Analyse détaillée du phénomène d'induction



Documents pareils
Gènes du développement et structuration de l organisme

AMAMI Anaïs 3 C LORDEL Maryne. Les dons de cellules & de tissus.

Comment Utiliser les Versions, les Modification, les Comparaisons, Dans les Documents

Les cytokines et leurs récepteurs. Laurence Guglielmi

Le Monde des insectes, son importance pour l Homme et l apport de l étude des insectes aux sciences du vivant.

Morphogènes et endocytose

Plateforme Transgenèse/Zootechnie/Exploration Fonctionnelle IBiSA. «Anexplo» Service Transgenèse. Catalogue des prestations

Rôle des acides biliaires dans la régulation de l homéostasie du glucose : implication de FXR dans la cellule bêta-pancréatique

F = B * I * L. Force en Newtons Induction magnétique en teslas Intensité dans le conducteur en ampères Longueur du conducteur en mètres

Navigation dans Windows

First Line and Maintenance in Nonsquamous NSCLC: What Do the Data Tell Us?

LA MITOSE CUEEP - USTL DÉPARTEMENT SCIENCES BAHIJA DELATTRE

DIAPOSITIVE 1 Cette présentation a trait à la réglementation sur les thérapies cellulaires.

Dr E. CHEVRET UE Aperçu général sur l architecture et les fonctions cellulaires

Vieillissement moléculaire et cellulaire

Les OGM. 5 décembre Nicole Mounier

Formation et évolution des organes sensoriels chez les insectes

Consolidation osseuse et biotechnologies État des lieux. Prof. L. GALOIS Centre Hospitalier Universitaire de NANCY

TUTORAT UE Anatomie Correction Séance n 6 Semaine du 11/03/2013

Le rôle de l endocytose dans les processus pathologiques

La maladie de Huntington, une maladie du cerveau

7. Exemples de tests pour détecter les différents troubles de la vision.

IMMUNOLOGIE. La spécificité des immunoglobulines et des récepteurs T. Informations scientifiques

AGASC / BUREAU INFORMATION JEUNESSE Saint Laurent du Var Tel : bij@agasc.fr Word: Les tableaux.

Cerveau & Psycho - N 28

ROTARY INTERNATIONAL District 1780 Rhône-Alpes Mont-Blanc Don volontaire de cellules souches

COUSIN Fabien KERGOURLAY Gilles. 19 octobre de l hôte par les. Master 2 MFA Responsable : UE Incidence des paramètres environnementaux

Chapitre 7: Dynamique des fluides

RÉSOLUTION DE SYSTÈMES À DEUX INCONNUES

ÉCOLES NORMALES SUPÉRIEURES ÉCOLE NATIONALE DES PONTS ET CHAUSSÉES CONCOURS D ADMISSION SESSION 2013 FILIÈRE BCPST COMPOSITION DE BIOLOGIE

TUTORAT UE spé MCF CORRECTION Concours

Commentaires sur les Épreuves de Sciences de la Vie et de la Terre

TITRE PARTIE TITRE SECTION. Faire des anaglyphes avec CatiaV5

STRUCTURE ET FONCTION DES PLURICELLULAIRES

III. Transformation des vitesses

Un ver, 959 cellules et gènes

Les Applications industrielles et commerciales des cellules souches. Inserm Transfert Pôle Création d Entreprises

Bien voir pour bien conduire

Traitement de texte : Quelques rappels de quelques notions de base

SDLV120 - Absorption d'une onde de compression dans un barreau élastique

Pourquoi l apprentissage?

- Le Diagramme de Gantt. - Le Diagramme de Pert - La Méthode QQCQCCP - La Méthode MOSI - Cahier des charges fonctionnel

Rapidolect Les Productions de la Columelle ( ) Page 1

des banques pour la recherche

TP N 3 La composition chimique du vivant

Cytokines & Chimiokines

Hémochromatose génétique non liée à HFE-1 : quand et comment la rechercher? Cécilia Landman 11 décembre 2010

- pellicule de fruits qui a un rôle de prévention contre l'évaporation, le développement de moisissures et l'infection par des parasites

Ce manuel a comme objectif de fournir des informations aux patients et ses familiers à respect du Trait Drepanocytaire.

