GOUTTE. Analyse Statistique des Données Cours 6. Master 2 EID. LUISS, Libera Università Internazionale degli Studi Sociali

Dimension: px
Commencer à balayer dès la page:

Download "GOUTTE. Analyse Statistique des Données Cours 6. Master 2 EID. LUISS, Libera Università Internazionale degli Studi Sociali"

Transcription

1 LUISS, Libera Università Internazionale degli Studi Sociali Université Paris 13 Laboratoire Analyse, Géométrie et Applications UMR 7539 GOUTTE Analyse Statistique des Données Cours 6 Master 2 EID goutte@math.univ-paris13.fr Master 2 EID 07/08 1

2 Contents 1 Introduction Classer et Classier Vocabulaire Classication Ascendante Hierarchique (CAH) Introduction Critère d'agrégation Principe-Algorithme Méthode de Ward Attention aux inversions Classication K-means 8 4 Les classications avec SAS Les procédures: cluster - varclus - fastclus - tree La procédure CLUSTER But Choix de la distance goutte@math.univ-paris13.fr Master 2 EID 07/08 2

3 1 Introduction Pour rappel l'analyse de données, c'est: Méthodes factorielles: ACP AFC ACM Classication automatique: Classication hiérarchique (tree clustering): création d'arbres. Classication ascendante hiérarchique (CAH) Classication descendante hiérarchique Partitionnement (clustering): création de partitions, classes. 1.1 Classer et Classier Il est important de ne pa confondre Classer et Classier. Classier = construire des classes. On construit notre propre système de partionnement en fonction de l'information de notre base. Classer = classement dans des classes préétablies. On utilise un partionnement déjà existant. 1.2 Vocabulaire Voici deux notions importantes: Classe monothétique : classe dont tous les individus possèdent une caractéristique en commun. Classe polythétique : classe dont les individus possèdent plusieurs attributs en commun mais pas forcément tous (classe plus ou moins homogène) goutte@math.univ-paris13.fr Master 2 EID 07/08 3

4 2 Classication Ascendante Hierarchique (CAH) 2.1 Introduction La Classication Ascendante Hierarchique (CAH) s'applique "normalement" sur des individus statistiques (personnes, entreprises, données nancières,...). On souhaite regrouper ces individus selon un critère de ressemblance. On cherche donc à isoler des informations de notre base qui "rapprochent" des individus entre eux et qui en éloignent d'autres. Les données que nous possédons sont donc les suivantes: un tableau individus x variables. un tableau de distances entre individus. Nous devonc pour cela dénit les paramètres suivants: Les données d'origine (brutes, normalisées,...) La distance entre individus (euclidienne, χ 2,...) Le critère d'agrégation entre deux classes (saut minimum, diamètre=saut maximum, ward, moyenne,...) goutte@math.univ-paris13.fr Master 2 EID 07/08 4

5 2.2 Critère d'agrégation Master 2 EID 07/08 5

6 2.3 Principe-Algorithme Master 2 EID 07/08 6

7 Cependant lorsque l'on agrège 2 éléments, l'inertie intra-classe augmente et l'inertie interclasse diminue. Le critère de Ward tente de minimiser ces variations. Graphes: 2.5 Attention aux inversions Un critère d'agrégation doit être une fonction croissante. Certaines mauvaises "bonnes idées" de critère d'agrégation ne respecte pas cette condition et présente alors des inversion dans le dendrogramme (arbre). Voci un exemple d'inversion. Graphes: goutte@math.univ-paris13.fr Master 2 EID 07/08 7

8 3 Classication K-means Principe et Graphes: Master 2 EID 07/08 8

9 4 Les classications avec SAS 4.1 Les procédures: cluster - varclus - fastclus - tree Deux procédures SAS permettent de réaliser des classications: La PROC CLUSTER. La PROC VARCLUS (Cette procédure eectue une classication de variables). Pour dessiner les arbres et les "couper": La PROC TREE. Pour eectuer des partitions : La PROC FASTCLUS. 4.2 La procédure CLUSTER But Le but de la méthode est de construire une partition de l'ensemble des individus de telle sorte que les individus d'une même classe soient "proches" et ceux issus de classes distinctes soient "éloignés" Choix de la distance Pour savoir si des individus sont proches ou éloignés, il faut mesurer la distance qui les sépare. Nous devons donc choisir une distance. Quantitative : Distance euclidienne. Qualitative: Distance χ 2. La syntaxe de la procédure T-Test est la suiante: PROC CLUSTER METHOD= <options>; BY variables; VAR variables; ID variable; FREQ variable; RUN; Les options: Algorithme 1: Syntaxe de la procédure CLUSTER goutte@math.univ-paris13.fr Master 2 EID 07/08 9

10 DATA=Table-SAS. OUTTREE=Table-SAS : Table SAS qui contient les données concernant l'arbre. METHOD=indique le critère d'agrégation à utiliser. De façon plus concrête: * METHOD: SAS connaît 11 méthodes diérentes pour eectuer la classication. AVER- AGE, CENTROID, COMPLETE, DENSITY, EML, FLEXIBLE, MCQUITTY, MEDIAN, SINGLE, TWOSTAGE, WARD. Nous utiliserons souvent WARD, CENTROID ou AVER- AGE. * OUTTREE =Nom de chier de données SAS. Pour indiquer un chier de données où SAS mettra les résultats des calculs de la procédure CLUSTER. Ces résultats pourront être récupérés par la procédure PROC TREE qui permet d'eectuer un découpage en classes des données, de tracer un pseudo dendrogramme. * STANDARD :Pour demander à SAS de travailler sur des données centrées réduites. * NOTIE : Pour demander à SAS de ne pas vérier l'existence d'exaequos. * RSQUARE : Pour acher le R 2 qui est l'indice mesurant la qualité de la classication dont nous parlions plus haut (Inertie inter-classes/inertie-totale). Cette option est automatiquement activée pour METHOD=WARD. SAS ache également un R 2 partiel qui est en fait la perte de R 2 à chaque étape. * NOPRINT : Supprime l achage. PROC VARCLUS <options>; BY variables; VAR variables; WEIGHT variable; RUN; Algorithme 2: Syntaxe de la procédure VARCLUS Les options: DATA=Table-SAS OUTTREE=Table-SAS MAXCLUSTER= CENTROID goutte@math.univ-paris13.fr Master 2 EID 07/08 10

