REVUE DES SYSTEMES SOLAIRES PHOTOVOLTAIQUES



Documents pareils
Notions de base sur l énergie solaire photovoltaïque

Panneaux solaires. cette page ne traite pas la partie mécanique (portique, orientation,...) mais uniquement la partie électrique

Eléments constitutifs et synthèse des convertisseurs statiques. Convertisseur statique CVS. K à séquences convenables. Source d'entrée S1

Synthèse des convertisseurs statiques DC/AC pour les systèmes photovoltaïques

Formation Bâtiment durable-energie Cycle 2013

L exploitation des énergies renouvelables, en particulier de celle issue de l astre

KIT SOLAIRE EVOLUTIF DE BASE

H E L I O S - S T E N H Y

Batteries. Choix judicieux, résultats performants

GUIDE PRATIQUE. Installations photovoltaïques raccordées au réseau public de distribution

Manuel d'utilisation de la maquette

Écologique et autonome

PRODUCTION, CONVERSION OU DISTRIBUTION DE L ÉNERGIE ÉLECTRIQUE

solutions sun2live TM

La Recherche du Point Optimum de Fonctionnement d un Générateur Photovoltaïque en Utilisant les Réseaux NEURO-FLOUS

Article sur les caractéristiques assignées du neutre dans l'ue

REGULATEUR E'ECLAIRAGE SOLARIE MANUEL D UTILISATION MODELES SUNLIGHT TRAITES DANS LE MANUEL

CONVERTISSEUR DC-AC PUR SINUS

Système ASC unitaire triphasé. PowerScale kva Maximisez votre disponibilité avec PowerScale

La voiture électrique. Cliquez pour modifier le style des sous-titres du masque

Spécifications techniques relatives à la protection des personnes et des biens dans les installations photovoltaïques raccordées au réseau

Origine du courant électrique Constitution d un atome

En recherche, simuler des expériences : Trop coûteuses Trop dangereuses Trop longues Impossibles

L électricité hors-réseau

SOLUTIONS TECHNOLOGIQUES D AVENIR

GOL-MPPT- 24V-10A GOL-MPPT- 12V-15A

Références pour la commande

Énergies renouvelables efficaces économiques durables

Article sur l énergie solaire Photovoltaïque

Séverine Marien Maxime Ringard. 2 ème année GEII. Régulateur de charge pour station de recharge photovoltaïque

Chapitre P Les installations photovoltaïques

VITODATA VITOCOM. bien plus que la chaleur. Télésurveillance et télégestion d installations de chauffage par Internet. Internet TeleControl

Guide de planification SMA FLEXIBLE STORAGE SYSTEM AVEC FONCTION DE COURANT DE SECOURS

Varset Direct. Batteries fixes de condensateurs basse tension Coffrets et armoires. Notice d utilisation. Armoire A2

ELEC2753 Electrotechnique examen du 11/06/2012

Programme-cadre et détail du programme des examens relatifs aux modules des cours de technologie, théorie professionnelle

Systèmes de pompage à énergie solaire

Convertisseurs statiques d'énergie électrique

Le transistor bipolaire

CHAÎNES ÉNERGÉTIQUES I CHAÎNES ÉNERGÉTIQUES. II PUISSANCE ET ÉNERGIE

Etude de faisabilité technico-économique de la filière photovoltaïque raccordée réseau au Sénégal

La solution éco performante pour la sécurisation de l alimentation électrique des Datacenters à haut niveau de disponibilité

Contribution à la conception par la simulation en électronique de puissance : application à l onduleur basse tension

Introduction à l électronique de puissance Synthèse des convertisseurs statiques. Lycée Richelieu TSI 1 Année scolaire Sébastien GERGADIER

Études et Réalisation Génie Électrique

Cours d électricité. Circuits électriques en courant constant. Mathieu Bardoux. 1 re année

Plateforme Photovoltaïque innovante

UTILISATION DE L ENERGIE SOLAIRE EN AFRIQUE

LES SYSTEMES PHOTOVOLTAÏQUES (ER 05)

