Université Claude Bernard Lyon 1 Master 2 Systèmes Informatiques et Réseaux Etude bibliographique Les technologies xdsl



Documents pareils
Digital Subscriber Line

1. Présentation général de l architecture XDSL :

xdsl Digital Suscriber Line «Utiliser la totalité de la bande passante du cuivre»

DOSSIER ADSL. DEMARCHE DE TRAVAIL : Consultez rapidement le dossier avant de commencer Complétez le dossier en suivant les indications du document

Architectures et Protocoles des Réseaux

Technologies xdsl. 1 Introduction Une courte histoire d Internet La connexion à Internet L évolution... 3

LE VDSL 2 EN FRANCE. Source :

2. Couche physique (Couche 1 OSI et TCP/IP)

NOUVELLES TECHNOLOGIES RESEAUX

Cours n 12. Technologies WAN 2nd partie

ADSL. C est comme son nom l indique une liaison asymétrique fort bien adaptée à l Internet et au streaming radio et vidéo.

Transmission ADSL. Dominique PRESENT Dépt S.R.C. - I.U.T. de Marne la Vallée

Errata et mises à jour

1 Les techniques DSL :

Bac Pro SEN Epreuve E2 Session Baccalauréat Professionnel SYSTEMES ELECTRONIQUES NUMERIQUES. Champ professionnel : Télécommunications et réseaux

Présentation Générale

Les techniques de multiplexage

Introduction ADSL. ADSL signifie Asymetric Digital Suscriber Line. La palette des technologies en présence

Genevais Jérémy & Dubuc Romuald

La couche physique de l ADSL (voie descendante)

LA COUCHE PHYSIQUE EST LA COUCHE par laquelle l information est effectivemnt transmise.

LECOCQ Marc & LOTH Ludovic. Réseaux Mobile et Haut Débit

Téléinformatique. Chapitre V : La couche liaison de données dans Internet. ESEN Université De La Manouba

6. Liaisons à haute vitesse, haut débit, ADSL, ATM.

UE 503 L3 MIAGE. Initiation Réseau et Programmation Web La couche physique. A. Belaïd

Chapitre 2 : communications numériques.

ADSL. Étude d une LiveBox. 1. Environnement de la LiveBox TMRIM 2 EME TRIMESTRE LP CHATEAU BLANC CHALETTE/LOING NIVEAU :

Année Transmission des données. Nicolas Baudru mél : nicolas.baudru@esil.univmed.fr page web : nicolas.baudru.perso.esil.univmed.

Transmission de données. A) Principaux éléments intervenant dans la transmission

CULTe Le samedi 9 février2008 à 15h. Conf 1 : WIFI, les bases

Présentation de l ADSL

Transmission et stockage de l information

LES TECHNOLOGIES xdsl

Câblage des réseaux WAN.

Les réseaux cellulaires

Chaine de transmission

Développons ensemble la Dracénie

TRÈS HAUT DÉBIT. en Seineet-Marne EN 10 QUESTIONS

Fonctions de la couche physique

LES CARACTERISTIQUES DES SUPPORTS DE TRANSMISSION

Le réseau sans fil "Wi - Fi" (Wireless Fidelity)

DSL : le support physique et les techniques de modulation

Chapitre 2 : Systèmes radio mobiles et concepts cellulaires

Ecole Centrale d Electronique VA «Réseaux haut débit et multimédia» Novembre 2009

Réseaux grande distance

xdsl et autres techniques filaires pour un accès résidentiel haut-débit

Réunion d information Accès Internet. 25 avril 2014

Les Réseaux sans fils : IEEE F. Nolot

Mesures en réception télévision

Plan du Travail. 2014/2015 Cours TIC - 1ère année MI 30

LA VIDÉOSURVEILLANCE SANS FIL

Les transmissions et les supports

Cisco Certified Network Associate

Chapitre 18 : Transmettre et stocker de l information

L ARCHITECTURE DES RÉSEAUX LONGUE DISTANCE

Université de La Rochelle. Réseaux TD n 6

Arguments clés. (1) : disponible sur certaines offres

1 Définition et présentation. 2 Le réseau Numéris. 3 Les services. 3.1 Les services Support (Bearer service) SYNTHESE

DU HAUT DÉBIT AU TRÈS HAUT DÉBIT : Et si l on commençait par un accès neutre par fibre optique au sous-répartiteur?