11 PROC TREE <options>; BY variables; ID variable; RUN; Algorithme 3: Syntaxe de la procédure TREE Les options: DATA=Table-SAS OUT=Table-SAS NCL=nombre de classe HORIZONTAL PROC FASTCLUS MAXCLUSTERS= ; BY variables; VAR variables; ID variable; WEIGHT variable; RUN; Algorithme 4: Syntaxe de la procédure FASTCLUS Les options: DATA=Table-SAS OUT=Table-SAS goutte@math.univ-paris13.fr Master 2 EID 07/08 11

12 Liste des Algorithmes 1 Syntaxe de la procédure CLUSTER Syntaxe de la procédure VARCLUS Syntaxe de la procédure TREE Syntaxe de la procédure FASTCLUS goutte@math.univ-paris13.fr Master 2 EID 07/08 12

La classification automatique de données quantitatives

La classification automatique de données quantitatives La classification automatique de données quantitatives 1 Introduction Parmi les méthodes de statistique exploratoire multidimensionnelle, dont l objectif est d extraire d une masse de données des informations

Plus en détail

Stéphane Tufféry DATA MINING & STATISTIQUE DÉCISIONNELLE. 04/04/2008 Stéphane Tufféry - Data Mining - http://data.mining.free.fr

Stéphane Tufféry DATA MINING & STATISTIQUE DÉCISIONNELLE. 04/04/2008 Stéphane Tufféry - Data Mining - http://data.mining.free.fr Stéphane Tufféry DATA MINING & STATISTIQUE DÉCISIONNELLE 1 Plan du cours Qu est-ce que le data mining? A quoi sert le data mining? Les 2 grandes familles de techniques Le déroulement d un projet de data

Plus en détail

La segmentation à l aide de EG-SAS. A.Bouhia Analyste principal à la Banque Nationale du Canada. Chargé de cours à l UQAM

La segmentation à l aide de EG-SAS. A.Bouhia Analyste principal à la Banque Nationale du Canada. Chargé de cours à l UQAM La segmentation à l aide de EG-SAS A.Bouhia Analyste principal à la Banque Nationale du Canada. Chargé de cours à l UQAM Définition de la segmentation - Au lieu de considérer une population dans son ensemble,

Plus en détail

Séance 11 : Typologies

Séance 11 : Typologies Séance 11 : Typologies Sommaire Proc CLUSTER : Typologie hiérarchique... 3 Proc FASTCLUS : Typologie nodale... 8 Proc MODECLUS : Typologie non paramétrique... 11 - Les phénomènes observés (attitudes, comportements,

Plus en détail

ACP Voitures 1- Méthode

ACP Voitures 1- Méthode acp=princomp(voit,cor=t) ACP Voitures 1- Méthode Call: princomp(x = voit, cor = T) Standard deviations: Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 2.1577815 0.9566721 0.4903373 0.3204833 0.2542759 0.1447788

Plus en détail

COURS DE DATA MINING 4 : MODELISATION NON-SUPERVISEE CLASSIFICATIONS AUTOMATIQUES

COURS DE DATA MINING 4 : MODELISATION NON-SUPERVISEE CLASSIFICATIONS AUTOMATIQUES COURS DE DATA MINING 4 : MODELISATION NON-SUPERVISEE CLASSIFICATIONS AUTOMATIQUES EPF 4/ 5 ème année - Option Ingénierie d Affaires et de Projets - Finance Bertrand LIAUDET 4 : Modélisation non-supervisée

Plus en détail

Classification non supervisée

Classification non supervisée AgroParisTech Classification non supervisée E. Lebarbier, T. Mary-Huard Table des matières 1 Introduction 4 2 Méthodes de partitionnement 5 2.1 Mesures de similarité et de dissimilarité, distances.................

Plus en détail

1 - PRESENTATION GENERALE...

1 - PRESENTATION GENERALE... Contenu PREAMBULE... 2 INTRODUCTION... 2 1 - PRESENTATION GENERALE... 4 Qualité et optimalité... 8 2 - AGREGATION AUTOUR DE CENTRES MOBILES... 9 2.1 LES BASES DE L'ALGORITHME... 10 2.2 TECHNIQUES CONNEXES...

Plus en détail

Compte-rendu de projet de Système de gestion de base de données

Compte-rendu de projet de Système de gestion de base de données Compte-rendu de projet de Système de gestion de base de données Création et utilisation d'un index de jointure LAMBERT VELLER Sylvain M1 STIC Université de Bourgogne 2010-2011 Reponsable : Mr Thierry Grison

Plus en détail

Agrégation des portefeuilles de contrats d assurance vie

Agrégation des portefeuilles de contrats d assurance vie Agrégation des portefeuilles de contrats d assurance vie Est-il optimal de regrouper les contrats en fonction de l âge, du genre, et de l ancienneté des assurés? Pierre-O. Goffard Université d été de l

Plus en détail

Objectifs. Clustering. Principe. Applications. Applications. Cartes de crédits. Remarques. Biologie, Génomique

Objectifs. Clustering. Principe. Applications. Applications. Cartes de crédits. Remarques. Biologie, Génomique Objectifs Clustering On ne sait pas ce qu on veut trouver : on laisse l algorithme nous proposer un modèle. On pense qu il existe des similarités entre les exemples. Qui se ressemble s assemble p. /55

Plus en détail

PLAN. Ricco Rakotomalala Tutoriels Tanagra - http://tutoriels-data-mining.blogspot.fr/ 2