Date : Tangram en carré page

Thérapies par cellules souches dans la SEP

Consensus Scientifique sur. les. Champs statiques

University of Tokyo Graduate School of Agricultural and Life Sciences et. Kanagawa Academy of Science and Technology

La lutte contre la tuberculose est régie par l arrêté royal du 17 octobre 2002.

TP Détection d intrusion Sommaire

Conception d'un système d'information WEB avec UML Par Ass SERGE KIKOBYA

Les obligations des entreprises multinationales et leurs sociétés membres

Banque Agro-Veto Session 2014 Rapport sur les concours A filière BCPST

1ST2S Biophysiopathologie : Motricité et système nerveux La physiologie neuro-musculaire :

INSUFFISANCE HÉPATIQUE

BADPLUS V5 MANUEL D'UTILISATION. Imports de données joueurs à partir de la base fédérale en ligne Poona. Stéphan KIEFFER - Dominique BOSSERT

Assemblage couleur & trait en InDesign pour fichier Acrobat - 1

LIVRET DE L'ARBITRE DE CLUB. Réalisation Eric FRIN Formateur Labellisé FFBB

Séquence 6. Mais ces espèces pour autant ne sont pas identiques et parfois d ailleurs ne se ressemblent pas vraiment.

DETERMINER LA LARGEUR DE PAGE D'UN SITE et LES RESOLUTIONS d'ecran

Epreuve de biologie... 2 Annexe : Liste des sujets de la session

TABLE DES MATIÈRES I. INTRODUCTION... 3 II. PIANO D'ACCOMPAGNEMENT...

CHAPITRE 3 LA SYNTHESE DES PROTEINES

PRINCIPE MICROSCOPIE CONFOCALE

DIFFRACTion des ondes

Mécanismes moléculaires à l origine des maladies autoimmunes

Section «Maturité fédérale» EXAMENS D'ADMISSION Session de février 2014 RÉCAPITULATIFS DES MATIÈRES EXAMINÉES. Formation visée

Google Drive, le cloud de Google

Escalade durant l'e.p.s. à l'école primaire

La physique nucléaire et ses applications

Dr Pascale Vergne-Salle Service de Rhumatologie, CHU de Limoges. Membre enseignant chercheur EA 4021

Séminaire de gastronomie moléculaire

Chapitre I : le langage UML et le processus unifié

Observation des modalités et performances d'accès à Internet

Les formats de la publicité en ligne

SOMMAIRE. Travailler avec les requêtes... 3

M.S - Direction de la réglementation et du contentieux - BASE DE DONNEES. REFERENCE : B O N 5070 du 2 janvier 2003

BREVET D ÉTUDES PROFESSIONNELLES AGRICOLES SUJET

Mesure de la surface spécifique

1 les caractères des êtres humains.

STÉRÉOISOMÉRIE CONFIGURATIONNELLE STÉRÉOISOMÉRIE OPTIQUE COMPOSÉS OPTIQUEMENT ACTIFS À UN SEUL CARBONE ASYMÉTRIQUE

LE CONTROLE DE GESTION DANS L'ASSURANCE : UNE REHABILITATION VITALE EN TUNISIE

Infolettre #18 : Les graphiques avec Excel 2010

Armand Paré, MBA Hertel, Sherbrooke, QC, J1L 1E1 Courrier électronique: Téléphone et Fax. (819)

Manuel de l ergonomie au bureau

AU DELA DU TEST 3 vers les nages codifiées, le sauvetage, la natation synchronisée

Cellules procaryotes Service histologie Pr.k.mebarek

Installation du SLIS 4.1

Tuberculose bovine. Situation actuelle

Projet Pédagogique Conférence interactive HUBERT REEVES Vendredi 13 mars H

Prise en main du logiciel. Smart BOARD Notebook 10

Transcription:

Analyse détaillée du phénomène d'induction Formation de l'oeil Comme il a été mentionné précédemment, les expériences d'embryologie expérimentale de Spemann (transplantation de la lèvre du blastopore des amphibiens) ont mené à la découverte du phénomène d'induction embryonnaire, et donc de l'importance de la communication entre cellules et tissus au cours du développement. Les effets observés après cette transplantation sont complexes puisqu ils impliquent une cascade d évènements s enchaînant les uns derrière les autres pour finalement aboutir à la formation d'un embryon ectopique complet. En fait, Spemann avait analysé ce processus d'induction sur un modèle expérimental plus simple, la formation du cristallin de l'oeil. Et c est en observant ce processus developpemental qu il avait formalisé sa théorie de l induction embryonnaire. Description de la formation de l'oeil chez l'embryon La formation du cristallin se fait à partir d'un épaississement (placode) de l'ectoderme de la tête. Proximité de la vésicule optique (extension latérale du cerveau antérieur) et du cristallin. Transformation de la vésicule optique en rétine neurale et rétine pigmentée. A la fin du XIX è siècle, Spemann, ainsi que d'autres embryologistes avaient observé que chez des embryons nés (naturellement) cyclopes, une rétine centrale était associée à un cristallin. La formation d'une rétine ectopique était donc associée à la formation ectopique d'un cristallin. L'idée a donc germé que la rétine serait responsable de l'induction du cristallin. Des expériences de transplantations et extirpations de ces différents tissus ont ensuite pu démontrer que la vésicule optique est en effet nécessaire à la formation du cristallin.

Ces mêmes expériences démontrent que la vésicule optique n'est pas suffisante pour induire la formation d'un cristallin ectopique n'importe où dans l'embryon. Seul l'ectoderme de la tête répond à l'induction de la vésicule optique. Cet ectoderme est donc compétent à répondre au signal de la vésicule optique. Inversément, on voit que d'autres tissus que la vésicule optique ne possèdent pas ce pouvoir d'induction. Donc notion de régionalisation de la compétence. On peut analyser de manière expérimentale le phénomène d'induction du cristallin chez le Xénope. Les résultats de ces expériences sont résumés sur le schéma ci-dessous. A) Au moment de la gastrulation, tout l ectoderme du pôle animal est compétent à se transformer en cristallin, s il est exposé à des signaux appropriés. L'expérience consiste à découper la région dorsale de l'embryon au stade blastula (la calotte animale) et à l'exposer, en culture, à divers inducteurs potentiels. En fait, cet ectoderme du pôle animal est successivement compétent à se transformer en mésoderme, tissu neural, cristallin, quand il est exposé à des signaux distincts. La période de compétence à se transformer en cristallin est courte (qques heures). Ceci est également une règle du phénomène d'induction: il y a une fenêtre de temps pendant laquelle celle-ci peut se produire. B) Au stade neurula, cette induction n est pas encore terminée; toutefois, on peut démontrer qu une large portion de l ectoderme de la tête à une tendance à se transformer en cristallin (toujours le test d'explants en culture), en ce sens que des signaux faibles parviennent à le transformer en cristallin, alors qu il faut des signaux forts pour transformer un ectoderme de pôle animal en cristallin. C) Au moment de la fermeture du tube neural, une portion restreinte de l ectoderme de la tête est spécifiée à se transformer en cristallin. Spécification, veut dire qu on peut démontrer expérimentalement que cet ectoderme en isolation (càd en culture) a la propriété de se transformer en cristallin (quoique mal formé et petit) de manière autonome. A ce moment, les protubérances latérales du cerveau antérieur (qui donneront les vésicules optiques) commencent à peine à se rapprocher de l ectoderme de la tête. Plus tard seulement commence l étape de croissance et différenciation du cristallin, qui continuera pendant une bonne partie de la vie embryonnaire. On voit donc que la spécification du cristallin se produit avant même que la vésicule optique n ait rejoint l ectoderme de la tête. Ainsi, la spécification du cristallin semble en grande partie indépendante de la vésicule optique. Par contre, on peut

