Chapitre 2 Les ondes progressives périodiques

Précision d un résultat et calculs d incertitudes

Application à l astrophysique ACTIVITE

Ecole Centrale d Electronique VA «Réseaux haut débit et multimédia» Novembre 2009

Normes CE Equipements de Protection Individuelle

Un nouveau service d information et de mesures. Lignes électriques haute et très haute tension et champs magnétiques de très basse fréquence

ASSISTANT PRODUITS - FRANCEPOWER

Activité 1 : Rayonnements et absorption par l'atmosphère - Correction

Didier Pietquin. Timbre et fréquence : fondamentale et harmoniques

Chapitre 6 La lumière des étoiles Physique

Electron S.R.L. - MERLINO - MILAN ITALIE Tel ( ) Fax Web electron@electron.it

Système d énergie solaire et de gain énergétique

Chapitre 22 : (Cours) Numérisation, transmission, et stockage de l information

«L électrosmog» au quotidien. Comment reconnaître et réduire les champs électromagnétiques

Rapport. Mesures de champ de très basses fréquences à proximité d antennes de stations de base GSM et UMTS

Caractéristiques des ondes

brochure GSM 17/04/02 11:00 Page 1 Antennes-relais GSM tous en danger? Aux arbres citoyens Les Verts/ALE au Parlement Européen

A chaque couleur dans l'air correspond une longueur d'onde.


Les champs. électromagnétiques. de très basse. fréquence

Le triac en commutation : Commande des relais statiques : Princ ipe électronique

Communication parlée L2F01 TD 7 Phonétique acoustique (1) Jiayin GAO <jiayin.gao@univ-paris3.fr> 20 mars 2014

Solar Heating System Factsheet (SHSF) - Dossier guide

La spectrophotométrie

Le Soleil. Structure, données astronomiques, insolation.

1STI2D - Les ondes au service de la santé

EXERCICE 2 : SUIVI CINETIQUE D UNE TRANSFORMATION PAR SPECTROPHOTOMETRIE (6 points)

Systèmes de conférence

Evaluation et gestion du risque des champs radiofréquences: Une perspective de l'oms

Chapitre 2 Caractéristiques des ondes

Version 1. Demandeur de l étude : VM - BETON SERVICES 51 Boulevard des Marchandises L'HERBERGEMENT. Auteur * Approbateur Vérificateur(s)

Sons et ultrasons applications: échographie et doppler PACES

Les Champs Magnétiques

Présentation Module logique Zelio Logic 0 Interface de communication

#IOT. Internet #IGE36 #INTTIC.

P M L R O G W. sylomer. Gamme de Sylomer Standard. Propriétés Méthode de test Commentaires. Polyuréthane (PUR) Cellulaire mixte

Le WI-FI. Le Wi-Fi (Wireless Fidelity) est une certification décernée par la Wifi Alliance aux produits conformes aux standards de l'ieee.

B2.- Performances acoustiques de divers éléments de construction

La Fibre Optique J BLANC

Séquence 9. Étudiez le chapitre 11 de physique des «Notions fondamentales» : Physique : Dispersion de la lumière

Monitoring et suivi du comportement des chaussées

2.0. Ballon de stockage : Marque : Modèle : Capacité : L. Lien vers la documentation technique :

Systèmes de conférence. Sennheiser vous propose des solutions globales performantes

Auscultation par thermographie infrarouge des ouvrages routiers

MESURES D UN ENVIRONNEMENT RADIOELECTRIQUE AVEC UN RECEPTEUR CONVENTIONNEL ETALONNE

Consensus Scientifique sur. les. Champs statiques

Les ondes électromagnétiques dans les bâtiments

Les stations météo Vantage Pro2.

La chanson lumineuse ou Peut-on faire chanter la lumière?

Série 77 - Relais statiques modulaires 5A. Caractéristiques. Relais temporisés et relais de contrôle

M1107 : Initiation à la mesure du signal. T_MesSig

IPL SHR MED-120C+ Super Hair Removal, dépilation permanente

Le but de la radioprotection est d empêcher ou de réduire les LES PRINCIPES DE LA RADIOPROTECTION

QU EST-CE QUE LA RFID?