PLAN. Ricco Rakotomalala Tutoriels Tanagra - http://tutoriels-data-mining.blogspot.fr/ 2 Apprentissage non-supervisé ou apprentissage multi-supervisé? Ricco RAKOTOMALALA Tutoriels Tanagra - http://tutoriels-data-mining.blogspot.fr/ PLAN. Classification automatique, typologie, etc.. Interprétation

Plus en détail

RapidMiner. Data Mining. 1 Introduction. 2 Prise en main. Master Maths Finances 2010/2011. 1.1 Présentation. 1.2 Ressources

RapidMiner. Data Mining. 1 Introduction. 2 Prise en main. Master Maths Finances 2010/2011. 1.1 Présentation. 1.2 Ressources Master Maths Finances 2010/2011 Data Mining janvier 2011 RapidMiner 1 Introduction 1.1 Présentation RapidMiner est un logiciel open source et gratuit dédié au data mining. Il contient de nombreux outils

Plus en détail

Scénario: Données bancaires et segmentation de clientèle

Scénario: Données bancaires et segmentation de clientèle Résumé Scénario: Données bancaires et segmentation de clientèle Exploration de données bancaires par des méthodes uni, bi et multidimensionnelles : ACP, AFCM k-means, CAH. 1 Présentation Le travail proposé

Plus en détail

Etudes marketing et connaissance client

Etudes marketing et connaissance client Master deuxième année Mention : Statistique et Traitement de Données Etudes marketing et connaissance client Imane Hammouali Tuteur de stage: M. Sébastien Confesson Stage effectué au Service Etudes Marketing

Plus en détail

INTRODUCTION À L ANALYSE FACTORIELLE DES CORRESPONDANCES

INTRODUCTION À L ANALYSE FACTORIELLE DES CORRESPONDANCES INTRODUCTION À L ANALYSE FACTORIELLE DES CORRESPONDANCES Dominique LAFFLY Maître de Conférences, Université de Pau Laboratoire Société Environnement Territoire UMR 5603 du CNRS et Université de Pau Domaine

Plus en détail

Algorithmes d'apprentissage

Algorithmes d'apprentissage Algorithmes d'apprentissage 1 Agents qui apprennent à partir d'exemples La problématique : prise de décision automatisée à partir d'un ensemble d'exemples Diagnostic médical Réponse à une demande de prêt

Plus en détail

Historique. Architecture. Contribution. Conclusion. Définitions et buts La veille stratégique Le multidimensionnel Les classifications

Historique. Architecture. Contribution. Conclusion. Définitions et buts La veille stratégique Le multidimensionnel Les classifications L intelligence économique outil stratégique pour l entreprise Professeur Bernard DOUSSET dousset@irit.fr http://atlas.irit.fr Institut de Recherche en Informatique de Toulouse (IRIT) Equipe Systèmes d

Plus en détail

chapitre 4 Nombres de Catalan

chapitre 4 Nombres de Catalan chapitre 4 Nombres de Catalan I Dénitions Dénition 1 La suite de Catalan (C n ) n est la suite dénie par C 0 = 1 et, pour tout n N, C n+1 = C k C n k. Exemple 2 On trouve rapidement C 0 = 1, C 1 = 1, C

Plus en détail

INTRODUCTION AU DATA MINING

INTRODUCTION AU DATA MINING INTRODUCTION AU DATA MINING 6 séances de 3 heures mai-juin 2006 EPF - 4 ème année - Option Ingénierie d Affaires et de Projets Bertrand LIAUDET TP DE DATA MINING Le TP et le projet consisteront à mettre

Plus en détail

Introduction au datamining

Introduction au datamining Introduction au datamining Patrick Naïm janvier 2005 Définition Définition Historique Mot utilisé au départ par les statisticiens Le mot indiquait une utilisation intensive des données conduisant à des

Plus en détail

Logiciel XLSTAT version 7.0. 40 rue Damrémont 75018 PARIS

Logiciel XLSTAT version 7.0. 40 rue Damrémont 75018 PARIS Logiciel XLSTAT version 7.0 Contact : Addinsoft 40 rue Damrémont 75018 PARIS 2005-2006 Plan Présentation générale du logiciel Statistiques descriptives Histogramme Discrétisation Tableau de contingence

Plus en détail

Big Data et Graphes : Quelques pistes de recherche

Big Data et Graphes : Quelques pistes de recherche Big Data et Graphes : Quelques pistes de recherche Hamamache Kheddouci Laboratoire d'informatique en Image et Systèmes d'information LIRIS UMR 5205 CNRS/INSA de Lyon/Université Claude Bernard Lyon 1/Université

Plus en détail

Data Mining. Vincent Augusto 2012-2013. École Nationale Supérieure des Mines de Saint-Étienne. Data Mining. V. Augusto.

Data Mining. Vincent Augusto 2012-2013. École Nationale Supérieure des Mines de Saint-Étienne. Data Mining. V. Augusto. des des Data Mining Vincent Augusto École Nationale Supérieure des Mines de Saint-Étienne 2012-2013 1/65 des des 1 2 des des 3 4 Post-traitement 5 représentation : 6 2/65 des des Définition générale Le

Plus en détail

Déroulement d un projet en DATA MINING, préparation et analyse des données. Walid AYADI

Déroulement d un projet en DATA MINING, préparation et analyse des données. Walid AYADI 1 Déroulement d un projet en DATA MINING, préparation et analyse des données Walid AYADI 2 Les étapes d un projet Choix du sujet - Définition des objectifs Inventaire des données existantes Collecte, nettoyage

Plus en détail

BASE. Vous avez alors accès à un ensemble de fonctionnalités explicitées ci-dessous :

BASE. Vous avez alors accès à un ensemble de fonctionnalités explicitées ci-dessous : BASE BioArray Software Environment (BASE) est une base de données permettant de gérer l importante quantité de données générées par des analyses de bio-puces. BASE gère les informations biologiques, les

