Master 1 Information, Signal, Image, Instrumentation. Caméras CCD & Imagerie numérique

Documents pareils
Capacité Métal-Isolant-Semiconducteur (MIS)

Interactions des rayonnements avec la matière

Semi-conducteurs. 1 Montage expérimental. Expérience n 29

- I - Fonctionnement d'un détecteur γ de scintillation

REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE MINISTERE DE L ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE

Molécules et Liaison chimique

FUSION PAR CONFINEMENT MAGNÉTIQUE

Master Photovoltaïque

Les rayons X. Olivier Ernst

DIFFRACTion des ondes

Chapitre 11 Bilans thermiques

SOMMAIRE. B5.1 Première approche

MESURE DE LA TEMPERATURE

Figure 1 : Diagramme énergétique de la photo émission. E B = hν - E C

Production d énergie électrique : ENERGIE SOLAIRE PHOTOVOLTAIQUE

BTS BAT 1 Notions élémentaires de chimie 1

NUAGES INTERSTELLAIRES ET NEBULEUSES

Élaboration et caractérisation de cellules photovoltaïques de troisième génération à colorant (DSSC)

République Algérienne Démocratique et Populaire. Ministère de l Enseignement Supérieur et de la Recherche Scientifique

La physique nucléaire et ses applications

Chapitre 02. La lumière des étoiles. Exercices :

DM 10 : La fusion nucléaire, l énergie de l avenir? CORRECTION

CHAPITRE 2 : Structure électronique des molécules

Chapitre 11: Réactions nucléaires, radioactivité et fission

Partie Observer : Ondes et matière CHAP 04-ACT/DOC Analyse spectrale : Spectroscopies IR et RMN

Les transistors à effet de champ.

Chapitre 6 : les groupements d'étoiles et l'espace interstellaire

LE PHYSICIEN FRANCAIS SERGE HAROCHE RECOIT CONJOINTEMENT LE PRIX NOBEL DE PHYSIQUE 2012 AVEC LE PHYSICIEN AMERCAIN DAVID WINELAND

Master 1 EEA. Capteurs numériques CCD & CMOS

Transformations nucléaires

Lycée français La Pérouse TS. L énergie nucléaire CH P6. Exos BAC

Lycée Galilée Gennevilliers. chap. 6. JALLU Laurent. I. Introduction... 2 La source d énergie nucléaire... 2

Panorama de l astronomie. 7. Spectroscopie et applications astrophysiques

Professeur Eva PEBAY-PEYROULA

De la physico-chimie à la radiobiologie: nouveaux acquis (I)

Panorama de l astronomie

Équivalence masse-énergie

LES CAPTEURS CCD/CMOS

Électricité statique. Introduction. Quelques étapes historiques importantes

TD 9 Problème à deux corps

AIDE-MÉMOIRE LA THERMOCHIMIE TABLE DES MATIERES

Chapitre n 6 MASSE ET ÉNERGIE DES NOYAUX

Rayonnements dans l univers

A retenir : A Z m n. m noyau MASSE ET ÉNERGIE RÉACTIONS NUCLÉAIRES I) EQUIVALENCE MASSE-ÉNERGIE

Convertisseurs statiques d'énergie électrique

La vie des étoiles. La vie des étoiles. Mardi 7 août

Notions de base sur l énergie solaire photovoltaïque

POLY-PREPAS Centre de Préparation aux Concours Paramédicaux. - Section Orthoptiste / stage i-prépa intensif -

Glossaire technique Veditec

Introduction à la physique nucléaire et aux réacteurs nucléaires

Théorie des multiplets! appliquée à! la spectroscopie d ʼabsorption X!

SPECTROSCOPIE D ABSORPTION DANS L UV- VISIBLE

On distingue deux grandes catégories de mémoires : mémoire centrale (appelée également mémoire interne)

UE 503 L3 MIAGE. Initiation Réseau et Programmation Web La couche physique. A. Belaïd

Chapitre 10 : Radioactivité et réactions nucléaires (chapitre 11 du livre)

Transformations nucléaires

5. Les conducteurs électriques

PHYSIQUE-CHIMIE. Partie I - Spectrophotomètre à réseau

LE COSMODETECTEUR : UN EXEMPLE DE CHAÎNE DE MESURE

Principe et fonctionnement des bombes atomiques

Groupe professionnel énergie de Centrale Nantes Intergroupe des centraliens de l énergie

La Fusion Nucléaire (Tokamak) Nicolas Carrard Jonathan Carrier Guillomet 12 novembre 2009

Les Environnements Radiatifs

Circuits intégrés micro-ondes

Structure quantique cohérente et incohérente de l eau liquide

Energie nucléaire. Quelques éléments de physique

C4: Réactions nucléaires, radioactivité et fission

Chapitre 6. Réactions nucléaires. 6.1 Généralités Définitions Lois de conservation

Energie photovoltaïque

Chap 2 : Noyaux, masse, énergie.