Les rayons X. Olivier Ernst

Chapitre 11 Bilans thermiques

Chapitre 4 - Spectroscopie rotationnelle

SUIVI CINETIQUE PAR SPECTROPHOTOMETRIE (CORRECTION)

Interactions des rayonnements avec la matière

Sujet. calculatrice: autorisée durée: 4 heures

CONCOURS EXTERNE D INGENIEUR TERRITORIAL SPÉCIALITÉ PREVENTION ET GESTION DES RISQUES

ÉNERGIE : DÉFINITIONS ET PRINCIPES

Scanner acoustique NoiseScanner

G E O B I O L O G I Q U E (biologie de l habitat) - mesure de l ambiance électromagnétique -

Jeunes en Apprentissage pour la réalisation de Nanosatellites au sein des Universités et des écoles de l enseignement Supérieur

UE 503 L3 MIAGE. Initiation Réseau et Programmation Web La couche physique. A. Belaïd

Centrale d alarme DA996

Transcription:

NO T I O N SFO N D A M E N TA L E S CHAPITRE 1 NOTIONS FONDAMENTALES SUR LES HYPERFREQUENCES, LES TELEPHONES MOBILES CELLULAIRES ET LEURS STATIONS RELAIS I. LES HYPERFREQUENCES OU MICRO-ONDES 1. 1. G é n é r a l i t é s Les hyperfréquences sont des radiations non ionisantes faisant partie du spectre électromagnétique et plus précisément des radiofréquences (Figure 1). Comme toutes ondes électromagnétiques, elles se caractérisent par : Leur fréquence (F) exprimée en Hertz (Hz : 1 Hz = 1 oscillation par seconde) ou en unités plus élevées, le KiloHertz (1 KHz = 10 3 Hz), le MégaHertz (1 MHz = 10 6 Hz) et le GigaHertz (1 GHz = 10 9 Hz). 1 7

Les hyperfréquences vont des fréquences de 300 MHz à 300 GHz. Leur longueur d onde (λ) qui est égale à C/F où C représente la vitesse de la lumière dans le vide (exprimée en mètres/seconde - 3.10 8 ) et F la fréquence exprimée en Hertz. - Pour le four domestique à micro-ondes, la fréquence en France est de 2.450 MHz [(2,45 GHz), à laquelle correspond une longueur d onde de 12,2 centimètres (cm)]. - Pour les téléphones mobiles cellulaires fonctionnant en 900 MHz, la longueur d onde est de 33,3 cm; elle est de 16,6 cm pour les téléphones mobiles cellulaires qui émettent en 1.800 MHz. Nature des radiations Fréquence Longueur d'onde Exemples 1/ Ionisantes. * Rayons X, rayons gamma, rayons cosmiques 2/ Non ionisantes. * Ultra violet * Lumière visible Supérieure à 3.10 6 GHz de 750.10 3 GHz à 3.10 6 GHz de 400.10 3 GHz à 750.10 3 GHz Inférieure à 0,1 µ 0,4 µ à 0,1 µ 0,8 µ à 0,4 µ Stérilisation * Infra rouge * Radio fréquences - Hyper fréquences (ou micro-ondes) de 300 GHz à 400.10 3 GHz de 300 MHz à 300 GHz 1.000 µ à 0,8 µ 1 m à 1 mm Détection, sécurité Fours, Télévision, Téléphones portables, - Ultra courtes (VHF) - Courtes (HF) - Moyennes (MF) - Longues (LF) 30 MHz à 300 MHz 3 MHz à 30 MHz 0,3 MHz à 3 MHz 30 KHz à 300 KHz 10 m à 1 m 100 m à 10 m 1 km à 100 m 10 km à 1 km { ondes radio * Très basses fréquences (VLF) 300 Hz à 30 KHz 1.000 km à 10 km Ecrans vidéo * Extrêmement basses fréquences (ELF) 0,1 à 300 Hz Supérieure à 1.000 km Courant électrique 50 Hertz Figure 1 : Le spectre électromagnétique. N.B. : La longueur d'onde ( λ) est inversement proportionnelle à la fréquence c (F) (λ= où c = vitesse de la lumière); de ce fait, lorsque la fréquence F augmente, la longueur d'onde diminue. 1 8 1 9