démontrer que la croissance et la différenciation du cristallin semblent entièrement dépendantes de la présence de la vésicule optique. Nous voyons ainsi de manière expérimentale que la formation du cristallin est un processus que l'on peut décomposer en plusieurs étapes successives dont chacune a son importance dans la formation des structures. 1) Une période où la compétence à former un cristallin se met en place dsans l'ectoderme de la mid-gastrula. 2) L'acquisition par l'ectoderme d'une tendance / biais à former un cristallin au début de la neurulation 3) La spécification de l'ectoderme à un destin "cristallin" en fin de neurulation 4) Une phase de différenciation et croissance du cristallin qui s'installe ensuite, pour perdurer toute la vie. Un niveau supplémentaire de complexité peut être observé au cours de la formation de l'oeil. C'est le fait que le cristallin en formation (en fait la placode optique) est elle aussi la source d'un inducteur agissant sur la vésicule optique elle-même. La placode est importante pour que la vésicule optique se transforme en coupe à deux feuillets dont l'un est la rétine neurale, l'autre la rétine pigmentée. On voit ainsi un phénomène d'induction réciproque de tissus l'un sur l'autre. Conclusion sur le phénomène d'induction Importance de l'aspect temporel et régional du phénomène d'induction (càd: i) la fenêtre de temps pendant laquelle un tissu est compétent à répondre est réduite et ii) une région d'un tissu peut être compétente à répondre, alors qu'une autre région ne l'est pas. Un aspect primordial du phénomène d'induction est donc le contexte cellulaire dans lequel elle se produit, qui correspond à "l'état" dans lequel un tissu est apte à répondre à un ou des signaux particuliers. Avantage d'un tel système: on peut utiliser les mêmes signaux à plusieurs reprises et avoir des résultats différents, puisque le contexte cellulaire est différent.

Les molécules impliquées dans le phénomène d'induction Plusieurs signaux ont été identifiés récemment qui jouent de multiples fonctions à différents moments du développement. Depuis plus de vingt ans que les chercheurs essayent de comprendre comment cet organe se forme, plusieurs gènes jouant un rôle crucial au cours de son développement ont été identifiés. Parmi ceux-ci, les facteurs de transcription Rx et Pax6. L'absence de Rx comme de Pax6 entraîne l'absence des yeux chez les animaux. Ces gènes sont exprimés au cours du développement (expérience d'hybridation in situ, qui met en évidence les cellules/tissus qui expriment l'arn codant pour un gène) dans une région antérieure continue de la plaque neurale et non dans deux champs distincts droite et gauche correspondant aux deux yeux futurs. Rx Expression de Xrx dans la partie antérieure de la plaque neurale chez le Xénope KO de Rx chez la souris. Le KO de Rx chez la souris entraîne l'anophthalmie de ces mutants (càd pas d'yeux). Chez ces mutants, la vésicule optique ne se forme pas. Chez les humains, l'absence de Rx conduit à la même anomalie, que l'on appella anophthalmie. L'anophtalmie est le défaut des yeux le plus fréquents chez l'homme et la cause principale de la cécité.

Pax6 Expression de Xpax6 dans la partie antérieure de la plaque neurale chez le Xénope Mutant rat pour le gène Pax6: pas d'yeux, mais également des malformations importantes de la face (montrant que Pax6 a des rôles multiples au cours du développement de la tête. Pax6 a été énormément étudié depuis sa découverte il y a dix ans. On a pu montrer que Pax6 est exprimé non seulement aux étapes précoces du développement (comme montré chez le Xénope, mais également plus tard. Par exemple, il est exprimé par la placode de l'oeil et par la vésicule optique. On a pu montrer par des expériences de recombinaison de tissus (recombiner des tissus mutants avec des tissus WT) que l'expression dans la placode est essentielle à la formation du cristallin.