Production d énergie électrique : ENERGIE SOLAIRE PHOTOVOLTAIQUE

L énergie sous toutes ses formes : définitions

Unités de mesure de l énergie Septembre 2009

Cahier technique n 129

Saft, Conergy et Tenesol lancent SOLION, le plus grand projet européen de développement de stockage d énergie photovoltaïque

Electricité et mise à la terre

ONDULEUR SMART-GRID AUTO-CONSOMMATION NOUVELLE GÉNÉRATION

Energie et conversions d énergie

AP 160LCD ONDULEUR RÉSEAUX LOCAUX (LAN) SERVEURS CENTRES DE TRAITEMENT DES DONNÉES

INSTALLATIONS SOLAIRES PHOTOVOLTAÏQUES AUTONOMES

Solutions pour la mesure. de courant et d énergie

Guide d application technique Correction du Facteur de Puissance. Solution en Compensation Facteur de puissance

LE TOTEM SOLAIRE AUTONOME MULTI-USAGE. Nous amenons de l énergie pour vos applications, partout où brille le soleil.

DimNet Gradateurs Numériques Evolués Compulite. CompuDim 2000

III Capteurs et actuateurs

RAPPORT COMPLET D'ETUDE DUALSYS

Autoconsommation en photovoltaïque Principe et intérêt

RELAIS STATIQUE. Tension commutée

Notions fondamentales sur le démarrage des moteurs

Sunny Family 2008/2009

Adaptabilité et flexibilité d une station de charge pour véhicules électriques

Multichronomètre SA10 Présentation générale

SYSTEMES DE TRANSFERT STATIQUE: CEI 62310, UNE NOUVELLE NORME POUR GARANTIR LES PERFORMANCES ET LA SÉCURITÉ


REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE MINISTERE DE L ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE

Ecologie Economie d Energie

SI SERIES. Manuel d'utilisation et de montage. Onduleur sinusoïdal STUDER INNOTEC

Notice de montage et d utilisation

Circuits intégrés micro-ondes

stockage électrique, le besoin de lisser la production et la nécessité de modifier les réseaux de transport de l électricité, d où le développement

ONDULEURS TRIPHASÉS SMARTONLINE

2.0. Ballon de stockage : Marque : Modèle : Capacité : L. Lien vers la documentation technique :

REGULATION DE LA CHARGE D'UNE BATTERIE SUR PANNEAU SOLAIRE. Projet de Physique P6 STPI/P6/ Etudiants : Thibaut PIQUIN

MESURE DE LA TEMPERATURE

NOTIONS FONDAMENTALES SUR LES ENERGIES

Gestion et entretien des Installations Electriques BT

Gestion moteur véhicules légers

Protect 5.31 Sortie monophasée 10kVA 120kVA Protect 5.33 Sortie triphasée 25kVA 120kVA. Alimentations Statique Sans Interruption

L offre DualSun pour l eau chaude et le chauffage (SSC)

Les Rencontres Scientifiques Colas

Systèmes solaires et éoliens indépendants du réseau

Pompe solaire Lorentz immergée Unité de pompage à centrifuge

Technologies. Monoblocs / Traction. Présentation de la gamme. » Quand Innovante rime avec Endurante «

Université de Technologie de Belfort-Montbéliard École doctorale SPIM «Sciences pour l ingénieur et microtechniques» THÈSE.


Que sont les sources d énergie renouvelable?

Cahier technique n 196

Acquisition et conditionnement de l information Les capteurs

Aiguilleurs de courant intégrés monolithiquement sur silicium et leurs associations pour des applications de conversion d'énergie

BATTERIES DE SECOURS POUR CENTRAL D ALARME ET DE MESURE BAT KIT NOTICE D INSTALLATION. BATKIT_MAN01_FR Ver. V1R1

Présentation du projet

Transcription:

REVUE DES SYSTEMES SOLAIRES PHOTOVOLTAIQUES Mamadou Lamine Doumbia*, Kodjo Agbossou*, Abdoulaye Traoré** * Université du Québec Département de génie électrique et de génie informatique 3351 boul. des Forges Trois-Rivières (Québec) Canada G9A 5H7 Email de correspondance: Mamadou.doumbia@uqtr. ** École Nationale d Ingénieurs 410 Avenue Van Vollenhoven, B. P 242, Bamako, Mali 1. Introduction Depuis la fin des années 1990, le marché du solaire photovoltaïque connaît une croissance très rapide, plus de 30% par an. Ce regain d intérêt pour le photovoltaïque, et en général envers les énergies renouvelables, est dû à la prise de conscience mondiale qui débouche sur la nécessité de revoir les politiques énergétiques pour lutter contre les émissions de gaz à effet de serre et pour prévenir une pénurie énergétique majeure. Les hausses récentes du prix du pétrole attestent ce fait : l énergie est plus que jamais un enjeu majeur des sociétés modernes. Les installations photovoltaïques connectées aux réseaux électriques sont de plus en plus en fréquentes dans les pays industrialisés, grâce à des incitations financières ou mesures de défislisation. D autre part, on estime qu actuellement, plus de deux milliards de personnes ne sont pas reliées à un réseau électrique [1] et ne le seront pas dans un avenir proche à use de questions de rentabilité liées à l éloignement, à la faible densité de population ou à la pauvreté. Pour ces populations, les systèmes photovoltaïques autonomes peuvent jouer un rôle très important en apportant une solution pour couvrir les besoins de base en électricité. Dans un pays comme le Mali, où le soleil brille en abondance et où l'on trouve une vaste population rurale sans l'infrastructure nécessaire pour se doter d un réseau d'électricité, les systèmes photovoltaïques présentent un attrait certain. Ils sont évolutifs et donc adaptables aux nouveaux besoins; ils peuvent produire de l'électricité à l'endroit même où on en a besoin; ils n exigent qu un entretien minimal; ils ne polluent pas. Ils conviennent particulièrement bien aux besoins élémentaires des communautés rurales : éclairage domestique, alimentation en énergie des centres de santé ou d autres services publics, pompage et purifition de l eau, etc. Cependant, cette technologie exige un investissement initial élevé. Aussi, le rendement de conversion photoélectrique reste faible. Cet article présente une revue des technologies solaires photovoltaïques. Une classifition des installations est effectuée. Les principales composantes des systèmes autonomes et systèmes connectés au réseau électrique, sont décrites et comparées. 2. Classifition Les systèmes photovoltaïques peuvent être divisés en deux tégories (Figure 1) : les installations autonomes «Stand-Alone Systems» et les installations connectées au réseau électrique «Grid-Connected Systems». Les systèmes autonomes peuvent être sans stockage (fonctionnement au fil du soleil) ou avec stockage d énergie. L élément de stockage (batteries) ou la source secondaire fait correspondre la production à la demande. En général, les batteries de stockage requièrent un régulateur qui gère leur état de charge. Ainsi, un système 141 MSAS'2008

photovoltaïque autonome classique avec stockage, est composé d un ou plusieurs modules connectés généralement en parallèle, d un régulateur, de batteries et de charges. Pour des raisons de simplicité, les charges peuvent être alimentées en courant continu (cc). Cependant, lorsque les charges exigent une alimentation en courant alternatif (), un onduleur est utilisé pour assurer la conversion du courant continu (cc) en courant alternatif (). Quant aux systèmes photovoltaïques connectés sur le réseau électrique, ils utilisent le réseau public d électricité comme élément de stockage en y renvoyant le surplus d énergie. Ces installations sont généralement composées : d un ou plusieurs modules connectés en série et en parallèle, d un onduleur, d un régulateur, de batteries, de disjoncteurs cc et de protection et de charges. Systèmes photovoltaïques Installations autonomes Installations connectées au réseau électrique sans stockage avec stockage hybrides connexion directe connexion à travers un réseau résidentiel applitions cc génératrice diesel applitions éolienne Figure 1 : Classifition des systèmes photovoltaïques 3. Modules photovoltaïques Les modules photovoltaïques peuvent être classifiés selon le type de cellules ou de matériau d enpsulation. En général, les cellules sont faits de silicium cristallin ou de silicium amorphe. La technologie du silicium cristallin représente environ 85% du marché. Cette technologie se subdivise en deux sousfilières : le silicium monocristallin et le silicium polycristallin (ou multicristallin). Elles sont différenciées par le procédé d obtention du cristal. Les modules en silicium amorphe ont une apparence uniforme (ils ne sont pas découpés en petites cellules comme le cristallin). Il est possible de donner un aspect semitransparent en ménageant des petites rayures entre les bandes de silicium. Un module photovoltaïque est composé de cellules (photopiles) connectées en série et en parallèle. La mise en série des cellules (Figure 2) permet d obtenir la tension nécessaire au fonctionnement du module. Ainsi, on utilise généralement des modules qui comportent 32 à 44 cellules pour alimenter les batteries de 12V. Une tension d environ 17V est mesurée aux bornes du module afin de tenir compte de la chute de tension dans les conducteurs de câblage. La mise en parallèle (Figure 3) permet d augmenter le courant produit par le module. MSAS'2008 142