TÉ L É P H O N E S MO B I L E S CE L L U L A I R E S E T STAT I O N S R E L A I S. LE S RI S Q U E S P O U R L A SA N T É. NO T I O N SFO N D A M E N TA L E S Classiquement, les hyperfréquences (ou micro-ondes) ce subdivisent en 3 catégories : E (V/m) UHF (Ultra High Frequency) de fréquences 300 MHz à 3 GHz. C est dans cette catégorie d hyperfréquences que se situent le four domestique à micro-ondes (F = 2.450 MHz) et les téléphones mobiles cellulaires. λ SHF (Supra High Frequency) de fréquences 3 GHz à 30 GHz. EHF (Extremely High Frequency) de fréquences 30 GHz à 300 GHz. Les deux premières catégories d hyperfréquences sont des ondes centimétriques (λ de 100 cm à 1 cm), la dernière catégorie étant des ondes millimétriques (λ de 10 mm à 1 mm). Les micro-ondes peuvent être émises en continu (CW), en pulsé (PW) et être modulées en amplitude (AM) et (ou) en fréquence (FM). H (A/m) Figure 2 : Propagation d une onde électromagnétique. P (W/m (w/m ) 2 ) 1.2. U n i t é s Les hyperfréquences, comme toute onde électromagnétique, sont formées de l association d un champ électrique (E) et d un champ magnétique (H) qui sont perpendiculaires entre eux et avec la direction de propagation de l onde (vecteur de Poynting), (Figure 2). Le champ électrique s exprime en Volts/mètre (V/m) ou en KiloVolts/mètre (KV/m). Le champ magnétique qui représente la force de ce champ s exprime en Ampères/mètre (A/m). N.B. : L induction magnétique (B) qui représente la densité de champ magnétique est liée à H par la relation : B = µh. Dans l air, la perméabilité magnétique (µ) étant voisine de 1, la relation précédente devient B = H. Ce qui conduit à employer comme unité de champ magnétique H, des unités normalement destinées à l induction magnétique (B) telles que le Tesla (T) et le Gauss (G), la relation à retenir étant : E = champ électrique (V/m). H = champ magnétique (A/m). P = vecteur de propagation (vecteur de Poynting) représentant la densité de puissance de l onde (W/m 2 ). λ = Longueur d onde. Le vecteur de Poynting représente la densité de puissance de l onde électromagnétique par unité de surface. Elle s exprime en Watts/mètre carré (W/m 2 ), en milliwatts/centimètre carré (mw/cm 2 ) ou en valeurs plus faibles, comme le microwatt/cm 2 (µw/cm 2 ) C est ainsi, par exemple, que la densité de puissance de fuite micro-ondes autorisée sur un four domestique ne doit pas dépasser 1 mw/cm 2 (1.000 µw/cm 2 ) à 5 cm des parois du four (Normalisation Française 4 ). 1 A/m = 12,5 milligauss (mg) = 1,25 microtesla (µt) 4 Exposition humaine aux champs électromagnétiques hautes fréquences (10 KHz à 300 GHz). Normalisation Française. C18-610. Nov. 1995. 46 pages. 2 0 2 1

