Statistiques Descriptives à une dimension

Save this PDF as:

Dimension: px
Commencer à balayer dès la page:

Download "Statistiques Descriptives à une dimension"

Transcription

1 I. Introduction et Définitions 1. Introduction La statistique est une science qui a pour objectif de recueillir et de traiter les informations, souvent en très grand nombre. Elle regroupe l ensemble des méthodes numériques permettant d analyser et d interpréter les informations pour en tirer des conclusions. Mathématiquement, une statistique est une application X d un ensemble Ω vers un autre ensemble X : Ω C ω X(ω) Exemple : On étudie la situation familiale des travailleurs du département d informatique. Alors : Ω est l ensemble des travailleurs du département d informatique, C = {célibataire, marié, divorcé, veuf }, X(ω) = la situation familiale du travailleur ω. 2. Vocabulaire statistique Population : l ensemble d éléments assez nombreux au sujet desquelles on désire tirer des conclusions. La population doit être définie en fonction de l objectif de l étude. Supposons qu on décide de mener une enquête sur l évolution de la consommation de tabac. Veut -on étendre les conclusions à la population algérienne? mondiale? S intéresse-t-on à toutes les catégories de la population? Seulement aux hommes? Cible-t -on seulement les jeunes? Les moins de 15 ans? Dans ce cas, les conclusions de l enquête ne pourront absolument pas être étendues à une autre population. Individu : c est l unité statistique, élément de la population, sur lequel on fait l étude. Un individu peut être une personne, un animal ou un objet. Echantillon : une partie représentative de la population Il est généralement impossible de réunir l'information relative à tous les individus de la population. Parmi les raisons qui justifient un échantillonnage plutôt que de travailler sur la globalité de la population : - les données à collecter sont illimitées. - les ressources (humaines, financières,...) disponibles sont limitées. - l'expérimentation peut être destructive. Caractère : s est l aspect particulier et commun que l on se propose d étudier chez les individus. En statistiques descriptives à une dimension, on se limite à étudier un seul caractère pour les individus. Un caractère peut être qualitatif ou quantitatif. Qualitatif : non mesurable, il décrit un état. En général, il répond à la question : Comment...? Exemples : la situation familiale, la couleur des yeux, la citoyenneté, le sexe, la langue maternelle Quantitatif : mesurable, lorsque les données sont numériques. En général, il répond à la question : Combien...? Exemples : nombre d enfants, nombre de langues parlées, la taille, le poids, le salaire, Un caractère, qu il soit qualitatif ou quantitatif, prend différentes valeurs appelées modalités. Un caractère qualitatif est dit ordinal si les modalités peuvent être ordonnées sinon on dira qu il est nominal. Variable statistique : un caractère quantitatif est appelé aussi variable statistique (v.s.) 1

2 Une variable statistique peut être discrète ou continue. Une variable discrète est une variable qui ne prend que des valeurs isolées. Une variable continue est une variable qui peut prendre n importe quelle valeur dans un intervalle d IR. Exemples de v. s. discrètes : nombre d enfants, nombre de langues parlées,,, Exemples de v. s. continues : Les mesures de longueur (largeur, épaisseur ), le temps, le poids (la masse) et les mesures qui en dépendent (surface, volume, vitesse, densité.), la taille, le salaire Si la v. s. est continue, on regroupe les données dans des classes qui sont des intervalles deux à deux disjoints et dont la réunion englobe l ensembles des observations. Chaque classe est considérée comme étant une seule modalité. Soit la statistique X : Ω C ω i X(ω i ) = x i On appelle fréquence partielle ( ou effectif partiel) de la modalité x i X(Ω) C, le cardinal de X -1 ({x i }) noté n i. C est le nombre d individus qui ont la même modalité x i. Exemple : Prenons l'exemple de situation familiale des travailleurs du département d informatique. x i = X(ω i ) = la situation familiale du travailleur ω i. Si on a 100 travailleurs au département d informatique, on obtient une série statistique de 100 valeurs. Marié, marié, célibataire, marié, marié, marié, marié, célibataire, célibataire, célibataire, célibataire, marié, marié, veuf, marié, marié, célibataire,.. Se contenter d'énumérer les 100 valeurs, l'information ne sera pas pratique. Une façon commode de représenter les résultats consiste à créer une distribution statistique des fréquences. On reprend l'ensemble des modalités observées (les situations familiales) et pour chacune, on donne le nombre n i d individus qui ont cette situation. x i (modalités) n i marié n 1 célibataire n 2 divorcé n 3 veuf n =100 Pour un caractère qualitatif, les modalités sont classées selon l ordre décroissant des fréquences. On a : = N = effectif total On peut établir la distribution de fréquences relatives partielles f i = dans laquelle chaque fréquence est exprimée en proportion (comprise entre 0 et 1) ou en pourcentage (compris entre 0 et 100) de l'effectif. = 1 Si le caractère est quantitatif ou qualitatif ordinal, on définit la fréquence cumulée n ic de la modalité x i par n = = n + n + + n et la fréquence relative cumulée F i par F = 2

3 Chapitre I 3. Représentation d une série statistique On a à faire à une série statistique expérimentale, les données sont brutes, on doit y mettre de l ordre afin de les présenter d une façon claire. Pour cela on dispose de tableau statistique ou de graphiques 3.1 Représentation dans un tableau : le tableau statistique comporte le titre, le corps et la source des informations. Le titre est ainsi libellé : répartition (ou distribution) de tels individus selon tel caractère. En bas du tableau on indique la source d où proviennent les informations, on peut ajouter la date et le lieu. Le corps du tableau: pour une série statistique qualitative, il comporte 3 colonnes : on met les modalités x i dans la 1 ère, dans la seconde les fréquences n i et dans la 3 ième les fréquences relatives en pourcentages (100 f i ) Pour une série statistique quantitative continue, il faut définir au préalable le nombre de classes et leur positionnement. Certaines règles sont utiles : Les classes ( [a 1, a 2 [, [a 2, a 3 [,..., [a k, a k+1 [ ) sont des ensembles mutuellement disjoints et leur réunion englobe l ensemble des données. Le nombre de classes k ne doit être ni trop petit ni trop grand et doit dépendre du nombre de données N : 5 k 15 Le nombre moyen de données par classe = N/k 5 S il est possible, pour des raisons pratiques, on prend des classes de même amplitudes (longueur) e Dans ce cas e = = (! "#$%! "& ) et donc k = ) On mentionne dans la première colonne les classes, les autres colonnes sont les mêmes que pour une série discrète. On peut ajouter une colonne pour les centres des classes. 3.2 Représentation graphique Représentation d une série qualitative La représentation par secteurs: chaque modalité est représentée par un secteur (une portion) du disque. La surface (et donc l angle au centre) du secteur est proportionnelle à la fréquence de la modalité. α i = 360 x f i La représentation par tuyaux d orgues: les modalités sont représentées sur un repère cartésien par des rectangles de base constante et des hauteurs proportionnelles aux fréquences 3