Plus en détail

L'analyse de données. Polycopié de cours ENSIETA - Réf. : 1463. Arnaud MARTIN

L'analyse de données. Polycopié de cours ENSIETA - Réf. : 1463. Arnaud MARTIN L'analyse de données Polycopié de cours ENSIETA - Réf : 1463 Arnaud MARTIN Septembre 2004 Table des matières 1 Introduction 1 11 Domaines d'application 2 12 Les données 2 13 Les objectifs 3 14 Les méthodes

Plus en détail

Big Data et Graphes : Quelques pistes de recherche

Big Data et Graphes : Quelques pistes de recherche Big Data et Graphes : Quelques pistes de recherche Hamamache Kheddouci http://liris.cnrs.fr/hamamache.kheddouci Laboratoire d'informatique en Image et Systèmes d'information LIRIS UMR 5205 CNRS/INSA de

Plus en détail

Crédit Scoring. Master 2 SRO. Année scolaire 2009/2010. Professeur : RICHARD EMILION. Réalisé par : MAHAMAT OUMAR ALHABO et OULD EL HADDAD CHEIKH

Crédit Scoring. Master 2 SRO. Année scolaire 2009/2010. Professeur : RICHARD EMILION. Réalisé par : MAHAMAT OUMAR ALHABO et OULD EL HADDAD CHEIKH Master 2 SRO Année scolaire 2009/2010 Crédit Scoring Professeur : RICHARD EMILION Réalisé par : MAHAMAT OUMAR ALHABO et OULD EL HADDAD CHEIKH Master_2_SRO_Data-Mining 1 Table des matières PARTIE 1 1. Résumé

Plus en détail

Projet SINF2275 «Data mining and decision making» Projet classification et credit scoring

Projet SINF2275 «Data mining and decision making» Projet classification et credit scoring Projet SINF2275 «Data mining and decision making» Projet classification et credit scoring Année académique 2006-2007 Professeurs : Marco Saerens Adresse : Université catholique de Louvain Information Systems

Plus en détail

Ebauche Rapport finale

Ebauche Rapport finale Ebauche Rapport finale Sommaire : 1 - Introduction au C.D.N. 2 - Définition de la problématique 3 - Etat de l'art : Présentatio de 3 Topologies streaming p2p 1) INTRODUCTION au C.D.N. La croissance rapide

Plus en détail

Structure du cours : Il existe de nombreuses méthodes intéressantes qui couvrent l Analyse des Données

Structure du cours : Il existe de nombreuses méthodes intéressantes qui couvrent l Analyse des Données Structure du cours : Il existe de nombreuses méthodes intéressantes qui couvrent l Analyse des Données et le Data Mining Nous suivons le plan suivant : Fonctionnement de Spad Catalogue des méthodes (statistiques

Plus en détail

Mode d'emploi du plugin Grayscale_Granulometry

Mode d'emploi du plugin Grayscale_Granulometry Mode d'emploi du plugin Grayscale_Granulometry D. Legland 27 mars 2013 Mode d'emploi rapide du plugin Grayscale Granulometry pour ImageJ. Le plugin permet de calculer des courbes de granulométrie en niveaux

Plus en détail

TP2 - Conguration réseau et commandes utiles. 1 Généralités. 2 Conguration de la machine. 2.1 Commande hostname

TP2 - Conguration réseau et commandes utiles. 1 Généralités. 2 Conguration de la machine. 2.1 Commande hostname Département d'informatique Architecture des réseaux TP2 - Conguration réseau et commandes utiles L'objectif de ce TP est d'une part de vous présenter la conguration réseau d'une machine dans l'environnement

Plus en détail

1.5 0.5 -0.5 -1.5 0 20 40 60 80 100 120. (VM(t i ),Q(t i+j ),VM(t i+j ))

1.5 0.5 -0.5 -1.5 0 20 40 60 80 100 120. (VM(t i ),Q(t i+j ),VM(t i+j )) La logique oue dans les PME/PMI Application au dosage de l'eau dans les bétons P.Y. Glorennec INSA de Rennes/IRISA glorenne@irisa.fr C. Hérault Hydrostop christophe@hydrostop.fr V. Hulin Hydrostop vincent@hydrostop.fr

Plus en détail

Individus et informations supplémentaires

Individus et informations supplémentaires ADE-4 Individus et informations supplémentaires Résumé La fiche décrit l usage des individus supplémentaires dans des circonstances variées. En particulier, cette pratique est étendue aux analyses inter

Plus en détail

La Gestion de fichiers Supports réalisés avec OpenOffice.org 2.3 Writer. La Gestion de fichiers. Niveau : Débutant Auteur : Antonio da Silva

La Gestion de fichiers Supports réalisés avec OpenOffice.org 2.3 Writer. La Gestion de fichiers. Niveau : Débutant Auteur : Antonio da Silva La Gestion de fichiers Niveau : Débutant Auteur : Antonio da Silva Table des matières I.Introduction....3 II.La création d'un fichier......4 III.L'arborescence......7 IV.La gestion des dossiers......11

Plus en détail

Arbres binaires de décision

Arbres binaires de décision 1 Arbres binaires de décision Résumé Arbres binaires de décision Méthodes de construction d arbres binaires de décision, modélisant une discrimination (classification trees) ou une régression (regression

Plus en détail

Introduction au Data-Mining

Introduction au Data-Mining Introduction au Data-Mining Alain Rakotomamonjy - Gilles Gasso. INSA Rouen -Département ASI Laboratoire PSI Introduction au Data-Mining p. 1/25 Data-Mining : Kèkecé? Traduction : Fouille de données. Terme

Plus en détail

Encryptions, compression et partitionnement des données

Encryptions, compression et partitionnement des données Encryptions, compression et partitionnement des données Version 1.0 Grégory CASANOVA 2 Compression, encryption et partitionnement des données Sommaire 1 Introduction... 3 2 Encryption transparente des