La puissance générée par les modules dépend de l ensoleillement et de la température. Lors du fonctionnement du système photovoltaïque, la puissance générée par un module, est généralement différente (inférieure) de la puissance spécifiée sur la fiche technique du fabrint. La puissance indiquée par le fabrint correspond aux conditions «Standard Test Conditions» (STC) d ensoleillement G=1000 W/m 2, de température T= 25 C et de densité de l air AM=1.5. Ces conditions sont établies par la norme 60904 de la Commission électrotechnique internationale (CEI). La CEI est une organisation mondiale qui a pour objet de favoriser la coopération internationale pour toutes les questions de normalisation dans les domaines de l'électricité et de l'électronique. La Norme internationale CEI 60904 a été élaborée par le comité d'études 82: Systèmes de conversion photovoltaïque de l énergie solaire. Figure 2 : Caractéristiques courant-tension de cellules connectées en série [2] Figure 3 : Caractéristiques courant-tension de cellules connectées en parallèle [2] 4. s En général, le stockage de l énergie dans les systèmes photovoltaïques autonomes est assuré par des batteries. Dans ces systèmes, le stockage de l énergie représente environ 15% des investissements initiaux, sur une durée d exploitation de 20 ans, ce coût peut atteindre 50% des frais totaux, r il faut remplacer les batteries plusieurs fois. Les batteries utilisées dans les installations autonomes sont en général de type plombacide (Pb). Les batteries dmium-nickel sont de moins en moins utilisées à use de leur prix plus élevé et la présence du dmium qui est toxique. Elles sont de plus en plus remplacées par des batteries nickel-metalhydrure (NiMH). 4.1 au plomb Ce type de batterie comprend deux électrodes de plomb et d oxyde de plomb qui sont plongées dans un électrolyte. L électrolyte, constitué d acide sulfurique dilué dans de l eau distillée est un excellent transporteur d ions. En reliant les deux électrodes à un récepteur externe consommant du courant, elles se transforment en sulfate de plomb et l acide se dilue. En fournissant un courant inverse au système, l acide se concentre et les deux électrodes reviennent à leurs états initiaux. La charge et la décharge sont représentées par les équations chimiques suivantes : PbO2 + 2 H 2SO4 + Pb 2PbSO4 + 2H 2O A l électrode négative (thode) : Pb + H 2SO4 PbSO4+ 2H + 2e A l électrode positive (anode) : + PbO + H SO + 2H + 2e PbSO + 2H O + 2 2 4 4 2 Chaque cellule de batterie fournit une tension moyenne de 2V. On assemble en série/parallèle le nombre d éléments nécessaires pour obtenir la tension et le courant désirés. La pacité nominale de la 143 MSAS'2008