4 Représentation d une série quantitative : Il existe deux types de représentations : Le diagramme différentiel: il correspond à la représentation par rapport aux fréquences partielles (ou fréquences relatives partielles ). Le diagramme intégral: il correspond à la représentation par rapport aux fréquences cumulées (ou fréquences relatives cumulées ). Le diagramme différentiel d une série discrète est un diagramme en bâtons. Sur un repère cartésien, de chaque point de coordonnées (x i, 0) est tracé un bâton de longueur proportionnelle à n i ou f i Le diagramme différentiel d une série continue est appelé histogramme : c est la figure obtenue en traçant de chaque base [a i, a i+1 [ un rectangle de surface ( et non pas la hauteur) proportionnelle à n i ou f i Histogramme Diagramme en bâtons Le diagramme intégral (ou courbe cumulative) pour une série discrète, est la représentation graphique de la fonction de répartition définie par : F(x) = f = f + f + + f si i x < C est un graphique en escalier. Le diagramme intégral pour une série continue: sur un repère cartésien, on représente chaque classe [a i, a i+1 [ par un point de coordonnées ( a i+1, n ic ). On joint les points successifs par des segments de droites pour obtenir le polygone des fréquences cumulées. On polit ensuite ce polygone pour obtenir la courbe cumulative (le diagramme intégral) Diag. intégral (cas discret) Diag. intégral (cas continu)

5 . Paramètres de tendance centrale pour une série statistique à caractère quantitatif Le mode (M o ) : c est la valeur de la vs qui a la plus grande fréquence partielle. Si la vs est continue, on définit la classe modale. C est la classe qui a la plus grande fréquence moyenne par unité d intervalle. On a M o = a i où a i : borne inférieure de la classe modale 3 e i : amplitude de la classe modale 1 : fréquence de la classe modale - fréquence de la classe précédente 2 : fréquence de la classe modale - fréquence de la classe suivante La médiane (M e ) : c est la valeur de la vs qui partage en 2 parties égales les observations constituants la série préalablement rangées par ordre croissant ou décroissant Pour une série statistique discrète x 1, x 2,...,x N où N est l effectif total Si N est impair : 5 6 = Si N est pair : 5 6 = ( ) Pour une série statistique continue, on détermine la classe médiane. La i ème classe [a i,a i+1 [ est la classe médiane si F i 1 1/2 F i ou bien 5 6 = : + ; 2 (%)> = : + 2 F % f Quartiles, quintiles, déciles et centiles La médiane est une valeur telle que 50% des données sont plus petites qu elle i.e. elle partage la distribution en 2 parties égales. On peut généraliser cette idée et partager la distribution des fréquences en quatre parties égales on obtient les 3 quartiles Q 1, Q 2 et Q 3. Si on partage la distribution des fréquences en cinq parties égales on obtient les quintiles q 1, q 2, q 3 et q. Si on partage la distribution des fréquences en dix parties égales on obtient les 9 déciles d 1, d 2,...,d 9. Si on partage la distribution des fréquences en cent parties égales on obtient les 99 centiles c 1, c 2,...,c 99. Le centile d ordre α, c α, est défini par : - Pour une vs discrète? Si est entier alors c α = (xab + xab ) 2CC 2CC? Si n est pas entier, c α est la donnée x i dont le rang i est l entier qui suit?. Pour une vs continue, on détermine la classe [a i, a i+1 [ contenant c α. C est la 1ère classe où la fréquence cumulée atteint ou dépasse? c E = a + 5 AB 2CC % (G2) e ou c E = a + B 2CC %H G2 I e

6 Les quartiles sont les 25 ème, 50 ème et 75 ème centiles. Q 1 = c 25, Q 2 =c 50 et Q 3 = c 75 Les quintiles sont les 20 ème, 0 ème, 60 ème et 80 ème centiles. q 1 = c 20, q 2 =c 0, q 3 = c 60 et q = c 80 Les déciles sont les 10 ème, 20 ème,..., 90 ème centiles. d 1 = c 10, d 2 =c 20,..., d 9 = c 90 La moyenne arithmétique ( X ) La moyenne arithmétique est la valeur que devraient avoir toutes les données pour que leur somme totale soit inchangée. 1 X = f x = N n x Pour une vs continue, les x i sont remplacées par les centres des classes c i. La moyenne géométrique (G) : La moyenne géométrique est la valeur que devraient avoir toutes les données pour que leur produit soit inchangé. A G = Mx 2 x 3 x O Exemple : une quantité positive Q 0 évolue de t 1 % une première année puis t 2 % l année suivante. Quel est le taux moyen annuel d évolution? Soit P = 1 + Q 2 et P = 1 + Q 3 Alors après les 2 années, la quantité est Q 2 = c 1 c 2 Q 0 c 1 et c 2 sont appelés les coefficients multiplicateurs des 2 années. Soit t le taux moyen annuel et c le coefficient multiplicateur correspondant à t On a alors Q 2 = c 2 Q 0 d où c = c c et comme c = 1 + S alors t = (c - 1)100 La moyenne harmonique (H): H = ; Exemple : si un train fait un trajet aller-retour entre 2 villes à la vitesse constante V 1 pour l aller et la vitesse constante V 2 pour le retour. La vitesse moyenne du trajet est V moy = = 2 ]2 2 = H c est la moyenne harmonique ]3 T = T Q UVVWX Q \ XWYZ[X ]2 \ ]3 6