Plus en détail

DATAMINING C4.5 - DBSCAN

DATAMINING C4.5 - DBSCAN 14-16 rue Voltaire 94270 Kremlin Bicêtre Benjamin DEVÈZE Matthieu FOUQUIN PROMOTION 2005 SCIA DATAMINING C4.5 - DBSCAN Mai 2004 Responsable de spécialité SCIA : M. Akli Adjaoute Table des matières Table

Plus en détail

Travail de session : Mémoire. Le clustering de données. Par Nicolas Sola & Mathieu Schmitt

Travail de session : Mémoire. Le clustering de données. Par Nicolas Sola & Mathieu Schmitt Travail de session : Mémoire Le clustering de données Par Nicolas Sola & Mathieu Schmitt Résumé Le travail du clustering consiste à regrouper les données en classe ; nous obtenons par ce biais une forte

Plus en détail

Application de K-means à la définition du nombre de VM optimal dans un cloud

Application de K-means à la définition du nombre de VM optimal dans un cloud Application de K-means à la définition du nombre de VM optimal dans un cloud EGC 2012 : Atelier Fouille de données complexes : complexité liée aux données multiples et massives (31 janvier - 3 février

Plus en détail

Manuel d Utilisateur - Logiciel ModAFi. Jonathan ANJOU - Maud EYZAT - Kévin NAVARRO

Manuel d Utilisateur - Logiciel ModAFi. Jonathan ANJOU - Maud EYZAT - Kévin NAVARRO Manuel d Utilisateur - Logiciel ModAFi Jonathan ANJOU - Maud EYZAT - Kévin NAVARRO Grenoble, 12 juin 2012 Table des matières 1 Introduction 3 2 Modèles supportés 3 2.1 Les diérents modèles supportés pour

Plus en détail

Optimisation, traitement d image et éclipse de Soleil

Optimisation, traitement d image et éclipse de Soleil Kléber, PCSI1&3 014-015 I. Introduction 1/8 Optimisation, traitement d image et éclipse de Soleil Partie I Introduction Le 0 mars 015 a eu lieu en France une éclipse partielle de Soleil qu il était particulièrement

Plus en détail

Rapport de Stage. Titre : Clustering à l aide d une représentation supervisée

Rapport de Stage. Titre : Clustering à l aide d une représentation supervisée Nicolas Creff Du 1er février au 31 juillet 2011 Promotion 2011 Majeure SCIA Rapport de Stage Titre : Clustering à l aide d une représentation supervisée Sujet : Personnalisation de scores à l aide de la

Plus en détail

Solutions Décisionnelles SPAD. La maîtrise des données, l'art de la décision

Solutions Décisionnelles SPAD. La maîtrise des données, l'art de la décision Solutions Décisionnelles SPAD La maîtrise des données, l'art de la décision SPAD, la référence en Analyse de Données et Data Mining La solution logicielle SPAD permet de tirer le meilleur parti de tous

Plus en détail

Spécificités, Applications et Outils

Spécificités, Applications et Outils Spécificités, Applications et Outils Ricco Rakotomalala Université Lumière Lyon 2 Laboratoire ERIC Laboratoire ERIC 1 Ricco Rakotomalala ricco.rakotomalala@univ-lyon2.fr http://chirouble.univ-lyon2.fr/~ricco/data-mining

Plus en détail

Analyse dialectométrique des parlers berbères de Kabylie

Analyse dialectométrique des parlers berbères de Kabylie Saïd GUERRAB Analyse dialectométrique des parlers berbères de Kabylie Résumé de la thèse (pour affichage) Il est difficile de parler du berbère sans parler de la variation. Il y a d abord une variation

Plus en détail

t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre :

t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre : Terminale STSS 2 012 2 013 Pourcentages Synthèse 1) Définition : Calculer t % d'un nombre, c'est multiplier ce nombre par t 100. 2) Exemples de calcul : a) Calcul d un pourcentage : Un article coûtant

Plus en détail

LES OUTILS D ALIMENTATION DU REFERENTIEL DE DB-MAIN

LES OUTILS D ALIMENTATION DU REFERENTIEL DE DB-MAIN LES OUTILS D ALIMENTATION DU REFERENTIEL DE DB-MAIN Les contenues de ce document sont la propriété exclusive de la société REVER. Ils ne sont transmis qu à titre d information et ne peuvent en aucun cas

Plus en détail

Année Universitaire 2009/2010 Session 2 de Printemps

Année Universitaire 2009/2010 Session 2 de Printemps Année Universitaire 2009/2010 Session 2 de Printemps DISVE Licence PARCOURS : CSB4 & CSB6 UE : INF 159, Bases de données Épreuve : INF 159 EX Date : Mardi 22 juin 2010 Heure : 8 heures 30 Durée : 1 heure

Plus en détail

Projet de traitement d'image - SI 381 reconstitution 3D d'intérieur à partir de photographies

Projet de traitement d'image - SI 381 reconstitution 3D d'intérieur à partir de photographies Projet de traitement d'image - SI 381 reconstitution 3D d'intérieur à partir de photographies Régis Boulet Charlie Demené Alexis Guyot Balthazar Neveu Guillaume Tartavel Sommaire Sommaire... 1 Structure

Plus en détail

DATA MINING - Analyses de données symboliques sur les restaurants

DATA MINING - Analyses de données symboliques sur les restaurants Master 2 Professionnel - Informatique Décisionnelle DATA MINING - Analyses de données symboliques sur les restaurants Etudiants : Enseignant : Vincent RICHARD Edwin DIDAY Seghir SADAOUI SOMMAIRE I Introduction...