TV NUMERIQUE MOBILE : DU DVB-T AU DVB-H

I. TRANSMISSION DE DONNEES

Conception d un outil d aide au déploiement d un réseau EV-DO dans un concept IMS pour l opérateur CAMTEL

Le multiplexage. Sommaire

«SESSION 2009» RESEAUX DE TELECOMMUNICATIONS ET EQUIPEMENTS ASSOCIES. Durée : 2 h 00 (Coef. 3)

TECHNOLOGIE ADSL BeWAN systems (Fév 03)

Télécommunications. Plan

Brochure. Soulé Protection contre la foudre Gamme parafoudres courant faible

Connaissances VDI 1 : Chapitres annexe

Théorie sur les technologies LAN / WAN Procédure de test sur les réseaux LAN / WAN Prise en main des solutions de test

Chapitre I La fonction transmission

TP2 Liaison ADSL S3-Cycle 2 / Module M3103

Technologies DSL. Ligne numérique d abonné haut débit. N. Lebedev. CPE Lyon lebedev@cpe.fr. xdsl / 66

EFFETS D UN CHIFFRAGE DES DONNEES SUR

Evolution de l infrastructure transport

M1107 : Initiation à la mesure du signal. T_MesSig

Rappels sur le câblage catégorie 5/ Classe D

Ebauche Rapport finale

STI 20 Édition 3 /Novembre 2002

Guide de connexion à. RENAULT SA et PSA PEUGEOT CITROËN. via ENX

TABLE DES MATIERES. I. Objectifs page 2. II. Types de réseaux page 2. III. Transmission page 2. IV. Câbles page 3. V.

Le déploiement du Très Haut Débit

QU EST-CE QUE LA VISIOCONFERENCE?

Administration des ressources informatiques

Filtres maîtres et distribués ADSL

Réseaux Mobiles et Haut Débit

Les réseaux cellulaires vers la 3G

Systèmes de communications numériques 2

Vademecum. Solutions numériques

ISO/CEI NORME INTERNATIONALE

CLIP. (Calling Line Identification Presentation) Appareil autonome affichant le numéro appelant

Systèmes de transmission

Caractéristiques et débits de votre ligne ADSL

Une brève introduction à l architecture des réseaux ADSL

LABO PROJET : IMPLEMENTATION D UN MODEM ADSL SOUS MATLAB

DI GALLO Frédéric ADSL. L essentiel qu il faut savoir. PPPOE PPPT Netissi

Master d'informatique 1ère année Réseaux et protocoles. Couche physique

Chapitre 22 : (Cours) Numérisation, transmission, et stockage de l information

Transmission d informations sur le réseau électrique

Voir cours Transmission de l'information

Transcription:

Université Claude Bernard Lyon 1 Master 2 Systèmes Informatiques et Réseaux Etude bibliographique Les technologies xdsl Réalisé par : Nicolas SANTOPIETRO Youssef ZIZI Année scolaire 2007-2008

Table des matières I. INTRODUCTION... 3 II. HISTORIQUEMENT... 4 III. FONCTIONNEMENT GENERAL... 6 A. MODE DE SEPARATION DES CANAUX (MULTIPLEXAGE)... 6 1. FDM (Frequency Division Multiplexing)... 6 2. Annulation d écho... 7 B. Le codage et la modulation... 8 1. Codage 2B/1Q... 8 2. Modulation QAM (quadrature Amplitude Modulation)... 8 3. Modulation CAP (Carrierless Amplitude/Phase modulation)... 9 4. Modulation DMT (Discret Multitone)... 11 5. Codage de Reed-Solomon... 12 6. Codage convolutif... 14 IV. L ARCHITECTURE DSL... 15 V. LES DIFFERENTES TECHNOLOGIES XDSL... 18 A. IDSL... 18 B. HDSL... 18 C. SDSL... 19 D. VDSL et VDSL2... 19 E. ADSL... 20 F. RE-ADSL... 21 G. ADSL2 et ADSL2+... 21 VI. LIMITATIONS DE LA TECHNOLOGIE XDSL... 22 A. Description d un câble de cuivre... 22 B. Affaiblissement des lignes cuivrées... 23 a. La diaphonie... 23 VII. LES DIFFERENTES SOLUTIONS AUX LIMITATIONS DE LA TECHNOLOGIE XDSL... 25 A. Augmentation des capacités des lignes... 25 B. Dynamic Spectrum Management (DSM)... 26 VIII. CONCLUSION... 28 IX. REFERENCES WEBOGRAPHIQUES... 29 Université Claude Bernard Lyon 1 2

I. INTRODUCTION Le xdsl est un groupe de technologies de transmission ayant une caractéristique commune qui est de faire passer d'importants flux de données sur de simples lignes téléphoniques (ou paires de cuivre). xdsl signifie Digital Subscriber Line (ligne d'abonné numérique) pour DSL et le x recouvre l'ensemble de la famille de ces systèmes. L'avantage de ces technologies est de pouvoir atteindre des débits de plusieurs mégabits par seconde (Mbits/s) en utilisant l'infrastructure existante du réseau d'accès entre le central téléphonique (CT) et le client. Le xdsl bénéficie ainsi de la grande capillarité du réseau téléphonique commuté déjà en place. Il cible donc potentiellement un très grand nombre d utilisateurs, petites et moyennes entreprises comme les particuliers. Pour remédier au problème des derniers kilomètres de la transmission, il est envisageable de déployer de la fibre optique (FTTH) jusque chez le client. L'investissement est cependant très important. Une autre solution pour proposer des services assurant de hauts débits à moindre coût fût trouvée par les opérateurs téléphoniques : doper le réseau téléphonique existant. C'est le but des technologies xdsl. L idée de base de cette technologie est de transmettre des données sur des fréquences supérieures à celles utilisées par la voix. Elle permet de repousser la barrière théorique des 300-3400 Hertz (Hz) de la bande passante téléphonique pour atteindre plusieurs Méga-Hertz (MHz). Néanmoins, certains paramètres tels que l'atténuation des lignes paires de cuivre et la diaphonie tendent à limiter les performances de ces systèmes. Université Claude Bernard Lyon 1 3