1. 3. Notion d exposition en champ proche et en champ l o i n t a i n Schématiquement, l exposition d un sujet est dite en «champ proche» lorsque la source émettrice de l onde hyperfréquence est à une distance inférieure à une longueur d onde et en «champ lointain» lorsque la distance est supérieure à une longueur d onde. Exemples : a. Pour le courant électrique de fréquence 50 Hz, la longueur d onde est de 6.000 Km; dans ce cas, l exposition est en «champ proche» car le sujet est toujours à moins d une longueur d onde d une source émettrice. b. Dans le cas du four domestique à micro-onde, dont la longueur d onde est de 12,2 cm, c est au-delà de cette distance que le sujet est exposé en «champ lointain». c. Dans le cas des téléphones mobiles cellulaires, l exposition est en «champ proche» dans un rayon de 33,3 cm pour ceux qui fonctionnent en 900 MHz, et dans un rayon de 16,6 cm pour ceux qui utilisent le 1.800 MHz. d. Les stations relais des téléphones mobiles cellulaires exposent les populations en «champ lointain» car les sujets se trouvent à des distances de plusieurs longueurs d onde de la source émettrice. Les personnels de maintenance de ces équipements risquent, au contraire, une exposition en «champ proche». N.B. : En fait, la notion de «champ proche» et de «champ lointain» est plus complexe. A proximité de l émetteur (par exemple une antenne de station relais ou un téléphone mobile cellulaire) et dans l axe de propagation de l onde électromagnétique, il existe une incohérence de phases entre le champ électrique et le champ magnétique. Ce n est qu à une certaine distance de la source émettrice que l onde générée est réellement formée. En fonction de D, la plus grande dimension de l antenne en mètre, et de la longueur d onde λ, on distingue 3 zones en partant de la source émettrice : La zone de Fresnel à une distance D 2 /4 λ; La zone de Rayleigh à D 2 /2 λ; La zone de Fraunhofer à 2D 2 / λ. Le «champ proche» inclut les deux premières zones et le «champ lointain» débute au niveau de la zone de Fraunhofer. En champ proche, on ne peut pas déterminer correctement la densité de puissance de l onde électromagnétique incidente. On peut, dans ce cas, mesurer soit la valeur du champ électrique, soit celle du champ magnétique pour apprécier les niveaux d exposition et donc les risques biologiques (cf. Chap. IV 122.). 1.4. Le taux d absorption spécifique (TA S ) Le taux d absorption spécifique (TAS) ou «specific absorption rate» (SAR) des auteurs anglo-saxons permet de quantifier les interactions entre les ondes électromagnétiques et la matière. Il peut être défini comme la vitesse de transfert de l énergie de l onde électromagnétique dans cette matière qui peut être un tissu, un organe, un être vivant. Le TAS peut se mesurer au moyen de techniques calorimétriques ou se calculer; il s exprime en Watts/kg (W/kg) ou en milliwatts/g (mw/g) de tissu. Un TAS élevé entraîne une augmentation de la température dans le matériel. N.B. : Il est possible de comparer l énergie absorbée lors d expositions aux ondes électromagnétiques (TAS) à l énergie produite par le corps humain durant ses activités physiologiques : 1 W/kg pour le métabolisme de base - 5 à 10 W/kg pour un exercice physique. Calcul du TAS : TAS (mw/g) = 60 L F x M F = Fréquence de l onde en GHz - L = Longueur du sujet en cm M = Masse en g du sujet. (O. Gandhi 5 ) 5 O.P. Gandhi et coll. Deposition of electromagnetic energy in animals and in models of man with and without grounding and reflector effects. Radio. Sci. 1977. 12 : 39-47. 2 2 2 3

NO T I O N S FO N D A M E N TA L E S La valeur du TAS dépend de nombreux paramètres et en particulier : La densité de puissance (en W/m 2 ou en mw/cm 2 ) de l onde électromagnétique incidente, c est-à-dire qui arrive sur le matériel ou le sujet exposé (la «cible»). La fréquence de l onde incidente : le TAS diminue avec l augmentation de fréquence. Pour les radiations non ionisantes l absorption est maximale pour les fréquences faibles, elle est réduite pour les fréquences élevées (Figure 3). La taille et la masse du sujet exposé : du fait de leur plus petite taille, les enfants absorbent plus les hyperfréquences que les adultes (IRPA Guidelines 6 ). La nature de l exposition de la cible en «champ proche» ou en «champ lointain», L orientation du sujet exposé par rapport à la composante électrique ou magnétique de l onde, Le taux d humidité et la température ambiante, les eff e t s thermiques des micro-ondes s amplifiant avec l augmentation des valeurs de ces deux paramètres, La pilosité ainsi que la nature des vêtements que le sujet exposé porte et qui sont également à prendre en considération dans les effets thermiques des hyperfréquences. Fréquences Radiations IONISANTES 3. 10 6 GHz Radiations NON - IONISANTES Figure 3 : Absorption du corps humain vis-à-vis des ondes électromagnétiques en fonction de la fréquence de l onde incidente. Absorption N.B. : La nature des tissus traversés n est pas prise en compte. Noter : Pour les radiations non ionisantes l absorption décroît lorsque la fréquence augmente. 6 IRPA Guidelines. Guidelines on limits of exposure to radiofrequency electromagnetic fields in the frequency range from 100 KHz to 300 GHz. Health Physics. 1988. 54 : 115-123. L absorption d une onde hyperfréquence par un organisme vivant peut entraîner une élévation de la température qui peut être locale (création de «points chauds») ou générale. N.B. : Les points chauds correspondent à une augmentation localisée de la température dans un matériel (prothèse métallique, tissu osseux, boîte crânienne ), l onde électromagnétique étant «piégée» dans le matériel lorsque sa longueur d onde est proche de l épaisseur de ce matériel (création d ondes stationnaires). 2 4 2 5