Plus en détail

Introduction à l'analyse multivariée (factorielle) sous R. Stéphane CHAMPELY

Introduction à l'analyse multivariée (factorielle) sous R. Stéphane CHAMPELY Introduction à l'analyse multivariée (factorielle) sous R Stéphane CHAMPELY 7 septembre 2005 2 Table des matières 1 Introduction 5 1.1 Les données multivariées....................... 5 1.2 L'approche factorielle

Plus en détail

Raja Bases de données distribuées A Lire - Tutoriel

Raja Bases de données distribuées A Lire - Tutoriel Université des Sciences de Montpellier Master 2 Semestre 1 Unité d'enseignement FMIN306 Raja Bases de données distribuées A Lire - Tutoriel 26 janvier 2011 Audrey Novak Romain Maneschi Jonathan Fhal Aloys

Plus en détail

SAS de base : gestion des données et procédures élémentaires

SAS de base : gestion des données et procédures élémentaires 1 SAS de base : gestion des données et procédures élémentaires SAS de base : gestion des données et procédures élémentaires Résumé Description des commandes (module SAS de base) les plus utiles de l étape

Plus en détail

Questions d Entretiens en Finance de Marché Retour 2011/2012

Questions d Entretiens en Finance de Marché Retour 2011/2012 Questions d Entretiens en Finance de Marché Retour 2011/2012 Université Lille 1 - Master 2 Mathématiques et Finance Mathématiques du Risque Contact : alexis.fauth@invivoo.com http://samm.univ-paris1.fr/-alexis-fauth-

Plus en détail

distribution quelconque Signe 1 échantillon non Wilcoxon gaussienne distribution symétrique Student gaussienne position

distribution quelconque Signe 1 échantillon non Wilcoxon gaussienne distribution symétrique Student gaussienne position Arbre de NESI distribution quelconque Signe 1 échantillon distribution symétrique non gaussienne Wilcoxon gaussienne Student position appariés 1 échantillon sur la différence avec référence=0 2 échantillons

Plus en détail

Introduction aux algorithmes MapReduce. Mathieu Dumoulin (GRAAL), 14 Février 2014

Introduction aux algorithmes MapReduce. Mathieu Dumoulin (GRAAL), 14 Février 2014 Introduction aux algorithmes MapReduce Mathieu Dumoulin (GRAAL), 14 Février 2014 Plan Introduction de la problématique Tutoriel MapReduce Design d algorithmes MapReduce Tri, somme et calcul de moyenne

Plus en détail

Introduction. I Étude rapide du réseau - Apprentissage. II Application à la reconnaissance des notes.

Introduction. I Étude rapide du réseau - Apprentissage. II Application à la reconnaissance des notes. Introduction L'objectif de mon TIPE est la reconnaissance de sons ou de notes de musique à l'aide d'un réseau de neurones. Ce réseau doit être capable d'apprendre à distinguer les exemples présentés puis

Plus en détail

TD 1 - Structures de Traits et Unification

TD 1 - Structures de Traits et Unification TD 1 - Structures de Traits et Unification 1 Définitions Un trait (en: feature) est un couple attribut-valeur. Une structure de traits (en: feature structure) est un ensemble de traits. On peut les représenter

Plus en détail

ESIEA PARIS 2011-2012

ESIEA PARIS 2011-2012 ESIEA PARIS 2011-2012 Examen MAT 5201 DATA MINING Mardi 08 Novembre 2011 Première Partie : 15 minutes (7 points) Enseignant responsable : Frédéric Bertrand Remarque importante : les questions de ce questionnaire

Plus en détail

CommentWatcher. plateforme Web open-source pour analyser les discussions sur des forums en ligne. Marian-Andrei RIZOIU

CommentWatcher. plateforme Web open-source pour analyser les discussions sur des forums en ligne. Marian-Andrei RIZOIU CommentWatcher plateforme Web open-source pour analyser les discussions sur des forums en ligne Marian-Andrei RIZOIU 2ème octobre 2013 BLEND 2013 Lyon, France Contexte Laboratoire ERIC Université Lumière

Plus en détail

1. Vocabulaire : Introduction au tableau élémentaire

1. Vocabulaire : Introduction au tableau élémentaire L1-S1 Lire et caractériser l'information géographique - Le traitement statistique univarié Statistique : le terme statistique désigne à la fois : 1) l'ensemble des données numériques concernant une catégorie

Plus en détail

Extraction d informations stratégiques par Analyse en Composantes Principales

Extraction d informations stratégiques par Analyse en Composantes Principales Extraction d informations stratégiques par Analyse en Composantes Principales Bernard DOUSSET IRIT/ SIG, Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse cedex 04 dousset@irit.fr 1 Introduction

Plus en détail

Statistiques Descriptives à une dimension

Statistiques Descriptives à une dimension I. Introduction et Définitions 1. Introduction La statistique est une science qui a pour objectif de recueillir et de traiter les informations, souvent en très grand nombre. Elle regroupe l ensemble des

Plus en détail

Baccalauréat ES Pondichéry 7 avril 2014 Corrigé

Baccalauréat ES Pondichéry 7 avril 2014 Corrigé Baccalauréat ES Pondichéry 7 avril 204 Corrigé EXERCICE 4 points Commun à tous les candidats. Proposition fausse. La tangente T, passant par les points A et B d abscisses distinctes, a pour coefficient

Plus en détail

Masters Spécialisés «Actuariat et Prévoyance» et «Actuariat et Finance»

Masters Spécialisés «Actuariat et Prévoyance» et «Actuariat et Finance» Masters Spécialisés «Actuariat et Prévoyance» et «Actuariat et Finance» Introduction au Data Mining K. EL HIMDI elhimdi@menara.ma 1 Sommaire du MODULE Partie 1 : Introduction au Data Mining Partie 2 :

Plus en détail

Analyses multivariées avec R Commander (via le package FactoMineR) Qu est ce que R? Introduction à R Qu est ce que R?