II. HISTORIQUEMENT Les plus perfectionnés des modems analogiques classiques ne permettaient pas de transmettre du numérique bien au delà de 56 kbit / s. Les procédés de modulation des modems analogiques étaient pourtant très sophistiqués, mais ce qui interdisait d'accéder aux hauts débits c'était la faible bande passante allouée aux liaisons téléphoniques classiques. Cette bande (figure 1), appelée "canal voix" était limitée théoriquement à 0 Hz - 4 KHz, pratiquement à 300 Hz - 3,3 KHz. Les raisons de cette limitation n'étaient pas liées à la bande passante de la ligne elle-même, mais à la nécessité de limiter cette bande en vue du multiplexage des signaux entre centraux téléphoniques. En effet, la bande passante du multiplex constitué est la somme des bandes passantes des diverses communications, qui, dans le cas où elles ne sont pas limitées, impliqueraient une très large bande passante coûteuse en équipements. Les lignes du réseau d'accès reliant les clients au central téléphonique ont par elles-mêmes des bandes passantes beaucoup plus élevées qui peuvent atteindre plusieurs MHz. Les techniques DSL utilisent la totalité de la bande passante de chaque ligne au-delà de la voie phonique de 0-4 khz. (La bande POTS : Plain Old Telephone Services). Et ce, conjointement avec les techniques de modulation les plus sophistiquées que nous examinerons. Université Claude Bernard Lyon 1 4

Cependant toutes les lignes n'ont pas la même bande passante, en effet, cette dernière est directement liée à la longueur de ligne. De plus, des perturbateurs agissent très différemment d'une ligne à une autre et ce à différentes fréquences. Le DSL utilisera donc les fréquences dites supra-vocales disponibles suivant la qualité et surtout la distance de la ligne terminale du client à son central de rattachement. Nous observons sur la figure ci-dessus que le DSL laisse libre la bande POTS (Plain Old Telephone Services) réservée à la voix téléphonique. Nous pouvons donc simultanément téléphoner et communiquer numériquement. Université Claude Bernard Lyon 1 5

III. FONCTIONNEMENT GENERAL A. MODE DE SEPARATION DES CANAUX (MULTIPLEXAGE) Les échanges numériques pour les systèmes DSL sont bidirectionnels. Deux flux d'information numérique sont définis : Un flux montant (upstream) allant de l équipement du client vers le central téléphonique Un flux descendant (downstream) allant du central téléphonique vers l équipement du client. Pour permettre de faire coexister sur une même ligne de cuivre ces deux flux sans interférence deux solutions sont possibles : - Le multiplexage en fréquence FDM (Frequency Division Multiplexing). - L'occupation simultanée d'une même bande passante avec annulation d'écho (Echo Cancellation : EC) 1. FDM (Frequency Division Multiplexing) Cette technique est utilisée pour séparer les données d émission (upstream) et de réception (downstream) du DSL. La bande passante totale est divisée en trois parties importantes : jusqu à 4 khz, on conserve les services standards du téléphone (POTS), la bande de 20kHz à 140kHz est réservée pour le canal sortant de chez l abonné, et la plage de 150kHz à 1,104MHz est réservée pour le canal entrant chez l abonné (cf. Figure3). Dans le cas du SDSL (DSL Symétrique), les flux montants et descendants sont symétriques. On remarquera que les deux bandes utilisées par l ADSL (DSL asymétrique) n ont pas la même largeur, on attribue au flux montant un canal moins large qu'au flux descendant (ce qui est bien adapté pour un réseau tel qu'internet). Université Claude Bernard Lyon 1 6

2. Annulation d écho L'avantage de cette technique de multiplexage (figure ci-dessous) est l augmentation de la largeur du canal descendant, donc du débit du flux descendant. Son inconvénient est l'interférence entre les signaux des deux flux montant et descendant. Tel quel, le système ne fonctionnerait pas dans le canal bidirectionnel (20-140KHz).Il faut bien comprendre que les deux équipements de bout de ligne se comportent comme des générateurs de tensions variables sur une même ligne. Le signal somme résultant est inexploitable en réception. Mais on a trouvé un moyen de contourner cet inconvénient : l'annulation d'écho. Chaque station émettrice sait ce qu'elle émet. Et ce qu'elle émet, comme nous venons de le dire, s'ajoute à ce qu'on devrait recevoir. Chaque équipement terminal de ligne dispose sur son entrée de réception, un dispositif électronique soustracteur qui lui envoie le signal présent sur la ligne moins le signal qu'elle émet (figure ci-dessous). Université Claude Bernard Lyon 1 7