7 5. Paramètres de dispersion L étendue (W) : W = x max - x min La variance V(X) : c est la moyenne arithmétique des carrés des écarts à la moyenne. L écart-type V(X) = 1 N n (x X) = 1 N n x σ X =_`(a) X L écart absolu: E c = n dx Xd Le coefficient de variation cv = e f g Si cv > 0.15 (ou 15%) alors la série est dispersée Le coefficient de dissymétrie : CD = (g %h W) i e f Si CD > 0 alors la distribution est étalée vers la droite. L écart interquartile : EIQ = Q 3 - Q 1 L écart semi-interquartile est : ESIQ = j k% j 2 6. Changement de variable Soit Y une nouvelle variable transformée de X Y = g%m où a et b sont 2 constantes et a 0 c On a alors X = a Y + b et V(X)= a 2 V(Y) Si a et b sont bien choisis alors les calculs de Y et V(Y) sont plus faciles que les calculs directs de X et V(X). En pratique, on prendra a = pgcd (x i ) et b = le mode si la vs est discrète Si la vs est continue, on prendra a = pgcd (e i ) et b = le centre de la clase modale 7

Séries Statistiques Simples

Séries Statistiques Simples 1. Collecte et Représentation de l Information 1.1 Définitions 1.2 Tableaux statistiques 1.3 Graphiques 2. Séries statistiques simples 2.1 Moyenne arithmétique 2.2 Mode & Classe modale 2.3 Effectifs &

Plus en détail

Statistique : Résumé de cours et méthodes

Statistique : Résumé de cours et méthodes Statistique : Résumé de cours et méthodes 1 Vocabulaire : Population : c est l ensemble étudié. Individu : c est un élément de la population. Effectif total : c est le nombre total d individus. Caractère

Plus en détail

Comme la moyenne au devoir est plutôt faible, le professeur propose deux possibilités pour augmenter cette moyenne :

Comme la moyenne au devoir est plutôt faible, le professeur propose deux possibilités pour augmenter cette moyenne : Chapitre 6 : Statistiques I Premières définitions - Etablir une statistique, c est relever pour tous les individus d une population les valeurs d une grandeur X, appelée caractère ou variable statistique.

Plus en détail

STATISTIQUES À UNE VARIABLE

STATISTIQUES À UNE VARIABLE STATISTIQUES À UNE VARIABLE Table des matières I Méthodes de représentation 2 I.1 Vocabulaire.............................................. 2 I.2 Tableaux...............................................

Plus en détail

Examen d accès - 1 Octobre 2009

Examen d accès - 1 Octobre 2009 Examen d accès - 1 Octobre 2009 Aucun document autorisé - Calculatrice fournie par le centre d examen Ce examen est un questionnaire à choix multiples constitué de 50 questions. Plusieurs réponses sont

Plus en détail

Statistiques descriptives (1/2)

Statistiques descriptives (1/2) Statistiques descriptives (1/2) Anita Burgun 2011-2012 http://www.med.univ-rennes1.fr Introduction! Statistique: méthode scientifique qui consiste à réunir des données chiffrées sur des ensembles d individus

Plus en détail

Module 2 29 Décembre 2009 Intervenant: Dhuin STATISTIQUES

Module 2 29 Décembre 2009 Intervenant: Dhuin STATISTIQUES STATISTIQUES I. Séries statistiques simples... 1 A. Définitions... 1 1. Population... 1 2. Caractère statistique... 1 B. Séries classées / représentations graphiques.... 2 1. Séries classées... 2 2. Représentations

Plus en détail

t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre :

t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre : Terminale STSS 2 012 2 013 Pourcentages Synthèse 1) Définition : Calculer t % d'un nombre, c'est multiplier ce nombre par t 100. 2) Exemples de calcul : a) Calcul d un pourcentage : Un article coûtant

Plus en détail

Annexe commune aux séries ES, L et S : boîtes et quantiles

Annexe commune aux séries ES, L et S : boîtes et quantiles Annexe commune aux séries ES, L et S : boîtes et quantiles Quantiles En statistique, pour toute série numérique de données à valeurs dans un intervalle I, on définit la fonction quantile Q, de [,1] dans

Plus en détail

STATISTIQUES. I. Un peu de vocabulaire. II. Representations graphiques. 1. Diagramme circulaire

STATISTIQUES. I. Un peu de vocabulaire. II. Representations graphiques. 1. Diagramme circulaire STATISTIQUES I. Un peu de vocabulaire Toute étude statistique s'appuie sur des données. Dans le cas où ces données sont numériques, on distingue les données discrètes (qui prennent un nombre fini de valeurs

Plus en détail

Représentation d une distribution

Représentation d une distribution 5 Représentation d une distribution VARIABLE DISCRÈTE : FRÉQUENCES RELATIVES DES CLASSES Si dans un graphique représentant une distribution, on place en ordonnées le rapport des effectifs n i de chaque

Plus en détail

Statistiques: rappels et compléments

Statistiques: rappels et compléments Statistiques: rappels et compléments I) Vocabulaire élémentaire Population: Ensemble étudié. Individus: Éléments de la population. Caractère étudié ou variable statistique: Propriété étudiée dans la population.

Plus en détail

Université Jinan Faculté de Gestion Tripoli - Liban. Statistiques. Examen Préparatoire. Version 1

Université Jinan Faculté de Gestion Tripoli - Liban. Statistiques. Examen Préparatoire. Version 1 Université Jinan Faculté de Gestion Tripoli - Liban Statistiques Examen Préparatoire Version 1 2011-2010 Statistiques Université de Jinan Faculté de Gestion Table des matières 1 Analyse statistique d'une

Plus en détail

16. Comment introduire les valeurs prises par la variable SPORT pour les 30 premiers sujets introduits dans L2?

16. Comment introduire les valeurs prises par la variable SPORT pour les 30 premiers sujets introduits dans L2? T.P. 5 partie 1 Variable ordinale Calcul manuel de quantiles Utilisation des fonctions intégrées de la TI-84 Utilisation du programme D1 (Corrigé pour 30 cas) V. Prise en compte de 30 cas (pour éviter

Plus en détail

SERIE 1 Statistique descriptive - Graphiques

SERIE 1 Statistique descriptive - Graphiques Exercices de math ECG J.P. 2 ème A & B SERIE Statistique descriptive - Graphiques Collecte de l'information, dépouillement de l'information et vocabulaire La collecte de l information peut être : directe:

Plus en détail

Statistique Descriptive I (M1102)

Statistique Descriptive I (M1102) Illustration du cours de Statistique Descriptive I (M1102) Année scolaire 2013/2014 Université de Perpignan Via Domitia, IUT STatistique et Informatique Décisionnelle (STID) Table des matières 1 Généralités

Plus en détail

SECONDE DST CORRECTION. Voici le diagramme en bâtons des moyennes du second trimestre d'une classe de seconde comportant 34 élèves.