Analyses multivariées avec R Commander (via le package FactoMineR) Qu est ce que R? Introduction à R Qu est ce que R? Analyses multivariées avec R Commander Analyses multivariées avec R Commander (via le package FactoMineR) Plate-forme de Support en Méthodologie et Calcul Statistique (SMCS) - UCL 1 Introduction à R 2

Plus en détail

Propagation sur réseau statique et dynamique

Propagation sur réseau statique et dynamique Université de la Méditerranée UFR Sciences de Luminy Rapport de stage informatique pour le Master 2 de Physique, Parcours Physique Théorique et Mathématique, Physique des Particules et Astroparticules.

Plus en détail

FICHE N 8 Photodiversité, d une banque d images à un portail d activités en ligne Anne-Marie Michaud, académie de Versailles

FICHE N 8 Photodiversité, d une banque d images à un portail d activités en ligne Anne-Marie Michaud, académie de Versailles FICHE N 8 Photodiversité, d une banque d images à un portail d activités en ligne Anne-Marie Michaud, académie de Versailles Niveaux et thèmes de programme Sixième : 1 ère partie : caractéristiques de

Plus en détail

Pierre Couprie. «Analyser la musique électroacoustique avec le logiciel ianalyse» EMS08

Pierre Couprie. «Analyser la musique électroacoustique avec le logiciel ianalyse» EMS08 Pierre Couprie «Analyser la musique électroacoustique avec le logiciel ianalyse» EMS08 Electroacoacoustic Music Studies Network International Conference 3-7 juin 2008 (Paris) - INA-GRM et Université Paris-Sorbonne

Plus en détail

Introduction. Préambule. Le contexte

Introduction. Préambule. Le contexte Préambule... INTRODUCTION... BREF HISTORIQUE DE L ACP... 4 DOMAINE D'APPLICATION... 5 INTERPRETATIONS GEOMETRIQUES... 6 a - Pour les n individus... 6 b - Pour les p variables... 7 c - Notion d éléments

Plus en détail

Les algorithmes de fouille de données

Les algorithmes de fouille de données Février 2005 Les algorithmes de fouille de données DATAMINING Techniques appliquées à la vente, aux services client, interdictions. Cycle C Informatique Remerciements Je remercie les personnes, les universités

Plus en détail

Docteur en Informatique. Haytham ELGHAZEL. Classification et Prévision des Données Hétérogènes : Application aux Trajectoires et Séjours Hospitaliers

Docteur en Informatique. Haytham ELGHAZEL. Classification et Prévision des Données Hétérogènes : Application aux Trajectoires et Séjours Hospitaliers Université Claude Bernard Lyon 1 École Doctorale Informatique et Information pour la Société 2007 2008 THÈSE pour obtenir le grade de Docteur en Informatique (arrêté du 7 août 2006) présentée et soutenue

Plus en détail

Conception d un lecteur de musique intelligent basé sur l apprentissage automatique.

Conception d un lecteur de musique intelligent basé sur l apprentissage automatique. Université de Mons Faculté des Sciences Institut d Informatique Service d Algorithmique Conception d un lecteur de musique intelligent basé sur l apprentissage automatique. Mémoire réalisé par Xavier DUBUC

Plus en détail

Complet Intuitif Efficace. Références

Complet Intuitif Efficace. Références Logiciel de référence en Analyse de Données, Data Mining et Text Mining pour transformer vos données en connaissance Complet Intuitif Efficace Dans un environnement convivial et intuitif, disposez de toute

Plus en détail

Objectifs : piloter l organisation à travers des indicateurs (regroupés dans un tableau de bord), et informer des résultats la hiérarchie.

Objectifs : piloter l organisation à travers des indicateurs (regroupés dans un tableau de bord), et informer des résultats la hiérarchie. C HAPI TRE 8 Tableau de bord et reporting Objectifs : piloter l organisation à travers des indicateurs (regroupés dans un tableau de bord), et informer des résultats la hiérarchie. 1 Principes A Le tableau

Plus en détail

Introduction au Data-Mining

Introduction au Data-Mining Introduction au Data-Mining Gilles Gasso, Stéphane Canu INSA Rouen -Département ASI Laboratoire LITIS 8 septembre 205. Ce cours est librement inspiré du cours DM de Alain Rakotomamonjy Gilles Gasso, Stéphane

Plus en détail

Rappels sur les suites - Algorithme

Rappels sur les suites - Algorithme DERNIÈRE IMPRESSION LE 14 septembre 2015 à 12:36 Rappels sur les suites - Algorithme Table des matières 1 Suite : généralités 2 1.1 Déition................................. 2 1.2 Exemples de suites............................

Plus en détail

Chapitre 4: Dérivée d'une fonction et règles de calcul

Chapitre 4: Dérivée d'une fonction et règles de calcul DERIVEES ET REGLES DE CALCULS 69 Chapitre 4: Dérivée d'une fonction et règles de calcul Prérequis: Généralités sur les fonctions, Introduction dérivée Requis pour: Croissance, Optimisation, Études de fct.

Plus en détail

Stages 2014-2015 ISOFT : UNE SOCIETE INNOVANTE. Contact : Mme Lapedra, stage@isoft.fr

Stages 2014-2015 ISOFT : UNE SOCIETE INNOVANTE. Contact : Mme Lapedra, stage@isoft.fr Stages 2014-2015 ISOFT : UNE SOCIETE INNOVANTE Contact : Mme Lapedra, stage@isoft.fr ISoft, éditeur de logiciels, est spécialisé dans l informatique décisionnelle et l analyse de données. Son expertise

Plus en détail

Statistique : Résumé de cours et méthodes

Statistique : Résumé de cours et méthodes Statistique : Résumé de cours et méthodes 1 Vocabulaire : Population : c est l ensemble étudié. Individu : c est un élément de la population. Effectif total : c est le nombre total d individus. Caractère