B. Le codage et la modulation 1. Codage 2B/1Q Le codage 2B/1Q est apparu pour permettre d'augmenter la distance maximale de transmission nécessaire pour l'introduction du réseau RNIS. Ce codage fait correspondre à un groupe de deux éléments (2bits: 2B) un créneau de tension, dit symbole quaternaire (1Q), pouvant endosser quatre valeurs différentes. Ce mode de codage est utilisé pour l'hdsl avec une vitesse de modulation de 584000 bauds/s soit un débit supérieur à 1Mbits/s. Cependant, ce codage est à bande de base (transmission à partir de 0 Hz), ce qui ne permet pas l'utilisation simultanée du transfert de données et du service téléphonique (300-3400Hz). 2. Modulation QAM (quadrature Amplitude Modulation) La modulation d'amplitude en quadrature (QAM) consiste à associer à toute suite de n bits appelée symbole un point particulier au sein d une constellation. Cela correspond à une combinaison d'une modulation de phase et d'amplitude, ceci afin d'augmenter le nombre d'état Université Claude Bernard Lyon 1 8

par symbole. La porteuse est transmise en ligne avec le signal modulé, la démodulation se faisant au niveau du récepteur. Cette technique pose certaines difficultés dues à la distorsion de phase de la porteuse inhérente à la propagation. La figure, ci-dessus représente la valeur binaire associée à chaque point d une constellation 16-QAM utilisée dans les modems V32. La figure, ci-dessous affiche les différentes modulations QAM qui sont utilisées par les modems ADSL. (4-QAM, 16-QAM, 32-QAM, 64-QAM) A la différence du codage 2B/1Q, les code CAP et DMT, dérivés du QAM, sont typiquement passe-bande et peuvent opérer sur une bande de fréquence spécifiée. Ceci va permettre de séparer les canaux réservés à la ligne téléphonique, la réception et l'émission de données. 3. Modulation CAP (Carrierless Amplitude/Phase modulation) En parallèle au développement du codage 2B/1Q, une entreprise américaine AT&T/Paradyne a développé le CAP. Le codage CAP utilise une porteuse unique. La porteuse modulée est supprimée avant la transmission, d'où le qualificatif de carrierless, puis reconstruite par le modem récepteur. Cette technique est très semblable à la Modulation d'amplitude en Quadrature (QAM) mais n'utilise pas la transposition en fréquence. De ce fait, elle est purement numérique et est implémentée avec des processeurs DSP qui réalisent le traitement Université Claude Bernard Lyon 1 9

numérique du signal. La bande passante disponible est divisée en trois canaux par un multiplexage FDM. Les canaux montants et descendants ne sont pas subdivisés en canaux plus étroits. Toute dégradation du rapport signal sur bruit S/B dans une bande de fréquence donnée, perturbe la qualité de l ensemble du canal donc réduit la capacité globale de l accès. Cette diminution de la capacité revient à diminuer d un bit la taille du symbole de la constellation, c est à dire à réduire par deux les performances. Constellation 2 n Nombre de bits/bauds 2-CAP 2 1 1 4-CAP 2 2 2 8-CAP 2 3 3 16-CAP 2 4 4 32-CAP 2 5 5 64-CAP 2 6 6 128-CAP 2 7 7 256-CAP 2 8 8 512-CAP 2 9 9 Les émetteurs-récepteurs CAP peuvent utiliser des constellations multiples créant 2 n valeurs. n peut varier de 2 à 512 en fonction des caractéristiques de la ligne utilisée. On parle alors de Université Claude Bernard Lyon 1 10

N-CAP (2-CAP, 64-CAP, 512-CAP). Cette capacité à changer la taille des constellations, est utilisée par CAP pour s'adapter aux caractéristiques de la ligne. La période symbole du système CAP mono-porteuse est petite. En effet, la rapidité d un modem CAP est de 1 024 khz. Ce qui est pénalisant, par rapport à la durée d un bruit impulsif qui serait égal ou inférieur à 500 µs. 4. Modulation DMT (Discret Multitone) DMT a été adopté comme Norme par l'ansi et par l'etsi (Institue Européen de Normes de Télécommunications), ce qui permet une plus grande interopérabilité entre les équipements des différents constructeurs et le développement de l'adsl. La technique consiste à partager la bande passante disponible en un nombre élevé de canaux. Ces canaux reçoivent une modulation de type QAM et sont transmis en parallèle. Cette technique multi-porteuses nécessite de forts traitements numériques et n'a donc vu le jour qu'à partir du moment où les DSP sont devenus abordables en matière de coûts. La norme ADSL spécifie l'utilisation de 256 sous-canaux, chacun des sous-canaux ayant une largeur de 4, 3 125 KHz, soit une largeur de bande globale de 1 104 khz. Le sous-canal 1 est réservé au canal téléphonique analogique. Les sous-canaux 2 à 6 sont réservés à la signalisation du canal téléphonique et servent de bande de garde avec les souscanaux ADSL. 250 sous-canaux sont utilisés pour transporter le flux ADSL, sur une bande utile qui s étend de 25 khz à 1,1 MHz. La bande de garde entre 2 sous-canaux est de 300 Hz. Université Claude Bernard Lyon 1 11