TÉ L É P H O N E S MO B I L E S CE L L U L A I R E S E T STAT I O N S R E L A I S. LE S RI S Q U E S P O U R L A SA N T É. Afin d empêcher tout effet thermique général des hyperfréquences chez l homme (élévation de la température rectale), le taux d absorption spécifique a été fixé à 0,4 W/kg pour les travailleurs et à 0,08 W/kg pour le public dans le cas d une exposition du corps entier et par période de 6 minutes (6) (cf. Chap. IV 12.). N.B. : L intervalle de 6 mn correspond à la constante de temps de la régulation thermique humaine. Dans le cas de l exposition d une partie seulement du corps et pour des tissus «autres que ceux des mains, des poignets, des pieds et des chevilles» (Normalisation Française 7 ), le TAS applicable à l exposition de la tête ne doit pas dépasser 2 W/kg pour le public et 10 W/kg pour les travailleurs, pour 6 minutes d exposition, et cela afin d éviter tout risque d élévation thermique. N.B. : Raisons invoquées pour la distinction public/travailleurs dans les textes officiels : Les limites d exposition aux hyperfréquences distinguent deux populations : a. Le public qui constitue un ensemble de sujets, d âges et de statuts sanitaires différents. Ces personnes ne sont pas, normalement, informées de leur exposition aux hyperfréquences et des risques biologiques; leur exposition peut être de 24 h/24 et peut durer la vie entière! b. Les travailleurs constituent un ensemble de sujets adultes, exposés dans des conditions contrôlées et qui sont informés des risques biologiques potentiels, ce qui les conduit à se protéger. Commentaire de l auteur : C est à partir de ces raisons, dont l éthique est absente, que les limites d exposition aux hyperfréquences sont moins restrictives pour les travailleurs que pour le public! 7 Exposition humaine aux champs électromagnétiques hautes fréquences (10 KHz à 300 GHz). Normalisation Française. C 18-610. Nov. 1995. 46 pages. 1.5. Interactions des hyperfréquences avec la matière vivante Une onde hyperfréquence (ou micro-onde) qui entre en contact avec un tissu vivant est susceptible de créer des effets thermiques et des effets athermiques ou «spécifiques». 1. 5. 1.Effets thermiques Ils résultent de l action de l onde électromagnétique sur les molécules chargées électriquement et dont l eau est le meilleur exemple. Les molécules d eau présentes dans le tissu vont osciller à la fréquence de l onde incidente, créant des frictions internes responsables de l apparition de chaleur dans le tissu irradié. L effet thermique est décelé (mesuré) lorsque la densité de puissance incidente est suffisante pour créer un taux d absorption spécifique (TAS) plus élevé que ceux cités précédemment (cf. 14.). L échauffement sera plus ou moins étendu et intense selon la nature des tissus traversés par l onde hyperfréquence et leur richesse en eau. Des tissus tels que la graisse, les os, à faible teneur en eau, sont plus facilement pénétrés par l onde hyperfréquence que des tissus tels que les muscles ou la peau plus riches en eau (Figure 4). N.B. : a. Lorsque l échauffement est le fait de la composante champ magnétique de l onde hyperfréquence, on parle de chauffage par induction : c est le cas des corps métalliques (prothèses, stérilets ) qui peuvent être échauffés par l onde hyperfréquence. Il peut en résulter des points chauds pouvant être dangereux ou être la cause de dysfonctionnement d appareils médicaux tels que les stimulateurs cardiaques, les pompes implantées délivrant des médicaments, les appareils de surveillance cardiaque b. Lorsque l échauffement est le fait du champ électrique de l onde hyperfréquence, on parle de chauffage par effet diélectrique : c est ce chauffage par effet diélectrique qui est responsable, par exemple, de l élévation de la température des aliments placés dans un four à micro-ondes domestique. 2 6 2 7