MEMOIRE DE PROJET DE FIN D ETUDE

NOYAU, MASSE ET ENERGIE

Microscopie de fluorescence Etat de l art

Mécanique Quantique EL OUARDI EL MOKHTAR LABORATOIRE MÉCANIQUE & ÉNERGÉTIQUE SPÉCIALITÉ : PROCÈDES & ÉNERGÉTIQUE. dataelouardi@yahoo.

CHAPITRE VI : HYBRIDATION GEOMETRIE DES MOLECULES

Une réponse (très) partielle à la deuxième question : Calcul des exposants critiques en champ moyen

Chapitre 4 : Le transistor Bipolaire

Comment réaliser physiquement un ordinateur quantique. Yves LEROYER

Chapitre 5 : Noyaux, masse et énergie

8/10/10. Les réactions nucléaires

DYNAMIQUE DE FORMATION DES ÉTOILES

Electrification statique - Problèmes et solutions L application des sources ionisantes. Auteur: Dr Mark G Shilton, CChem, MRSC. (Copie du document

INTRODUCTION A LA FUSION THERMONUCLEAIRE

INTRODUCTION À L'ENZYMOLOGIE

PHYSIQUE Discipline fondamentale

P17- REACTIONS NUCLEAIRES

EXERCICES SUPPLÉMENTAIRES

ANALYSE SPECTRALE. monochromateur

Plan du chapitre «Milieux diélectriques»

Sujet. calculatrice: autorisée durée: 4 heures

Cours 1. Bases physiques de l électronique

Structures de semiconducteurs II-VI à alignement de bandes de type II pour le photovoltaïque

OPTIMISATION À UNE VARIABLE

LES CARACTERISTIQUES DES SUPPORTS DE TRANSMISSION

Les réseaux cellulaires

FICHE 1 Fiche à destination des enseignants 1S 16 Y a-t-il quelqu un pour sauver le principe de conservation de l énergie?

par Alain Bonnier, D.Sc.

THEME 2. LE SPORT CHAP 1. MESURER LA MATIERE: LA MOLE

Qu est-ce qu un ordinateur quantique et à quoi pourrait-il servir?

Transcription:

Master 1 Information, Signal, Image, Instrumentation Caméras CCD & Imagerie numérique

PLAN DU COURS I Notions sur les semi-conducteurs et interactions rayonnement-matière 1 Bandes d énergie, semi-conducteurs & paire électron-trou 2 Notion de dopage 3 Jonction PN 4 Interaction rayonnement - matière II Les caméras à transfert de charges (Charge Coupled Device) 1 Historique 2 Domaines d applications 3 Principe de fonctionnement 4 Conversion photons charges 5 Bruit thermique courant d obscurité III Lecture des CCDs 1 Principe 2 Phases 3 Notion d horloges & chronogramme 4 Types de CCDs 5 Notion de binning IV Efficacité quantique à différentes énergies 1 - Définition 2 - Paramètres limitant l efficacité quantique 3 -Techniques pour augmenter l efficacité quantique V La chaîne de lecture des CCDs 1 Etage d amplification de charge (convertion charges - tension) 2 Chaîne anologique 3 Convertisseur anlogique/numérique VI Abberations & Effets sur l imagerie VII Capteurs CMOS VIII Capteurs couleur

I Notions sur les semi-conducteurs 1a Bandes d énergie Considérons un réseau de N atomes identiques placés de façon régulière dans l'espace avec une distance de séparation d. Si d est "grande, chaque atome peut être considéré comme isolé des autres. fonction potentielle éloignée D'après le principe d'exclusion de Pauli, chaque niveau d'énergie permis est occupé par deux électrons de spin opposé et il ne peut accueillir d'autres électrons.

Si d est "petite i.e. de l'ordre de l extension spatiale de la fonction d onde électronique associée à un atome, les fonctions potentielles se chevauchent. Les électrons ne sont alors plus identifiables avec un atome donné, mais appartiennent au cristal. Les électrons d'un atome sont influencés par la présence des autres atomes, il y a une modification des niveaux d'énergie permis. Pour respecter le principe d'exclusion, chaque niveau permis va devoir se scinder en N niveaux discrets pour que chaque électron de la chaîne possède son énergie propre. Si N est très grand, les niveaux d'énergie sont très proches les uns des autres et à la limite ils forment une bande d'énergie. fonction potentielle rapprochée