Chacune des porteuses peut être modulée de 0 à 15 bits/s par Hz, ce qui permet un débit de 64 Kbps pour chacun de ces canaux de transmission. DMT alloue les données de manière à optimiser le débit de chaque canal c'est à dire d'adapter la transmission aux caractéristiques de la ligne téléphonique. Le nombre de bits portés sur chaque porteuse est variable, parce que les capacités internes de transport de chaque porteuse varient en fonction de leur fréquence. Plus la fréquence est élevée, et plus l'atténuation est importante, permettant aux fréquences les plus basses de transmettre le plus d'informations. De plus, on fait varier le nombre de bits par porteuse en fonction des conditions de transmission, en plaçant un nombre plus important de bit sur les canaux les plus robustes. Ainsi, pour éviter les perturbations dues au bruit ou les interférences radio il suffit de coder plus ou moins de bps/hz sur les porteuses. Le principe de l allocation de capacité des sous-canaux correspondant au rapport signal sur bruit. Cette adaptation s effectue sur les 250 canaux. Un modem DMT évalue en permanence la qualité de ligne, ce qui lui permet de recalculer dynamiquement la capacité optimale en bit/s par Hertz à affecter à chaque sous-canal. 5. Codage de Reed-Solomon La transmission d'informations numériques sur de longues distances est toujours entachée d'erreurs de transmission. Quand l'apparition de ces erreurs est jugée trop importante vis à vis du service attendu et de la sûreté de fonctionnement exigée pour le système, on ajoute de la Université Claude Bernard Lyon 1 12

redondance; celle-ci permet, à la réception de détecter, puis corriger toutes les erreurs de certains types. Les codes de Reed-Solomon représentent une catégorie très importante de codes en bloc cycliques permettant de corriger des erreurs isolées ou des paquets d'erreurs. Ces codes s'appuient sur les structures mathématiques que sont les corps de Galois ; ils sont caractérisés essentiellement par le polynôme générateur du corps choisi, par le polynôme générateur de code et par la capacité de correction. Pour les modems ADSL, ce code est noté RS (240, 224, t=8), ce qui veut dire 224 octets en entrée, 240 en sortie du codeur et 8 octets sur 224 peuvent être corrigés. C'est un code en bloc qui va ajouter 16 octets de redondance derrière les 224 octets de charge utile. Si plus de 8 octets sont détectés comme erronés, le bloc de données utiles est marqué comme défectueux. Imaginons un bloc de 3 octets de long et que l'on transmet: 03. 10. 15. Deux octets de redondance sont rajoutés. Le premier est la somme de nos trois données soit 28 Le deuxième est la somme pondérée des 3 octets. Chaque octet est multiplié par son rang : 3*1 + 10*2 + 15*3 soit 68. Notre bloc à la sortie du codeur devient donc : 03. 10. 15. 28. 68. Après transmission et perturbation, le récepteur reçoit le bloc : 03. 12. 15. 28. 68. On refait la somme simple 03+12+15=30 et la somme pondérée 3*1 + 12*2 + 15*3=72. La différence des sommes simples (28-30) nous donne la valeur de l'erreur et la différence des sommes pondérées divisée par l'erreur est égale à au rang de l'erreur ((72-68)/2=2). Nous pouvons corriger notre paquet. Université Claude Bernard Lyon 1 13

6. Codage convolutif Le codage convolutif associé à un décodage par l'algorithme de Viterbi est une technique de codage correcteur d'erreurs très répandue dans les systèmes de transmissions numériques actuels. Ce type de codage est, en effet, spécifié dans de nombreuses applications, aussi bien du domaine audio et/ou vidéo telles le GSM (téléphonie mobile), l'adsl, la télévision numérique terrestre ou par satellite (normes DVB-T et DVB-S). Dans le modem ADSL, ce deuxième codage dit «interne» sert à consolider encore plus les données issues du codeur de Reed-Solomon. Le codeur convolutif ou codeur en treillis s applique à la constellation mise en œuvre par l étage de modulation. - Dans le cas, d une modulation CAP, il n y aura qu un seul codeur convolutif. - Dans le cas, d une modulation DMT, plusieurs codeurs convolutifs sont appliqués pour chacune des constellations associées aux N sous-canaux d un modem DMT. Côté terminal Côté ligne Le schéma ci-dessus représente les différents étages fonctionnels de la chaîne de transmission d un modem ADSL Université Claude Bernard Lyon 1 14