SECONDE DST CORRECTION. Voici le diagramme en bâtons des moyennes du second trimestre d'une classe de seconde comportant 34 élèves. SECONDE DST CORRECTION Exercice 1 Voici le diagramme en bâtons des moyennes du second trimestre d'une classe de seconde comportant 34 élèves 6 2e trimestre 5 4 3 2 1 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Plus en détail

1S DS 4 Durée :?mn. 2. La courbe ci-dessous est la représentation graphique de la fonction g, définie sur I = [ 1; 3].

1S DS 4 Durée :?mn. 2. La courbe ci-dessous est la représentation graphique de la fonction g, définie sur I = [ 1; 3]. 1S DS 4 Durée :?mn Exercice 1 ( 5 points ) Les trois questions sont indépendantes. 1. Soit f la fonction définie par f(x) = 3 x. a) Donner son ensemble de définition. Il faut 3 x 0 3 x donc D f =] ; 3]

Plus en détail

Cours 2 : Rappels de Statistique descriptive. A- Introduction B- Statistique descriptive unidimensionnelle C- Statistique descriptive bidimensionnelle

Cours 2 : Rappels de Statistique descriptive. A- Introduction B- Statistique descriptive unidimensionnelle C- Statistique descriptive bidimensionnelle Cours 2 : Rappels de Statistique descriptive A- Introduction B- Statistique descriptive unidimensionnelle C- Statistique descriptive bidimensionnelle A- Introduction A- Introduction Rappel : Série statistique

Plus en détail

Problème 4: Les diagrammes suivants représentent la distribution de 4 variables discrètes X1, X2, X3 et X4 :

Problème 4: Les diagrammes suivants représentent la distribution de 4 variables discrètes X1, X2, X3 et X4 : Cours 5-62-96 : Traitement et analyse des données Test autodiagnostique PARTIE 1 : Problème 1 : Pour chacune des distributions ci-dessous, identifier la population et la variable étudiée en précisant si

Plus en détail

Statistiques 0,14 0,11

Statistiques 0,14 0,11 Statistiques Rappels de vocabulaire : "Je suis pêcheur et je désire avoir des informations sur la taille des truites d'une rivière. Je décide de mesurer les truites obtenues au cours des trois dernières

Plus en détail

EXERCICES D ENTRAINEMENT POUR LE DS 7. 1ère STG (Extraits de devoirs d années précédentes)

EXERCICES D ENTRAINEMENT POUR LE DS 7. 1ère STG (Extraits de devoirs d années précédentes) EXERCICES D ENTRAINEMENT POUR LE DS 7. 1ère STG (Extraits de devoirs d années précédentes) Les corrigés sont en seconde partie de ce fichier (pages 4 à 8). Exercice 1: A la sortie d un hypermarché, on

Plus en détail

SÉRIES STATISTIQUES A UNE VARIABLE PARAMÈTRES DE POSITION ET DE DISPERSION

SÉRIES STATISTIQUES A UNE VARIABLE PARAMÈTRES DE POSITION ET DE DISPERSION SÉRIES STATISTIQUES A UNE VARIABLE PARAMÈTRES DE POSITION ET DE DISPERSION Eemple Le responsable d une maison de retraite a réalisé une enquête concernant les résidents de son établissement : - L activité

Plus en détail

Paramètres de position

Paramètres de position Paramètres de position 1 On va parler ici des statistiques quantitatives. On veut les résumer par des nombres. On a deux types de nombres Les paramètre de position : ce sont ceux qui définissent une notion

Plus en détail

Cours 9 Une variable numérique : distribution et répartition

Cours 9 Une variable numérique : distribution et répartition Cours 9 Une variable numérique : distribution et répartition Lorsqu'une variable est qualitative et l'autre numérique, il est courant que la première identie des sous-populations (sexe, catégories socio-économiques,

Plus en détail

Chapitre 2. Caractéristiques des distributions à une variable quantitative

Chapitre 2. Caractéristiques des distributions à une variable quantitative Chapitre 2. Caractéristiques des distributions à une variable quantitative Jean-François Coeurjolly http://www-ljk.imag.fr/membres/jean-francois.coeurjolly/ Laboratoire Jean Kuntzmann (LJK), Grenoble University

Plus en détail

Ch6 : Statistiques descriptives - analyse des données

Ch6 : Statistiques descriptives - analyse des données Ch6 : Statistiques descriptives - analyse des données 1. Caractéristiques de position : moyenne, médiane 2. Caractéristiques de dispersion : étendue, écart et intervalle inter-quartile 3. Utilisation de

Plus en détail

Statistiques à une variable

Statistiques à une variable Statistiques à une variable Objectif : connaissances des termes et formules statistiques Acquis : Programme de seconde professionnelle. 1/ Généralités : Exploitation d une base de données. Vie économique

Plus en détail

8. Statistique descriptive

8. Statistique descriptive 8. Statistique descriptive MTH2302D S. Le Digabel, École Polytechnique de Montréal H2015 (v2) MTH2302D: statistique descriptive 1/47 Plan 1. Introduction 2. Terminologie 3. Descriptions graphiques des

Plus en détail

STATISTIQUES A UNE VARIABLE EXERCICES CORRIGES

STATISTIQUES A UNE VARIABLE EXERCICES CORRIGES STATISTIQUES A UNE VARIALE EXERCICES CORRIGES Exercice n Les élèves d une classe ont obtenu les notes suivantes lors d un devoir : Note 4 5 8 0 4 5 8 0 Effectif 4 7 6 4 ) Déterminer l étendue et le mode

Plus en détail

1 Retour sur le cours 3 Présentation de tableaux et graphiques Les mesures de tendance centrale Moyenne Mode (et classe modale) Médiane Les mesures de position Quartiles Déciles Mesures tendance centrale

Plus en détail

Statistiques. Objectifs du chapitre. Énigme du chapitre.