100 10 1 0,1 Noter : - A - MUSCLES, PEAU, ORGANES INTERNES (Haute teneur en eau) eau) a b c 10 100 1000 10000 Fréquences (MHz) (MHz) Figure 4 : Profondeur de pénétration des ondes électromagnétiques dans les tissus en fonction de leur fréquence et de la teneur en eau des tissus. a, b, c = Hyperfréquences respectivement à 900, 1.800 et 2.450 MHz. - B - GRAI SSE OS (Faible teneur en eau) eau) Quand un tissu est irradié, l onde hyperfréquence passe de l air (où se trouve la source d émission) dans le tissu. A la surface de discontinuité airtissu se trouve la peau. La différence de valeurs des constantes diélectriques entre ces milieux fait qu il y a réflexion plus ou moins grande de l onde sur la peau (la partie réfléchie constitue l écho qui est, dans le cas de la détection radar, recueilli par une antenne de réception). N.B. : Constante diélectrique : c est un facteur (ε) qui précise la perte de l énergie de l onde dans la matière. Une constante diélectrique élevée entraîne une forte perte d énergie de l onde dans le tissu et une faible pénétration, associées à l élévation de température du tissu : c est le cas des tissus riches en eau, tels que les muscles, la peau Inversement, une constante diélectrique faible entraînera une petite perte d énergie dans le tissu (donc peu d échauffement) et une forte pénétration de l onde hyperfréquence : c est le cas de tissus tels que les os, la graisse La fraction de rayonnement qui pénètre dans un tissu dépend du coefficient de réflexion à l interface. Selon les cas, 20 à 100 % de l énergie incidente de l onde hyperfréquence pourra être absorbée par le tissu. La propagation de l onde hyperfréquence dans le tissu est plus ou moins importante (existence d un coefficient d atténuation) et décroît, en particulier, rapidement lorsque la fréquence de l onde augmente et que la teneur en eau du tissu augmente (Figure 4). Le phénomène se complique dans la mesure où l onde hyperfréquence rencontre, en traversant les tissus vivants, plusieurs interfaces successives : air/peau - peau/muscle - muscle/os - os/cerveau Cela donne naissance à - Pour la même catégorie de tissus (A ou B), la diminution de la pénétration de l onde avec l augmentation de fréquence (a > b > c). - Pour une même fréquence (a, b ou c), la pénétration plus grande dans les tissus pauvres en eau (B) par rapport à ceux riches en eau (A). (Figure adaptée de P.C. Myers et coll. Microwave thermography, principles, methods and clinical applications. J. Microwave Power. 1979. 14 : 105-115). 8 IRPA Guidelines. Guidelines on limits of exposure to radiofrequency electromagnetic fields in the frequency range from 100 KHz to 300 GHz. Health Physics. 1988. 54 : 115-123. 2 8 2 9