batterie est la quantité d ampère-heure (Ah) qui peut être extraite en un temps donné. L état de charge «State of» (SOC) est la quantité d électricité encore disponible en Ah divisée par la pacité nominale de la batterie. L état de charge est égal à 1 si la batterie est pleine, et il égal à zéro, si la batterie est vide. 4.2 au nickel-metal-hydrure Cette batterie remplace de plus en plus la batterie NiCd (nickel-dmium) qui est surtout utilisée dans les appareils portables et dans des applitions particulières (sites d accès difficile, montagnes, désert, etc.) demandant des batteries de très longue durée de vie (15 à 20 ans). Les batteries au NiMH sont plus chères que celles au plomb. 4.3 au lithium Les principaux avantages du lithium sont sa haute densité énergétique et son rendement de stockage. Les désavantages principaux sont la fragilité et le danger de destruction en s de fonctionnement en dehors des conditions strictes (température et tension). A use de sa complexité et de sa nouveauté, cette technologie doit encore faire ses preuves. 5. Régulateurs de charge Le régulateur est un élément important d un système photovoltaïque. Il contrôle le flux d énergie et protège la batterie contre les surcharges et décharges profondes. On distingue trois types : les régulateurs shunt, les régulateurs série et les régulateurs à recherche de point de puissance maximum «Maximum Power Point Tracking» (MPPT). 5.1 Régulateur shunt Ce type de régulateur est le plus répandu. Durant la charge, le courant du panneau solaire est envoyé à la batterie (Figure 4). Lorsque la batterie atteint sa pleine charge, le courant passe par l interrupteur de puissance (transistor bipolaire ou MOSFET). Une diode est placée entre cet interrupteur et la batterie pour ne pas court-circuiter la batterie. Cette diode joue également le rôle de bloge du courant inverse pouvant circuler de la batterie vers le panneau. Panneau solaire Régulateur Figure 4 : Régulateur shunt 5.2 Régulateur série Ce régulateur est de plus en plus populaire. Dans son circuit, l interrupteur de charge est placé en série avec la batterie et s ouvre lorsque la fin de charge est atteinte (Figure 5). L avantage de cette configuration est que la tension aux bornes de l interrupteur est plus faible (réduite de la tension de la batterie). Le désavantage par rapport au régulateur shunt est que la chute de tension due à la résistance de l interrupteur s ajoute à la chute de tension supplémentaire dans le câblage entre les panneaux et la batterie. Panneau solaire Régulateur Figure 5 : Régulateur série 5.3 Régulateur MPPT Dans ce régulateur (Figure 6), un circuit mesure en permanence la tension et le courant du panneau pour extraire l énergie au point de puissance maximale. Ainsi, on peut obtenir un fonctionnement à puissance MSAS'2008 144

maximale quels que soient la température et l ensoleillement. Cette technique est surtout recommandée pour les systèmes de plusieurs centaines de watts pour que le gain d énergie compense le coût plus élevé du régulateur [3]. Panneau solaire Convertisseur cc-cc Régulateur MPPT de l inductance s inverse, ce qui fait conduire la diode qui protège l interrupteur. + _ Inductance Condensateur Figure 7 : Hacheur élévateur Inductance Figure 6 : Régulateur MPPT 6. Convertisseurs Les convertisseurs sont des dispositifs électroniques de puissance qui transforment la tension continue fournie par les panneaux ou les batteries pour l adapter à des charges (appareils) fonctionnant, soit à une tension continue différente, soit à une tension alternative. 6.1 Convertisseurs cc On distingue les convertisseurs type hacheur élévateur «Boost Converter» et ceux de type hacheur abaisseur «Buck Converter». A) Hacheur élévateur Ce type de convertisseur (Figure 7) produit une tension de sortie plus élevée que la tension d entrée. Lorsque l interrupteur est fermé, l inductance se charge ; lorsque l interrupteur s ouvre, l énergie de la batterie et celle emmagasinée dans l inductance, sont transmises à la charge. Le condensateur sert à lisser la tension de sortie. B) Hacheur abaisseur Ce type de convertisseur (Figure 8) sert à produire une tension de sortie plus basse que celle des batteries. Lorsque l interrupteur est fermé, le courant circule de la batterie vers le récepteur à travers l inductance, lorsque l interrupteur s ouvre, la tension aux bornes + _ Condensateur Figure 8 : Hacheur abaisseur 6.2 Onduleurs autonomes Lorsque les charges (appareils) alimentées sont en courant alternatif (), il faut intégrer un onduleur au système photovoltaïque. L onduleur convertit la sortie cc du champ photovoltaïque ou des batteries en électricité standard, semblable à ce que fournissent les services publics. Il existe trois types d onduleurs autonomes qui se distinguent par l onde de sortie qu ils produisent. Cette onde peut être : rrée, pseudo-sinusoïdale et sinusoïdale pure. A) Onduleur à onde rrée L onduleur à onde rrée est la plus simple. Il est peu coûteux et effectue simplement la commutation de l entrée cc en une sortie «rrée». Le signal rré généré contient des harmoniques susceptibles de user l échauffement des charges. Ce type d onduleur convient aux petites charges de chauffage par effet Joule et aux systèmes d éclairage pour lesquels on ne peut utiliser de matériel cc. 145 MSAS'2008