Malgré leur importance primordiale, Pax6 et Rx ne peuvent pas être les facteurs inducteurs de la formation du cristallin (puisque ce sont des facteurs de transcription, non secrétés). Il a été montré depuis peu que des facteurs secrétés de la famille des Fibroblast Growth Factor (FGF- et Bone Morphogenic Protein (BMP) jouent un rôle dans ce processus en amont de l'activité de Pax6. De nombreux autres acteurs moléculaires en aval de Pax6 ont également été identifiés. Il est probable que ces facteurs soient responsables de l'induction du cristallin par la vésicule optique. Séparation des yeux au cours du développement.

Revenons aux patrons d'expression des gènes Rx et Pax6: quelle est la signification de ces patrons d'expression? La première chose constatée est qu'au cours du développement embryonnaire des vertébrés, l'expression de ces gènes se séparent en deux champs latéraux (séparation au stade 5). A ce moment, le mésoderme préchordal se positionne sous cette région. Qu'est-ce que le mésoderme préchordal (v. schéma). Le mésoderme préchordal est situé sur la ligne médiane, antérieurement à la notochorde. Chez les vertébrés, la notochorde ne va pas jusqu'au bout antérieur du corps, elle s'arrête au milieu du cerveau antérieur. Le mésoderme préchordal, lui, prend la place de la notochorde dans cette région antérieure. Les dérivés du mésoderme préchordal sont peu nombreux (quelques muscles occulomoteurs). Par contre, son rôle est tout à fait primordial au cours du développement.

L'hypothèse est donc que ce mésoderme préchordal est responsable de la séparation de cette zone centrale en deux champs latéraux. Expérience d'extirpation du mésoderme préchordal. Le résultat de ces expériences est la formation d'une vésicule optique centrale, l'expression de Pax6 est elle également mal séparée. Un oeil fusionné se forme alors (cyclope). On démontre ainsi de manière expérimentale que le mésoderme préchordal est responsable de la séparation en deux champs latéraux; il contribue donc à réprimer cette propention à former un oeil dans la région centrale. Bien que ces expériences soient intéressantes, elles ne désignent pas le ou la molécule, produite par le mésoderme préchordal, et responsable de cet effet de répression centrale. L'idéntité de cette molécule a été découverte. Il s'agit de Sonic Hedgehog, Chez l'homme, la mutation de Shh entraîne une holoprosencéphalie et diverses malformations de la face (1/16000 naissances, 1/250 conceptus!). On peut donc bien dire que c'est grâce à Shh que nous ne sommes pas cyclopes! Sonic Hedgehog, Identifié comme l'homologue vertébré de la molécule Droso appelée Hedgehog. Hedgehog est une molécule secrétée. Le mutant Hedgehog de Droso présente des défauts de patron d'implantation des poils de la cuticule. On a appelé ces mutants des mutants de polarité segmentaire.

Plusieurs homologues vertébrés ont ensuité été isolés; ils ont nom Idian, Desert et Sonic Hedgehog. Sonic Hedgehog est sans doute une des molécules les plus étudiées depuis 7 ans. Patron d expression de Shh chez l oiseau: Il est exprimé de manière asymétrique dans le Noeud de Hensen (gastrulation). A ce niveau, il joue un rôle important dans la mise en place de l'asymétrie droite-gauche de l'embryon des vertébrés (c'est à dire le fait que notre coeur pointe vers la gauche, le foie est à droite, ). Au niveau des membres antérieurs et postérieurs il est fortement exprimé (à la marge postérieure du membre). A cet endroit, il est responsable de la mise en place de l'axe antéro-postérieur du membre (càd le fait que le petit doigt