Statistiques. Objectifs du chapitre. Énigme du chapitre. Statistiques C H A P I T R E 2 Énigme du chapitre. Objectifs du chapitre. Proposer, si possible, une série de 9 valeurs telle que sa moyenne est égale à son premier quartile et son étendue soit égale à

Plus en détail

Mois J F M A M J J A S O N D Masse (en kg) 40 25 20 15 24 30 32 28 36 24 35 51

Mois J F M A M J J A S O N D Masse (en kg) 40 25 20 15 24 30 32 28 36 24 35 51 Statistiques e Exercice n : Lors d un stage de basket, on a mesuré les adolescents. Les tailles sont données en cm. On obtient la série suivante : 65 ; 75 ; 87 ; 65 ; 70 ; 8 ; 74 ; 84 ; 7 ; 66 ; 78 ; 77

Plus en détail

Emilien Suquet, suquet@automaths.com

Emilien Suquet, suquet@automaths.com STATISTIQUES Emilien Suquet, suquet@automaths.com I Comment réagir face à un document statistique? Les deux graphiques ci-dessous représentent l évolution du taux de chômage en France sur les 1 mois de

Plus en détail

Étendue, moyenne, médiane

Étendue, moyenne, médiane Étendue, moyenne, médiane 1 Climat Ce tableau compare les températures mensuelles moyennes (en C) au cours d'une année dans deux villes Alpha (A) et Gamma (G). A 6 9 1 10 11 19 24 28 21 10 4 3 G 5 7 9

Plus en détail

Les statistiques descriptives et les intervalles de confiance

Les statistiques descriptives et les intervalles de confiance Les statistiques et les intervalles de Yohann.Foucher@univ-nantes.fr Equipe d Accueil 4275 "Biostatistique, recherche clinique et mesures subjectives en santé", Université de Nantes Master 2 - Cours #2

Plus en détail

Introduction à l analyse quantitative

Introduction à l analyse quantitative Introduction à l analyse quantitative Vue d ensemble du webinaire Le webinaire sera enregistré. Les diapositives et tous les autres documents seront envoyés aux participants après la séance. La séance

Plus en détail

EXERCICES - ANALYSE GÉNÉRALE

EXERCICES - ANALYSE GÉNÉRALE EXERCICES - ANALYSE GÉNÉRALE OLIVIER COLLIER Exercice 1 (2012) Une entreprise veut faire un prêt de S euros auprès d une banque au taux annuel composé r. Le remboursement sera effectué en n années par

Plus en détail

Classe de 3ème. Effectif partiel n Effectif total N

Classe de 3ème. Effectif partiel n Effectif total N Classe de 3ème Chapitre 2 Statistiques. 1. Quelques rappels. Une série statistique est composée de valeurs. Le nombre de fois où une valeur est répétée s'appelle l'effectif partiel de cette valeur. La

Plus en détail

Corrigé des exercices

Corrigé des exercices THEME : STATISTIQUES Corrigé des exercices Exercice n : Détermine la valeur médiane des listes de valeurs suivantes : a) 6 8 6 9,5 8 7,5 b) 6,5,5 9 9,5 c) 5, 9,7 5, 8,5 50, 9, 5,8 d) 5, 7 9,6, 6,6 9,,5

Plus en détail

1ES Février 2013 Corrigé

1ES Février 2013 Corrigé 1ES Février 213 Corrigé Exercice 1 Le tableau ci-dessous renseigne sur les besoins en eau dans le monde : Population mondiale (Milliards d habitants) Volume moyen par habitant ( ) 195 2,5 4 1 197 3,6 5

Plus en détail

SCI03 - Analyse de données expérimentales

SCI03 - Analyse de données expérimentales SCI03 - Analyse de données expérimentales Introduction à la statistique Thierry Denœux 1 1 Université de Technologie de Compiègne tél : 44 96 tdenoeux@hds.utc.fr Automne 2014 Qu est ce que la statistique?

Plus en détail

1. Vocabulaire : Introduction au tableau élémentaire

1. Vocabulaire : Introduction au tableau élémentaire L1-S1 Lire et caractériser l'information géographique - Le traitement statistique univarié Statistique : le terme statistique désigne à la fois : 1) l'ensemble des données numériques concernant une catégorie

Plus en détail

COURS STATISTIQUES. Etude statistique de la couleur des yeux des stars de cinéma américaines. Population : Individu : Variable étudiée :

COURS STATISTIQUES. Etude statistique de la couleur des yeux des stars de cinéma américaines. Population : Individu : Variable étudiée : I) Vocabulaire de la statistique COURS STATISTIQUES Exemple : pour se rendre au collège des Chênes à Chambéry, 46 élèves utilisent un deux roues, 284 élèves utilisent les transports en commun, 163 élèves

Plus en détail

TD d exercices statistiques et pourcentages.

TD d exercices statistiques et pourcentages. TD d exercices statistiques et pourcentages. Exercice 1 : Diagramme circulaire On donne la répartition du nombre d abonnés au téléphone mobile en France en 2006. Opérateurs Bouygue télécom SFR Orange Autres

Plus en détail

Première L juin 2008 A B C D E F G

Première L juin 2008 A B C D E F G Première L juin 2008 Liban 1. Exercice 1 (10 points) On fournit ci-dessous un tableau statistique relatif aux accidents de la route avec des piétons en France. Ce tableau est obtenu à l'aide d'un tableur,

Plus en détail

Exercices de révision pour l examen 2

Exercices de révision pour l examen 2 Exercices de révision pour l examen 2 1) Lors d une étude sur la rainette aux yeux rouges (une grenouille vivant au sud du Mexique), nous avons observé un échantillon de 150 grenouilles pour mesurer la

Plus en détail

STATISTIQUES 2 : MOYENNE, MEDIANE, ECART-TYPE

STATISTIQUES 2 : MOYENNE, MEDIANE, ECART-TYPE Chapitre 4bis STATISTIQUES 2 : MOYENNE, MEDIANE, ECART-TYPE BAC PRO 3 Objectifs (à la fin du chapitre, je dois être capable de ) : - Calculer une moyenne - Calculer une médiane (caractère discret) - Tracer

Plus en détail

Chapitre 1 : Évolution COURS

Chapitre 1 : Évolution COURS Chapitre 1 : Évolution COURS OBJECTIFS DU CHAPITRE Savoir déterminer le taux d évolution, le coefficient multiplicateur et l indice en base d une évolution. Connaître les liens entre ces notions et savoir