Bandes d énergie permise et interdite 3d Cas du Sodium

1b Solides isolant, conducteur et semi-conducteur Les phénomènes de transport électrique se produisent dans les bandes supérieures (électrons de valence). Les électrons se trouvant dans les bandes inférieures sont trop liés aux noyaux pour pouvoir se déplacer dans le cristal. Un solide est un isolant lorsque : Sa bande de valence est totalement pleine (bande dite saturée). Sa bande de conduction est totalement vide. E g est telle (plusieurs ev) que ni un champ électrique, ni la température ne peuvent faire passer un électron de la bande de valence à la bande de conduction. Bande de conduction (vide) E g Bande de valence (saturée)

Un solide est un conducteur lorsque : Il existe un chevauchement entre les bandes de valence et de conduction. La bande de conduction est partiellement remplie. A T = 0K, la bande de conduction est remplie jusqu au niveau de Fermi E F.. Bande de conduction E g Chevauchement entre les bandes de conduction et de valence Bande de valence Les semi-conducteurs ont des propriétés électriques intermédiaires entre les isolants et les métaux. Ils sont caractérisés par une bande interdite suffisamment étroite pour qu un électron de la bande de valence excité par l agitation thermique, un champ électrique, l absorption photo-électrique saute dans la bande de conduction.

1c Paire électron-trou Théorème de Ramo-Shockley Supposons que la bande d'énergie soit entièrement remplie. Dans ce cas, le courant I traversant un cristal de longueur L contenant N électrons est alors égal à : I= N e i =1 L V i =0 (12.1) Donc, une bande d'énergie pleine ne conduit pas l'électricité.

Si maintenant dans la bande pleine, il manque un seul électron j, alors on peut écrire : I= N e i =1 L V i ev j L =ev j L avec N i=1 V i =0 La conduction résultant du mouvement de N-1 électrons est équivalente à celle d'une seule particule positive appelée un trou dont la vitesse est celle de l'électron manquant. Lorsqu un électron saute dans la bande de conduction, il laisse derrière lui un vide sur une des liaisons covalentes du cristal. Ce vide correspond alors à un trou. On a formé une paire électron-trou.

Un trou peut être considéré comme un électron absent dans une bande pleine correspondant à une place vide sur une liaison covalente. L'atome qui a perdu l'un de ses électrons de la bande de valence est devenu positif. Sous l'effet de l'agitation thermique, un électron d'une liaison voisine peut passer sur une liaison vide. Le trou se déplace donc d'atome en atome. C'est pour cette raison que l'on peut le considérer comme une particule positive qui se déplace dans le réseau.

La rupture d'une liaison fait apparaître 2 porteurs : un négatif et un positif. C'est la paire électron/trou. Ce phénomène de génération de paire électron/trou est d'autant plus important que la température du cristal est élevée. Lorsqu'un électron quasi-libre passe à proximité d'un trou, il est attiré par celui-ci et peut aller occuper le site vide. Quand le trou disparaît, l'électron redevient un électron de liaison et il restitue l'énergie qu'il avait acquis sous forme d'énergie thermique au cristal. C'est le phénomène de recombinaison.

2 Notion de dopage Dopage des semi-conducteurs du groupe IV Les semi-conducteurs du groupe IV (Si, Ge) sont dopés N par les éléments de la colonne V, et dopés P par les éléments de la colonne III. Énergie d'ionisation (ev) des impuretés dans Si et Ge

2a Type N Dans ce type de semi-conducteurs, le 5 ème électron de l impureté a une énergie de liaison très faible (qq mev). Il est localisé sur l'atome pentavalent uniquement aux très basses températures. A T ~ 300K, cet électron est libéré dans le réseau cristallin. L'atome (dit donneur) a alors une charge positive fixe. A T < 200K, l'énergie thermique n'est plus suffisante pour ioniser toutes les impuretés introduites. Pour une densité de N D atomes donneurs, il existe N D états dans la bande interdite situés à une énergie voisine de E D située dans la bande interdite.

2a Type P Dans ce type de semi-conducteurs, il existe une liaison insatisfaite, localisée sur l'atome introduit. A T ~ 300K, l'énergie thermique est suffisante pour transférer un électron d'un atome de la colonne IV et le fixer sur l impureté. L'impureté a alors une charge négative fixe. L'atome est dit accepteur et un trou a été généré. A T < 200K, l'énergie thermique n'est plus suffisante pour ioniser toutes les impuretés introduites. Pour une densité de N A atomes accepteurs, il existe N A états dans la bande interdite situés à une énergie voisine de E A située dans la bande interdite.