des phénomènes de réflexions multiples à l intérieur même du tissu et, si l épaisseur d un des tissus traversé est voisine de la longueur d onde, il peut y avoir, à ce niveau, création d ondes stationnaires concentrant l énergie électromagnétique sous la forme de «points chauds» (Figure 5). Dans le cas de la tête humaine, l absorption de l onde électromagnétique est maximale lorsque les dimensions de la tête sont voisines de la longueur d onde de l onde électromagnétique incidente. Les risques de points chauds au niveau de la tête peuvent exister pour des fréquences allant de 300 MHz à 2.000 MHz (IRPA Guidelines 8 ). On peut remarquer ici que c est dans cet intervalle que se situent les fréquences utilisées par les téléphones mobiles cellulaires (CF. Chap. I. 2.). 1. 6. 2.Domaine domestique Le four à micro-onde domestique est constitué pour l essentiel : - D un système électronique, le générateur à hyperfréquences ou magnétron qui transforme la fréquence 50 Hz du secteur en hyperfréquence de 2.450 MHz. - D une enceinte métallique réfléchissant le rayonnement hyperfréquence (cavité multimode) et lui permettant ainsi de mieux pénétrer dans l aliment à réchauffer ou à cuire. 1. 5. 2.Effets non thermiques ou spécifiques 1 2 Des effets biologiques sont rapportés pour de faibles, voire très faibles, densités de puissances des hyperfréquences (inférieures à 1 mw/cm 2 ). Pour certains scientifiques, ces effets résulteraient de faibles élévations de température dans les tissus irradiés, non décelables par les techniques actuelles. AIR 2 2 Dans le cas des téléphones mobiles cellulaires et de leurs stations relais, ce sont ces effets non thermiques ou spécifiques qui sont à considérer. PEAU MUSCLE 1.6. Quelques exemples d utilisation des hyperfréquences Les hyperfréquences ( ou micro-ondes) sont utilisées dans de nombreux domaines. OS 3 e=λ 1. 6. 1.Domaine industriel Dans ce cas, le but souvent recherché est la production de haute température à l intérieur de matériaux les plus divers : séchage de carreaux de plâtre, de pâte à papier, collage et séchage du carton, séchage des encres d imprimerie, vulcanisation du caoutchouc, séchage des fibres textiles D autres utilisations existent, telles que la détection électromagnétique (principe des radars), le transport de signaux par hyperfréquences (télécommunication, télévision ). Figure 5 : Schématisation de la pénétration d une onde électromagnétique dans un organisme vivant - Ondes stationnaires et «points chauds». 1 : Onde incidente - 2 : Onde réfléchie - 3 : Onde stationnaire e : Epaisseur du tissu - λ : Longueur d onde (D après J.P. Pellissier et R. Santini. Bases physiques et physiologiques de l utilisation des courants électriques et des ondes en thérapeutique. Journée Nationale de Physiothérapie. Lyon. 1984.). 3 0 3 1

L énergie transportée par les micro-ondes est abandonnée à l intérieur même de l aliment, ce qui réalise un chauffage à cœur de l intérieur vers l extérieur, contrairement au chauffage traditionnel. L augmentation de la température de l aliment est d autant plus rapide que sa teneur en eau est élevée. 1. 6. 3.Domaine biomédical Les hyperfréquences sont utilisées en particulier pour : - La lutte contre les parasites : désinsectisation des céréales infestées par les charançons, les acariens, stérilisation des bacs à sable afin de détruire les œufs de vers parasites (taenia, ascaris ); - Leur action favorable sur la germination des graines, la lutte contre certains cancers, par hyperthermie micro-ondes, tel le mélanome chez la souris (R. Santini 9 ) ou en association avec d autres traitements comme la chimiothérapie ou les rayons X (G. Arcangeli 10 ). - Le traitement des méningiomes cérébraux (X. Zhou 11 ). - L accélération de la régénération des nerfs (L Kolosova 12 ). - Les opérations de polypes de la vessie (H. Qjan 13 ). 9 R. Santini, Ch. Voulot, P. Deschaux. Incidences de l hyperthermie micro-ondes sur le mélanome B16 de la souris black. Innov. Tech. Biol. Med. 1982. 3 : 542-547. 10 G. Arcangeli et coll. Effectiveness of microwave hyperthermia combined with ionizing radiation. Int. J. Radiation Oncology. Biol. Phys. 1980. 6 : 143-148. 11 X. Zhou et coll. Resection of meningiomas with implantable microwave coagulation. Bioelectromagnetics. 1996. 17 : 85-88. 12 L.I. Kolosova et coll. Effects of low intensity millimeter wave electromagnetic radiation on regeneration of the sciatic nerve in rats. Bioelectromagnetics. 1996. 17 : 44-47. 13 H. Qjan. The new method using microwave to treat gallbladder polyp. Second World Congress for Electricity and Magnetism in Biology and Medicine. Juin 1997. Bologne, Italie. Abstract book. Pages 164-165. 3 2