Plus en détail

3. Caractéristiques et fonctions d une v.a.

3. Caractéristiques et fonctions d une v.a. 3. Caractéristiques et fonctions d une v.a. MTH2302D S. Le Digabel, École Polytechnique de Montréal H2015 (v2) MTH2302D: fonctions d une v.a. 1/32 Plan 1. Caractéristiques d une distribution 2. Fonctions

Plus en détail

L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ

L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ INTRODUCTION Données : n individus observés sur p variables quantitatives. L A.C.P. permet d eplorer les liaisons entre variables et

Plus en détail

DEVOIR COMMUN DE MATHÉMATIQUES

DEVOIR COMMUN DE MATHÉMATIQUES Classe de Seconde DEVOIR COMMUN DE MATHÉMATIQUES Vendredi 14 février 2014 Durée de l épreuve : 2 H 00 Ce sujet comporte 6 pages numérotées de 1 à 6. Dès que ce sujet vous est remis, assurez-vous qu il

Plus en détail

Chacune des valeurs d une variable en est une modalité particulière.

Chacune des valeurs d une variable en est une modalité particulière. Psychologie générale Jean Paschoud STATISTIQUE Sommaire Rôle de la statistique Variables Échelles de mesure Résumer, décrire Comparer Rôle de la statistique La statistique est avant tout un outil permettant

Plus en détail

chap S1 : Statistiques descriptives Eléments de correction des exercices

chap S1 : Statistiques descriptives Eléments de correction des exercices 2ndes chap S1 : Statistiques descriptives Eléments de correction des exercices Objectifs : mieux comprendre les notions de moyenne et médiane utiliser des statistiques pour prendre des décisions Moyenne

Plus en détail

BACCALAURÉAT PROFESSIONNEL SUJET

BACCALAURÉAT PROFESSIONNEL SUJET SESSION 203 Métropole - Réunion - Mayotte BACCALAURÉAT PROFESSIONNEL ÉPREUVE E4 CULTURE SCIENTIFIQUE ET TECHNOLOGIQUE : MATHÉMATIQUES Toutes options Durée : 2 heures Matériel(s) et document(s) autorisé(s)

Plus en détail

Chapitre 1 GRAPHIQUES

Chapitre 1 GRAPHIQUES Statistique appliquée à la gestion et au marketing http://foucart.thierry.free.fr/statpc Chapitre 1 GRAPHIQUES On entend souvent qu un schéma vaut mieux qu un long discours. Effectivement, lorsque l on

Plus en détail

Les variables indépendantes catégorielles

Les variables indépendantes catégorielles Les variables indépendantes catégorielles Jean-François Bickel Statistique II SP08 Jusqu à maintenant, nous avons considéré comme variables indépendantes uniquement des variables intervalles (âge) ou traitées

Plus en détail

LA MÉTHODE S.P.C. (STATISTICAL PROCESS CONTROL)

LA MÉTHODE S.P.C. (STATISTICAL PROCESS CONTROL) 1GM Sciences et Techniques Industrielles Page 1 sur 5 Productique - Cours Génie Mécanique Première LA MÉTHODE S.P.C. (STATISTICAL PROCESS CONTROL) Née aux USA, la méthode S. P. C. est traduite le plus

Plus en détail

Partie A : revenu disponible des ménages. construction d une courbe de Lorenz

Partie A : revenu disponible des ménages. construction d une courbe de Lorenz Correction TD n 4 Math-SES Courbe de Lorenz Objectif du TD : réinvestissement des connaissances de statistiques, étude des inégalités de répartition des revenus disponibles et comparaison avec la répartition

Plus en détail

Baccalauréat Mathématiques informatique corrigé Polynésie 10 juin 2010

Baccalauréat Mathématiques informatique corrigé Polynésie 10 juin 2010 Baccalauréat Mathématiques informatique corrigé Polynésie 10 juin 2010 EXERCICE 1 11 points Un institut de recherche désire relever des informations sur l état de l enneigement dans un massif montagneux.

Plus en détail

CORRECTION DU BREVET BLANC N 1 DE JANVIER 2010 7 21 = 7 21 = 1 3 18. Exercice n 2 : 4(3x 2) + 2(5 x) = 8 soit donc : 12 x 8 + 10 2x = 8

CORRECTION DU BREVET BLANC N 1 DE JANVIER 2010 7 21 = 7 21 = 1 3 18. Exercice n 2 : 4(3x 2) + 2(5 x) = 8 soit donc : 12 x 8 + 10 2x = 8 CORRECTION DU BREVET BLANC N 1 DE JANVIER 2010 ACTIVITES NUMERIQUES (12 points) Exercice n 1 : A = 5 21 + 3 7 1 3 = 5 21 + 9 21 7 21 = 7 21 = 1 3 ; B = 2 3 + 2 7 C = - 5 12 3 2 = - 5 12 14 9 = 2 3 + 2

Plus en détail

MESURER ET REPRÉSENTER LES INÉGALITÉS

MESURER ET REPRÉSENTER LES INÉGALITÉS MESURER ET REPRÉSENTER LES INÉGALITÉS I - DISPARITÉ ET DISPERSION La disparité consiste à mesurer l écart entre les valeurs centrales qui caractérisent une ou plusieurs populations statistiques. (exemple

Plus en détail

Sans formation B E P B A C B T S Autre formation Effectif 12 16 84 58 10. Sans formation B E P B A C B T S Autre formation Effectif 18 45 468 351 18

Sans formation B E P B A C B T S Autre formation Effectif 12 16 84 58 10. Sans formation B E P B A C B T S Autre formation Effectif 18 45 468 351 18 Première partie : Effectifs et fréquences Dans deux entreprises d'un groupe industriel a été mené une enquête sur le niveau de formation des employés. On a obtenu les résultats suivants : Entreprise 1

Plus en détail

Fiche descriptive : Statistique descriptive avec Sinequanon

Fiche descriptive : Statistique descriptive avec Sinequanon Fiche descriptive : Statistique descriptive avec Sinequanon Public concerné : Enseignants de tous niveau désirant découvrir des possibilités du logiciel Objectif : Proposer une approche du logiciel pour

Plus en détail

Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé

Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé A. P. M. E. P. Exercice 1 5 points 1. Réponse d. : 1 e Le coefficient directeur de la tangente est négatif et n est manifestement pas 2e