IV. L ARCHITECTURE DSL Les technologies xdsl reposent sur le concept de "modems". Ce sont des boîtiers, où sont couplés des modulateurs-démodulateurs de très hautes performances, placés aux extrémités d'une paire téléphonique pour réaliser une ligne d'abonné numérique. Architecture DSL Comme le montre la figure ci-dessus, la topologie d'une liaison de bout en bout de service DSL est traditionnellement divisée en 3 segments : L'équipement terminal client CPE (Customer Premises Equipment), le fournisseur d'accès NAP (Network Access Provider) et le fournisseur de service NSP (Network Service Provider). En fournissant la connectivité entre le terminal client (CPE) et le fournisseur de service (NSP), Le fournisseur d'accès (NAP) joue le rôle d'un vendeur de services de réseau. Un exemple commun est celui de l'accès à Internet présenté sur la figure ci-dessous, où un NAP peut servir la connectivité d'accès DSL à différents fournisseurs Internet ISP (Internet Service Provider). Université Claude Bernard Lyon 1 15

Un NAP servant une connectivité DSL à plusieurs NSPs Le NAP est responsable du modem DSL du CPE, du DSLAM et de la connectivité du cœur de réseau au NSP. Pour cette raison, le NAP évite, idéalement, de traiter des aspects liés au service offert comme l'attribution des adresses IP ou l'approvisionnement en VPN (Virtual Private Network). Il opère au niveau de la couche liaison de données (couche 2) et considère la connectivité entre le client et le fournisseur de service comme un tunnel de données. Ce modèle est différent de celui des opérateurs de câble où il a toujours été commun pour le NSP d'être aussi le NAP. Les éléments d un réseau d accès DSl Université Claude Bernard Lyon 1 16

Les éléments communs dans un réseau d'accès DSL, reportés sur la figure ci-dessus, sont : - Les modems DSL ou CPE. - Le réseau d'accès de cuivre. - Les POTs splitters. - Les DSLAMs. - Le cœur de réseau de transport. Le modem DSL représente l'équipement terminal du client. Quant au réseau d'accès de cuivre, il se compose de paires torsadées allant de l'interface principale de distribution (MDF : Main Distribution Frame en anglais) située dans le central téléphonique, jusqu'à l'utilisateur final. En fonction de la longueur du câble et du niveau du bruit stationnaire, le débit transmissible sur les paires torsadées se situe dans une plage de 1 Mb/s à 10 Mb/s pour l'adsl et de 1 Mb/s à 52 Mb/s pour le VDSL. Le POTS (Plain Old Telephone System en anglais, et Services Téléphoniques Analogiques en français) splitter est très souvent un simple filtre passif qui sépare le spectre inférieur utilisé pour la téléphonie du spectre plus élevé employé par l'adsl/vdsl. Les POTS splitters sont généralement situés au niveau du DSLAM. Le DSLAM (DSL Access Multiplexer en anglais, et Multiplexeur d'accès DSL en français) est une machine qui se trouve au niveau du central téléphonique. Elle rassemble le trafic d'un grand nombre de lignes DSL pour l'envoyer vers le réseau de l'opérateur internet (d'où le terme de multiplexeur), et inversement. Les DSLAM sont récemment passés de la version 1 à la version 2, ce qui a permis entre autre de raccorder un plus grand nombre d'abonnés par DSLAM (passage de 384 à 1008), et surtout de pouvoir mettre en place l'adsl 2 qui permet certaines améliorations notamment au niveau de la distance maximale de raccordement des abonnés. Au départ, les DSLAMs étaient des dispositifs à trafic ATM, de plus en plus remplacés par des DSLAMs IP. Le cœur de réseau de transport peut être basé sur l'atm, l'ip ou dans beaucoup de cas sur les deux (IP over ATM). Dans ce réseau, le MPLS (Multi Protocol Label Switching) joue un rôle de plus en plus important. Université Claude Bernard Lyon 1 17

V. LES DIFFERENTES TECHNOLOGIES XDSL La famille xdsl regroupe les transmissions à hauts débits sur la boucle locale reliant le central téléphonique le plus proche au client. Les versions des technologies xdsl diffèrent par le nombre de paires téléphoniques utilisées (1 ou 2), la bande passante et le type de modulation utilisée. A. IDSL IDSL (ISDN over Digital Subscriber Line) ou Ligne Numérique d'abonné ISDN Symétrique.Cette technologie est très proche du RNIS. Elle permet la transmission point à point de données montantes et descendantes à haut débit. L'IDSL est surtout utilisé pour des liaisons symétriques. Son débit varie de 64 à 144 kb/s sur une simple paire de fils de cuivre. La portée IDSL maximale à partir d'un central téléphonique est de 5 Kms, mais peut être doublée avec un répéteur en 'U'. L'IDSL utilise le codage 2B/1Q. B. HDSL La technologie HDSL (High bit rate DSL) a été développée aux Etats Unis. Technique de transmission bidirectionnelle et symétrique, elle a été conçue essentiellement pour des besoins professionnels. Ces caractéristiques sont typiquement destinées à des applications d'entreprise comme le courrier électronique, les transferts de fichiers, et même la vidéoconférence, pour lesquels la quantité de données émises et reçues est à peu près la même. Le codage mis en œuvre est essentiellement de type "2B1Q".Elle permet le transfert de données à 2.048 Mb/s sur une sur 1 ou 2 paires de cuivre sans offrir de service de téléphonie (POTS) en bande de base. Les systèmes HDSL sont aujourd'hui essentiellement destinés aux professionnels. Ces applications sont multiples : Liaisons Louées à 2 Mbit/s : En absence de répéteurs - régénérateurs, les liaisons HDSL sont limitées en distance à environ 2 500 m. Cependant, cette offre reste très avantageuse car les coûts des équipements sont bien inférieurs à ceux des systèmes de ligne classique, la simplicité du système permet de raccourcir des délais de raccordement et l'absence de répéteur simplifie considérablement l'exploitation et la maintenance. Université Claude Bernard Lyon 1 18