Plus en détail

Segmentation d'images à l'aide d'agents sociaux : applications GPU

Segmentation d'images à l'aide d'agents sociaux : applications GPU Segmentation d'images à l'aide d'agents sociaux : applications GPU Richard MOUSSA Laboratoire Bordelais de Recherche en Informatique (LaBRI) - UMR 5800 Université de Bordeaux - France Laboratoire de recherche

Plus en détail

VISUALISATION DES DISTANCES ENTRE LES CLASSES DE LA CARTE DE KOHONEN POUR LE DEVELOPPEMENT D'UN OUTIL D'ANALYSE ET DE REPRESENTATION DES DONNEES

VISUALISATION DES DISTANCES ENTRE LES CLASSES DE LA CARTE DE KOHONEN POUR LE DEVELOPPEMENT D'UN OUTIL D'ANALYSE ET DE REPRESENTATION DES DONNEES VISUALISATION DES DISTANCES ENTRE LES CLASSES DE LA CARTE DE KOHONEN POUR LE DEVELOPPEMENT D'UN OUTIL D'ANALYSE ET DE REPRESENTATION DES DONNEES Patrick Rousset 1,2 et Christiane Guinot 3 1 CEREQ, Service

Plus en détail

OPTIMISATION À UNE VARIABLE

OPTIMISATION À UNE VARIABLE OPTIMISATION À UNE VARIABLE Sommaire 1. Optimum locaux d'une fonction... 1 1.1. Maximum local... 1 1.2. Minimum local... 1 1.3. Points stationnaires et points critiques... 2 1.4. Recherche d'un optimum

Plus en détail

Chapitre 1 : Introduction aux bases de données

Chapitre 1 : Introduction aux bases de données Chapitre 1 : Introduction aux bases de données Les Bases de Données occupent aujourd'hui une place de plus en plus importante dans les systèmes informatiques. Les Systèmes de Gestion de Bases de Données

Plus en détail

Equilibrage de charge multi-critère pour les serveurs DNS(SEC)

Equilibrage de charge multi-critère pour les serveurs DNS(SEC) Equilibrage de charge multi-critère pour les serveurs DNS(SEC) Stanislas Francfort, Stéphane Sénécal, Qinghui Xu, Daniel Migault 6 décembre 2010 Résumé Cet article présente le problème de répartition de

Plus en détail

Recherche dans un tableau

Recherche dans un tableau Chapitre 3 Recherche dans un tableau 3.1 Introduction 3.1.1 Tranche On appelle tranche de tableau, la donnée d'un tableau t et de deux indices a et b. On note cette tranche t.(a..b). Exemple 3.1 : 3 6

Plus en détail

Travaux pratiques avec RapidMiner

Travaux pratiques avec RapidMiner Travaux pratiques avec RapidMiner Master Informatique de Paris 6 Spécialité IAD Parcours EDOW Module Algorithmes pour la Fouille de Données Janvier 2012 Prise en main Généralités RapidMiner est un logiciel

Plus en détail

ODS : organiser et diffuser des sorties

ODS : organiser et diffuser des sorties 1 ODS : organiser et diffuser des sorties Objectifs Depuis l éphémère version 7 de SAS, l ODS (Output Delivery System) permet de produire des sorties de tous formats : tables SAS, pages HTML, documents

Plus en détail

L export de SAS vers Excel expliqué à ma fille

L export de SAS vers Excel expliqué à ma fille L export de SAS vers Excel expliqué à ma fille SAS est un logiciel merveilleux, mais tous n y ont pas accès. Pour contenter la soif de données de vos collègues qui n auraient pas d autre outil à disposition,

Plus en détail

Évolution de schémas dans les entrepôts de données mise à jour de hiérarchies de dimension pour la personnalisation des analyses

Évolution de schémas dans les entrepôts de données mise à jour de hiérarchies de dimension pour la personnalisation des analyses Évolution de schémas dans les entrepôts de données mise à jour de hiérarchies de dimension pour la personnalisation des analyses Thèse présentée par Cécile FAVRE pour obtenir le titre de Docteur en Informatique

Plus en détail

1 Modélisation d être mauvais payeur

1 Modélisation d être mauvais payeur 1 Modélisation d être mauvais payeur 1.1 Description Cet exercice est très largement inspiré d un document que M. Grégoire de Lassence de la société SAS m a transmis. Il est intitulé Guide de démarrage

Plus en détail

Peut-on tout programmer?

Peut-on tout programmer? Chapitre 8 Peut-on tout programmer? 8.1 Que peut-on programmer? Vous voici au terme de votre initiation à la programmation. Vous avez vu comment représenter des données de plus en plus structurées à partir

Plus en détail

ALGORITHMES DE CLASSIFICATION

ALGORITHMES DE CLASSIFICATION ALGORITHMES DE CLASSIFICATION Maurice ROUX Professeur émérite Université Paul Cézanne Marseille, France. Avertissement Cet ouvrage a été publié aux éditions Masson, Paris, en 1985. Il est maintenant épuisé

Plus en détail

Entrepôt de données 1. Introduction

Entrepôt de données 1. Introduction Entrepôt de données 1 (data warehouse) Introduction 1 Présentation Le concept d entrepôt de données a été formalisé pour la première fois en 1990 par Bill Inmon. Il s agissait de constituer une base de

Plus en détail

Travaux pratiques. Compression en codage de Huffman. 1.3. Organisation d un projet de programmation

Travaux pratiques. Compression en codage de Huffman. 1.3. Organisation d un projet de programmation Université de Savoie Module ETRS711 Travaux pratiques Compression en codage de Huffman 1. Organisation du projet 1.1. Objectifs Le but de ce projet est d'écrire un programme permettant de compresser des

Plus en détail

Bases de données réparties: Fragmentation et allocation

Bases de données réparties: Fragmentation et allocation Pourquoi une base de données distribuée? Bibliographie Patrick Valduriez, S. Ceri, Guiseppe Delagatti Bases de données réparties: Fragmentation et allocation 1 - Introduction inventés à la fin des années

Plus en détail