Plus en détail

2) Ecrire en utilisant la notation : 3+5+7+9+ 15+17

2) Ecrire en utilisant la notation : 3+5+7+9+ 15+17 STATISTIQUES A UNE VARIABLE EXERCICES CORRIGES Exercice n. Les 5 élèves d'une classe ont composé et le tableau ci-dessous donne la répartition des diverses notes. Recopier et compléter ce tableau en calculant

Plus en détail

Fonction polynôme du second degré : Forme canonique

Fonction polynôme du second degré : Forme canonique Fonction polynôme du second degré : Forme canonique I) Introduction. Soit g(x) = a(x - s)²+h. Toute fonction polynôme du second degré peut s écrire sous cette forme. Le passage de la forme développée à

Plus en détail

LES DIFFERENTS TYPES DE MESURE

LES DIFFERENTS TYPES DE MESURE LES DIFFERENTS TYPES DE MESURE Licence - Statistiques 2004/2005 REALITE ET DONNEES CHIFFREES Recherche = - mesure. - traduction d une réalité en chiffre - abouti à des tableaux, des calculs 1) Qu est-ce

Plus en détail

Probabilités et Statistiques. Chapitre 1 : Statistique descriptive

Probabilités et Statistiques. Chapitre 1 : Statistique descriptive U.P.S. I.U.T. A, Département d Informatique Année 2008-2009 Probabilités et Statistiques Emmanuel PAUL Chapitre 1 : Statistique descriptive 1 Objectifs des statistiques. Il s agit d étudier un ou plusieurs

Plus en détail

STATISTIQUE avec la calculatrice TI-nspire. Applications : Tableur & listes - Données et statistiques

STATISTIQUE avec la calculatrice TI-nspire. Applications : Tableur & listes - Données et statistiques STATISTIQUE avec la calculatrice TI-nspire. Applications : Tableur & listes - Données et statistiques 1) Caractère qualitatif : représentations graphiques Moyen de locomotion pour venir à l école. x i

Plus en détail

Exercice 1 : sur 2,5 points 1) Lire graphiquement les équations des droites D 1, D 2 et D 3 tracées dans le repère ci-dessous

Exercice 1 : sur 2,5 points 1) Lire graphiquement les équations des droites D 1, D 2 et D 3 tracées dans le repère ci-dessous NOM : Seconde A B C H J Mardi 19 janvier 010 Exercice 1 : sur,5 points 1) Lire graphiquement les équations des droites D 1, D et D tracées dans le repère ci-dessous ) Dans le même repère, tracer la droites

Plus en détail

Représenter graphiquement une série statistique

Représenter graphiquement une série statistique Représenter graphiquement une série statistique Objectifs : - savoir identifier le caractère étudié - représenter une série statistique par une représentation graphique - savoir exploiter des données statistiques

Plus en détail

LES FONCTIONS : GENERALITES ET VARIATIONS

LES FONCTIONS : GENERALITES ET VARIATIONS 1 sur 10 LES FONCTIONS : GENERALITES ET VARIATIONS Activité conseillée p42 n 1 : Évolution du climat Activité conseillée p22 n 1 : Évolution du climat p61 n 5 p74 n 82 p61 n 7 p43 n 19 p44 n 20 p44 n 21

Plus en détail

I Exercices I-1 1... I-1 2... I-1 3... I-2 4... I-2 5... I-2 6... I-2 7... I-3 8... I-3 9... I-4

I Exercices I-1 1... I-1 2... I-1 3... I-2 4... I-2 5... I-2 6... I-2 7... I-3 8... I-3 9... I-4 Chapitre Convexité TABLE DES MATIÈRES page -1 Chapitre Convexité Table des matières I Exercices I-1 1................................................ I-1................................................

Plus en détail

STATISTIQUES DESCRIPTIVES

STATISTIQUES DESCRIPTIVES 1 sur 7 STATISTIQUES DESCRIPTIVES En italien, «stato» désigne l état. Ce mot à donné «statista» pour «homme d état». En 1670, le mot est devenu en latin «statisticus» pour signifier ce qui est relatif

Plus en détail

1 e S - programme 2011 mathématiques ch.4 cahier élève Page 1 sur 14 Ch.4 : Statistiques

1 e S - programme 2011 mathématiques ch.4 cahier élève Page 1 sur 14 Ch.4 : Statistiques 1 e S - programme 2011 mathématiques ch4 cahier élève Page 1 sur 14 Ch4 : Statistiques Exercice n A page 286 : Calculer une médiane et une moyenne Déterminer la médiane et la moyenne de chacune des deux

Plus en détail

Heureusement, le tableau ci-dessus est complété par l'histogramme ci-dessous où un centimètre carré représente 10 jours.

Heureusement, le tableau ci-dessus est complété par l'histogramme ci-dessous où un centimètre carré représente 10 jours. Exercice 1 Le comptable des Tacauds Blancois vient de comptabiliser le nombre de passagers transportés par les taxis de son entreprise pour chaque jour de l'année 2011. Pour que son travail soit plus compréhensible

Plus en détail

Chapitre 3 : INFERENCE

Chapitre 3 : INFERENCE Chapitre 3 : INFERENCE 3.1 L ÉCHANTILLONNAGE 3.1.1 Introduction 3.1.2 L échantillonnage aléatoire 3.1.3 Estimation ponctuelle 3.1.4 Distributions d échantillonnage 3.1.5 Intervalles de probabilité L échantillonnage

Plus en détail

1/4 2/4 3/4 4/4. 10. Estimation MTH2302D. S. Le Digabel, École Polytechnique de Montréal H2016. (v1) MTH2302D: estimation 1/50

1/4 2/4 3/4 4/4. 10. Estimation MTH2302D. S. Le Digabel, École Polytechnique de Montréal H2016. (v1) MTH2302D: estimation 1/50 10. Estimation MTH2302D S. Le Digabel, École Polytechnique de Montréal H2016 (v1) MTH2302D: estimation 1/50 Plan 1. Introduction 2. Estimation ponctuelle 3. Estimation par intervalles de confiance 4. Autres

Plus en détail

Première L 2010-2011 DS4 quartiles et diagrammes en boîtes plages de normalité

Première L 2010-2011 DS4 quartiles et diagrammes en boîtes plages de normalité Première L 2010-2011 DS4 quartiles et diagrammes en boîtes plages de normalité NOM : Prénom : Exercice 1 : Elections régionales 1999 Le tableau ci-dessous donne les pourcentages des voix obtenues par le