Raccordement de PABX : Les signaux HDSL ont l'avantage d'être transportés sans perturbation, sur des câbles d'abonnés. L HDSL2 et HDSL4 : Deux successeurs du HDSL qui transmettent sur une seule paire de cuivre des services symétriques. Le HDSL2 et le HDSL4 réalisent de meilleures performances que le HDSL grâce à des codes plus performants, à savoir la modulation codée en treillis basée sur la modulation PAM (Pulse Amplitude Modulation) à 16 états. C. SDSL La technologie SDSL (Single-Line DSL) assure les mêmes performances que le HDSL en terme de débit et de portée sur une seule paire de cuivre. Elle offre, en effet, des débits symétriques qui varient entre 64 kb/s et 2.3 Mb/s. Le SDSL utilise tout comme le HDSL2 ou le HDSL4 des codes de modulation en treillis. L'offre d'accès SDSL est destinée aux établissements professionnels : elle permet l'échange de données à haut débit entre plusieurs sites distants d'une même entreprise. D. VDSL et VDSL2 Le VDSL (Very High Rate DSL) est une nouvelle technologie DSL qui permet des débits jusqu'à 52 Mb/s sur des distances relativement courtes ne dépassant pas les 900m - 1km. Le VDSL, utilise une bande de fréquence encore plus haute, allant jusqu'à 12 MHz, et permet des débits symétriques ou asymétriques beaucoup plus élevés que ceux des autres technologies xdsl (jusqu'à 52 Mb/s en sens descendant et 3 Mb/s en sens remontant en asymétrique, ou 14 Mb/s symétriques). Il permet aussi le transport simultané des services RNIS (Réseau Numérique et Intégration de Services). Il utilise la modulation CAP et DMT, et la séparation des canaux upstream et downstream est effectuée par FDD. La technologie VDSL 2 a été normalisée le 27 mai 2005 par l'union internationale des télécommunications (UIT) sous l'appellation G.993.2. Elle utilise un spectre de fréquences élargi jusqu'à 30 MHz et permet d'atteindre des débits allant jusqu'à 100 Mb/s, soit dix fois plus importants que ceux de l'adsl. En contrepartie, sa portée est relativement courte, inférieure à 500 m dès 1 km de distance, il devient plus intéressant d'utiliser une autre technologie comme l'adsl 2+.Etant donné cette faible portée, il est peu intéressant de la déployer depuis un central, la couverture serait trop Université Claude Bernard Lyon 1 19

faible. Le VDSL2 a donc la particularité de se présenter comme une technique hybride, souvent appelée fibre/cuivre : selon les débits requis, il est nécessaire de déployer une infrastructure optique plus ou moins bas dans le réseau d'accès, en complément du réseau filaire existant. Le raccordement en VDSL2 se fait alors sur la partie terminale du parcours, entre le client et la borne active (DSLAM ou mini-dslam) placée sur le trottoir et ellemême reliée au central par fibre optique. C'est le FTTCab, ou Fiber To The Cabinet, la fibre jusqu'au sous-répartiteur. Beaucoup de pays, dont la Finlande, la Belgique ou l Allemagne (par exemple) comptent déployer du VDSL2 de façon commerciale. En France, même si des tests ont été effectués, il semble que la fibre optique en FTTH (Fiber To The Home) soit préférée. E. ADSL Le concept des transmissions ADSL (Asymetric DSL), comme l'une des premières technologies DSL avec débits asymétriques. Contrairement aux technologies IDSL, HDSL ou SDSL l'adsl offre à la fois des services de transport de données et des services téléphoniques (POTS), grâce à la modulation DMT utilisée. Son débit est, de ce fait, adaptable en fonction de la ligne, et peut atteindre jusqu 8 Mb/s sur voie descendante et 768 Kbit/s sur voie montante Université Claude Bernard Lyon 1 20