B) Onduleur à onde pseudo-sinusoïdale L onduleur à onde pseudo-sinusoïdale produit des séquences de tension positive et négative avec des passages par zéro qui réduisent les harmoniques par rapport à l onde rrée. Cet onduleur peut bien faire fonctionner différents types de charges, mais peut user certains problèmes avec les équipements électroniques sensibles. C) Onduleur à onde sinusoïdale pure L onduleur à onde sinusoïdale pure, utilise généralement la modulation de largeur d impulsions (MLI) et filtre bien la sortie des transformateurs pour en éliminer la majorité des harmoniques indésirables (selon les normes, le taux de distorsion harmoniques doit être inférieur à 5%). En règle générale, il convient lorsque la charge exige une forme d onde de grande qualité, telle l onde nécessaire à des appareils de commutation électroniques sensibles. Les semiconducteurs de puissance utilisés dans ces onduleurs sont généralement commandés par des signaux issus d une comparaison entre une onde sinusoïdale et une onde triangulaire (porteuse). Pour alimenter une habitation autonome, le système choisi peut être hybride et incorporé une génératrice diesel auxiliaire qui suppléera au manque de soleil. Dans ce s, il est plus intéressant d utiliser un onduleur/chargeur qui fonctionne en chargeur de batterie lorsque la génératrice fonctionne. 6.3 Onduleurs pour couplage au réseau Pendant de nombreuses années, les systèmes photovoltaïques utilisaient des onduleurs centraux pour la connexion aux réseaux électriques (Figure 9). Ces onduleurs sont synchronisés au réseau électrique et incorporent des ractéristiques de surveillance de tension, de fréquence et de déconnexion automatique en s d absence du réseau. Ils génèrent très peu d harmoniques. La plupart utilisent un transformateur pour assurer une séparation galvanique avec le réseau, ce qui permet d isoler les panneaux du réseau électrique. Certains fabrints d onduleurs renoncent à la séparation galvanique par transformateur pour améliorer le rendement (~2%). Dans ces s, le câblage des panneaux doit être fait avec préutions afin d éviter tout problème de liaison directe au réseau électrique. cc Onduleur central Figure 9 : Onduleur central Depuis quelques années, les onduleurs décentralisés ont fait leur apparition. Les onduleurs de type «string» sont branchés sur un ensemble de modules photovoltaïques connectés en série ou en parallèle selon la tension et le courant désirés (Figure 10). Rangées de panneaux solaires Onduleurs Figure 10 : Onduleurs décentralisés «string» Dans le s des onduleurs modulaires, chaque module photovoltaïque est connecté sur un onduleur (Figure 11). Les systèmes de ce MSAS'2008 146

type présentent l avantage d être facile à agrandir. Cependant, le coût de l onduleur reste le principal facteur limitatif. Figure 11 : Onduleurs décentralisés modulaires autonomes et systèmes connectés au réseau, sont décrites et comparées. Les dernières tendances technologiques des onduleurs connectés au réseau sont également exposées. Références [1] Anne Labouret, Michel Villoz, Énergie solaire photovoltaïque, 3 e édition, Editions Lemoniteur, Dunod, 2006. [2] The German Solar Energy Society (DGS), Planning and Installing Photovoltaic Systems : A guide for installers, architects and engineers, 2005. [3] T. Tafticht, K. Agbossou, M.L. Doumbia, A. Cheriti, An improved maximum power point tracking method for photovoltaic systems, Elsevier, Renewable Energy 33 (2008), 1508 1516. 7. Conclusion Dans cet article nous avons présenté une revue des systèmes solaires photovoltaïques. Les principales composantes des systèmes 147 MSAS'2008