est différent du pouce). La notochorde et la plaque du plancher expriment fortement ce gène. Dans le système nerveux il est responsable de la polarité DV de ce tissu. S'il est inactivé, les structures ventrales du tube nerveux (par exemple les motoneurones) sont absents. Finalement, on voit encore son expression forte dans les bourgeons des plumes de l'embryon d'oiseau. Ici, il joue également un rôle dans la mise en place de la forme des plumes.. On voit donc que, dans des contextes cellulaires différents, cette molécule à des effets complètement distincts. Le contexte cellulaire, cet état particulier qui rend la cellule apte à répondre à certains signaux et pas à d'autres est lui même issu de l'historique développemental de la cellule (voir tableau sur la spécificité cellulaire). Ceci s'appelle la pléiotropie. Pour qu'un tissu puisse répondre à un signal, tel que Shh, il est évident que ce tissu doit exprimer la machinerie moléculaire / voie de signalisation lui permettant de comprendre ce signal. Voie de signalisation de SHH Structure de la molécule: protéine secrétée, clivée. Liaison covalente post-traductionnelle au cholestérol. L'addition du cholestérol est importante pour l'activité de Shh. Bien que cette modification indique que SHH devrait être associé à la membrane cellulaire externe, il semble en fait que (par un mécanisme inconnu) une certaine quantité de Shh modifié est secrétée dans le milieu extracellulaire. Cette secrétion permet à Shh d'agir à longue distance, alors que sa forme associée à la membrane semble importante pour son activité à courte distance. Shh se lie à son récepteur Patched. Les évidences génétiques accumulées chez la Droso indiquent que Patched n'est sans doute pas le seul intervenant membranaire. Une autre molécule, Smoothened, semble elle aussi jouer un rôle important. Smoothened est une molécule de la super-famille des récepteurs à 7 domaines transmembranaires associés au G-protéines. En l'absence de Shh, Ptc inhibe l'activité de Smo. (Ceci veut aussi dire que chez un mutant Ptc, la voie est activée de manière constitutive). La liaison de Shh lève cette inhibition, ce qui entraîne l'activation de la voie de signalisation en aval de Smo, où on retrouve notamment les effecteurs Gli (Glioma) appelé Cubitus Interruptus chez la Droso. Le complexe active in fine la transcription de gènes cibles, où on retrouve Patched, le récepteur de Shh lui-même. Grâce au feedback de Shh sur la transcription de Ptc, on voit que l'augmentation de la production de Ptc autour de la source de Shh va sequestrer Shh (càd l'empêcher de diffuser loin de la source de production) et limitera donc son champ d'action. Etant donné cette voie de signalisation, on peut émettre l'hypothèse que si différents membres de cette voie de signalisation sont mutés, on peut obtenir le même genre de résultat. C'est ce qui est le cas:

Chiang C, Litingtung Y, Lee E, Young KE, Corden JL, Westphal H, Beachy PA. (1996). Cyclopia and defective axial patterning in mice lacking Sonic hedgehog gene function. Nature.383:407-13. Roessler E, Belloni E, Gaudenz K, Jay P, Berta P, Scherer SW, Tsui LC, Muenke M (1996) Mutations in the human Sonic Hedgehog gene cause holoprosencephaly. Nat Genet.14:357-60. Ming JE, Kaupas ME, Roessler E, Brunner HG, Golabi M, Tekin M, Stratton RF, Sujansky E, Bale SJ, Muenke M. (2002) Mutations in PATCHED-1, the receptor for SONIC HEDGEHOG, are associated with holoprosencephaly. Hum Genet. 110:297-301. Roessler E, Du YZ, Mullor JL, Casas E, Allen WP, Gillessen- Kaesbach G, Roeder ER, Ming JE, Ruiz i Altaba A, Muenke M (2003). Loss-of-function mutations in the human GLI2 gene are associated with pituitary anomalies and holoprosencephaly-like features. Proc Natl Acad Sci U S A 100:13424-9. Cooper MK, Porter JA, Young KE, Beachy PA. (1998) Teratogenmediated inhibition of target tissue response to Shh signaling. Science. 280:1603-7. Cyclopamine is a teratogenic steroidal alkaloid that causes cyclopia by blocking Sonic hedgehog (Shh) signal transduction.