F. RE-ADSL Au-delà de 6 kilomètres du central téléphonique, la technologie ADSL n'est plus en mesure de desservir les clients. Le Re-ADSL (Reach Extended ADSL) est la technologie qui permet d'étendre la portée de l'adsl jusqu'à 7 ou 8 kilomètres en "boostant" la partie la plus basse du spectre, c'est à dire en envoyant plus d'énergie entre 25 et 200 khz. Le RE-ADSL utilise la même modulation que l'adsl, la DMT, mais sa vitesse est toutefois limitée à 512 kb/s. G. ADSL2 et ADSL2+ L'apparition de ces deux technologies DSL était conditionnée par une évolution rapide de la norme ADSL. Le débit et la portée des modems ADSL2 sont améliorés par un meilleur gain de codage, suite à l'adoption de la modulation codée en treillis (codage convolutif). Les entêtes des trames sont moins volumineux. Un mode de diagnostic et de test embarqué sur les modems facilite le déploiement de la ligne (configuration, test de ligne, diagnostic accessible au fournisseur d'accès Internet). L'ADSL2 fixe, en plus, des conditions telles qu'en l'absence de requêtes upstream, les modems entrent en mode de veille. Par ailleurs, les niveaux d'émission des modems sont fixés adaptativement en fonction du bruit stationnaire présent sur la ligne. Ainsi l ADSL2 permet d obtenir des débits descendants jusqu à 12 Mbits/s. Quant à l'adsl 2+, la bande de fréquence utilisée sur le fil de cuivre est doublée (2,2 Mhz au lieu de 1,1 Mhz) et permet donc d obtenir jusqu'à 25 Mbit/s en débit du flux descendant et 1 Mbit/s en débit du flux montant. Par contre, la fréquence étant plus élevée, la portée est donc plus faible. L amélioration apportée par l ADSL2+ est surtout significatif pour les abonnés proches du central. Université Claude Bernard Lyon 1 21

VI. L LIMITATIONS DE LA TECHNOLOGIE XDSL La transmission numérique sur paire torsadée est soumise à de nombreuses perturbations. Ces perturbations apparaissent comme des bruits additifs d'origines diverses. Le câble de télécommunications qui sert de support aux transmissions DSL est source de plusieurs limitations internes, tels que l'affaiblissement, la diaphonie et la distorsion de phase (causée par le torsadage des paires cuivrées). Les principales sources de bruit externe sont le bruit blanc additif Gaussien (BBAG) dont la puissance est uniformément répartie dans la bande de fréquence DSL, le bruit impulsif généré par les néons, les moteurs, les relais, etc, et dont le niveau dépend du perturbateur électromagnétique et de sa position par rapport au câble, et enfin, les interférences radiofréquences provenant par exemple des transmissions des radio amateurs. A. Description d un câble de cuivre La paire torsadée est constituée de deux conducteurs de cuivre d un diamètre compris entre 0.4mm et 0.8mm (rarement 1mm). Les conducteurs sont isolés et torsadés afin de diminuer la diaphonie. ).La plupart du temps, les paires torsadées sont regroupées par deux dans un câble protégé par un "manteau" de plastique. Les câbles utilisés sur le réseau téléphonique comprennent de 2 à 2'400 paires et ne sont pas blindés. En hautes fréquences les problèmes liés à la distance sont les plus contraignants (affaiblissement, diaphonie, distortion de phase). Aux basses fréquences, ce sont les difficultés liées aux bruits impulsionnels qui dominent sans trop de difficulté jusqu à 1 Mhz. Université Claude Bernard Lyon 1 22

Au-delà, leur utilisation devient délicate et elle nécessite des systèmes de transmission très performants. B. Affaiblissement des lignes cuivrées L'affaiblissement en db est proportionnel à la longueur du câble. Il varie en fonction de la racine carrée de la fréquence et dépend du calibre du câble. Calibre du câble 4/10 5/10 6/10 8/10 Fréquence db / km db / km db / km db / km 0,8 khz 1,61 1,26 1,06 0,81 3,4 khz 3,25 2,50 2,06 1,5 28,8 khz 7,6 5,45 4,3 2,79 64 khz 9,7 6,9 5,5 3,9 128 khz 11,8 8,7 7,3 5,4 256 khz 14,5 11,2 9,8 7,6 300 khz 15 12,4 10,3 7,9 512 khz 20,6 17,9 14,1 12 Ce tableau présente l affaiblissement théorique, linéique en db, de câbles non chargés en fonction de la section du conducteur. Nous notons que l'affaiblissement augmente avec la fréquence et la longueur de ligne. Une solution consisterait à augmenter la puissance du signal émis pour lutter contre l affaiblissement, mais dans un câble où se côtoient de nombreux systèmes, on augmenterait dramatiquement les perturbations liées à la diaphonie. a. La diaphonie Bien que les médias de communication ne soient pas partagés entre les utilisateurs, le couplage électromagnétique entre les lignes implique que la transmission d'un signal sur une ligne cause des signaux interférents, dits diaphonie, sur les lignes voisines Cette perturbation désigne donc l interférence électromagnétique entre paires appartenant à Université Claude Bernard Lyon 1 23