3 Jonction PN Une jonction PN correspond à une transition entre une zone dopée P et une zone dopée N. Considérons une jonction idéale i.e. une jonction PN abrupte (dopage P constant = N A, dopage N constant = N D ) à l'équilibre thermodynamique. P N Imaginons que le semi-conducteur P soit initialement séparé du semi-conducteur N. E g E C E Fn ΔE n Dans le semi-conducteur P, le niveau de Fermi E Fp par rapport à E V se situe à : ΔE p =E F E p V =k B T ln N V N A ΔE p E Fp E V Dans le semi-conducteur N, le niveau de Fermi E Fn par rapport à E C se situe à : ΔE n =E C E F n =k B T ln N C N D

P N Si les deux semi-conducteurs font partie du même réseau cristallin et à l'équilibre thermodynamique les niveaux de Fermi s'alignent i.e. E Fp = E Fn. E C E V E g E Fp ΔE p ev b ΔE n E Fn E g E C Il apparaît une distorsion des bandes d'énergie. La différence entre les 2 bandes de conduction correspond à la variation de l'énergie potentielle de l'électron de conduction. E V Cela se traduit par l'apparition d'une barrière de potentiel : ev b =E g k B T ln N C N V N A N D =k B T ln N A N D n i 2 T (20.3) avec V b, le potentiel de barrière.

Il existe une variation du potentiel en traversant une jonction PN même si la polarisation extérieure est nulle. Les hauteurs de barrière de potentiel sont grandes dans les semiconducteurs à grande bande interdite. Plus les dopages des zones P et N sont grands, plus le potentiel de barrière de la jonction est important. Plus la température augmente, plus le potentiel de barrière de la jonction diminue.

Zone de charge d espace Les électrons majoritaires dans la zone N ont tendance à diffuser dans la zone P, où ils sont minoritaires. Quand un électron arrive dans la zone P, il se recombine avec un trou, et, en disparaissant, il laisse dans la zone N un atome donneur ionisé positivement non compensé électriquement. Les trous majoritaires dans la zone P ont tendance à diffuser dans la zone N où ils sont minoritaires. Quand un trou arrive dans la zone N, il se recombine avec un électron libre, et, en disparaissant, il laisse dans la zone P un atome accepteur ionisé négativement non compensé électriquement. C est le phénomène de diffusion de porteurs.

Pour déterminer les caractéristiques d'une jonction, il faut connaître l'évolution de la densité des charges fixes dans la zone déplétée. Cette dernière étant trop complexe pour être résolue analytiquement, on utilise l hypothèse de Schockley : La densité des charges mobiles (électrons et trous) dans la zone de charge d espace est négligeable devant la densité des charges fixes i.e. il n'y a pas de charges mobiles dans cette zone. C'est l'hypothèse de la zone totalement déplétée de porteurs majoritaires. La zone de charge d espace s'étend : - de -x p à 0 dans la zone P - de 0 à x n dans la zone N ρ V (x) en D -x p + x n - -en A W = x p + x n est l épaisseur de cette zone. A x = -x p, le semi-conducteur passe brutalement de l'état neutre (tous les majoritaires présents) à l'état dépleté (tous les majoritaires absents). A x = x n, le semi-conducteur passe brutalement de l'état dépleté (tous les majoritaires absents) à l'état neutre (tous les majoritaires présents).

Jonction métallurgique E C P Zone neutre - -x p 0 + x n N Zone neutre ev b Au voisinage de la jonction métallurgique, il existe une zone dépourvue de porteurs majoritaires et présentant des charges fixes (atomes d'impuretés ionisés) : c'est la zone de charge d'espace ou encore zone déplétée située entre deux zones neutres. E V E g E Fp ΔE p ΔE n E Fn E C Eg E V Les charges fixes engendrent un champ électrique E(x) qui s'oppose au mouvement de diffusion : champ de rétention de la diffusion. ev b est l'énergie minimale que doit posséder un trou pour aller de la zone P vers la zone N et -ev b est l'énergie minimale que doit posséder un électron pour passer de la zone N vers la zone P.

4 Interactions rayonnement-matière pour les CCDs A - L effet photoélectrique Le photon cède toute son énergie à un électron. Dans le domaine visible, les photons interagissent principalement avec les électrons de valence. Dans le domaine des rayons X, les photons interagissent principalement avec les électrons des couches internes (K, L). Un électron des couches supérieures vient combler le trou produit par l éjection de l électron => émission d un photon X (fluorescence) E e- = E γ - E L

B - Coefficient d atténuation La probabilité qu un photon interagisse sur un parcours infiniment petit dx est : µ dx avec µ le coefficient d atténuation linéïque Coefficient d atténuation (cm -1 ) Silicium La variation du nombre de photons d énergie donnée est : Energie (ev) Longueur d onde (nm) 6,2 0,88 N x =N 0 e μx =N 0 e x λ Silicium avec λ le libre parcours moyen. Dans le domaine d utilisation des CCDs (Si) / E < 20 kev, l interaction prédominante est l effet photoélectrique. Energie (MeV)