Plus en détail

Chapitre 3. Les distributions à deux variables

Chapitre 3. Les distributions à deux variables Chapitre 3. Les distributions à deux variables Jean-François Coeurjolly http://www-ljk.imag.fr/membres/jean-francois.coeurjolly/ Laboratoire Jean Kuntzmann (LJK), Grenoble University 1 Distributions conditionnelles

Plus en détail

Chapitre 2: Présentation des données (OpenOffice)

Chapitre 2: Présentation des données (OpenOffice) PRÉSENTATION DES DONNÉES (OPENOFFICE) 13 Chapitre 2: Présentation des données (OpenOffice) 2.1 Détermination des effectifs: v.s qualitative ou quantitative discrète Étape 1: Données brutes à disposition

Plus en détail

T. D. n o 3 Analyse de données quantitatives avec le logiciel R

T. D. n o 3 Analyse de données quantitatives avec le logiciel R T. D. n o 3 Analyse de données quantitatives avec le logiciel R 1 Rappel de quelques fonctions statistiques sous R Fonction summary() cumsum() sum() mean() max() min() range() median() var() sd() Description

Plus en détail

Statistiques I. Alexandre Caboussat alexandre.caboussat@hesge.ch Classe : Mercredi 8h15-10h00 Salle : C114 http://campus.hesge.

Statistiques I. Alexandre Caboussat alexandre.caboussat@hesge.ch Classe : Mercredi 8h15-10h00 Salle : C114 http://campus.hesge. Statistiques I Alexandre Caboussat alexandre.caboussat@hesge.ch Classe : Mercredi 8h15-10h00 Salle : C114 http://campus.hesge.ch/caboussata A. Caboussat, HEG STAT I, 2010 1 / 54 Rappel Représentations

Plus en détail

NOTE SUR LA MODELISATION DU RISQUE D INFLATION

NOTE SUR LA MODELISATION DU RISQUE D INFLATION NOTE SUR LA MODELISATION DU RISQUE D INFLATION 1/ RESUME DE L ANALYSE Cette étude a pour objectif de modéliser l écart entre deux indices d inflation afin d appréhender le risque à très long terme qui

Plus en détail

COURS N 2 LES PRINCIPALES FONCTIONS DE SPSS

COURS N 2 LES PRINCIPALES FONCTIONS DE SPSS COURS N 2 LES PRINCIPALES FONCTIONS DE SPSS 1 Les fonctions de base 2 Les fonctions de tri 3 Les fonctions de transformations de variables 4 Les fonctions de calcul 5 Les fonctions de construction de fichier

Plus en détail

Cahier de vacances - Préparation à la Première S

Cahier de vacances - Préparation à la Première S Cahier de vacances - Préparation à la Première S Ce cahier est destiné à vous permettre d aborder le plus sereinement possible la classe de Première S. Je vous conseille de le travailler pendant les 0

Plus en détail

CONTROLE CONTINU DE STATISTIQUES DESCRIPTIVES L1 ECO - Correction -

CONTROLE CONTINU DE STATISTIQUES DESCRIPTIVES L1 ECO - Correction - CONTROLE CONTINU DE STATISTIQUES DESCRIPTIVES L ECO - Correction - EXERCICE (5 points) Le nombre de téléphones portables vendus en France entre 2005 et 2008 a connu plusieurs évolutions successives : il

Plus en détail

Loi normale ou loi de Laplace-Gauss

Loi normale ou loi de Laplace-Gauss LivreSansTitre1.book Page 44 Mardi, 22. juin 2010 10:40 10 Loi normale ou loi de Laplace-Gauss I. Définition de la loi normale II. Tables de la loi normale centrée réduite S il y avait une seule loi de

Plus en détail

Suites numériques. Exercice 1 Pour chacune des suites suivantes, calculer u 1, u 2, u 3, u 10 et u 100 : Introduction : Intérêts simpleset composés.

Suites numériques. Exercice 1 Pour chacune des suites suivantes, calculer u 1, u 2, u 3, u 10 et u 100 : Introduction : Intérêts simpleset composés. Suites numériques 1ère STG Introduction : Intérêts simpleset composés. On dispose d un capital de 1 000 euros que l on peut placer de deux façons différentes : à intérêts simples au taux annuel de 10%.

Plus en détail

Le suivi de la qualité. Méthode MSP : généralités

Le suivi de la qualité. Méthode MSP : généralités Le suivi de la qualité La politique qualité d une entreprise impose que celle maîtrise sa fabrication. Pour cela, elle doit être capable d évaluer la «qualité» de son processus de production et ceci parfois

Plus en détail

CUEEP Département Mathématiques T801 : Histogrammes et courbes cumulatives p1/8

CUEEP Département Mathématiques T801 : Histogrammes et courbes cumulatives p1/8 Histogrammes et courbes cumulatives Situation L'association de course à pieds VIVALURE a une équipe féminine bien représentée. Ci-dessous, le tableau donne les derniers temps aux 1 Km des participantes.

Plus en détail

Correction Devoir commun de mathématiques n o 1 Classes de 1 ère S

Correction Devoir commun de mathématiques n o 1 Classes de 1 ère S Correction Devoir commun de mathématiques n o 1 Classes de 1 ère S Durée heures. Calculatrice autorisée. Exercice 1 : Une entreprise italienne de fabrication de scooters veut optimiser les bénéfices de

Plus en détail

Exercice 1 Métropole juin 2014 5 points

Exercice 1 Métropole juin 2014 5 points Le sujet comporte 6 pages. Seule l annexe est à rendre avec la copie. BAC BLANC MATHÉMATIQUES TERMINALE STMG Durée de l épreuve : 3 heures Les calculs doivent être détaillés. Les calculatrices sont autorisées,

Plus en détail

Commun à tous les candidats

Commun à tous les candidats BACCALAURÉAT GÉNÉRAL SESSION 213 MATHÉMATIQUES Série ES/L Durée de l épreuve : 3 heures Coefficient : 5 (ES), 4 (L) ES : ENSEIGNEMENT OBLIGATOIRE L : ENSEIGNEMENT DE SPECIALITE Les calculatrices électroniques

Plus en détail

STATISTIQUES I) UN PEU DE VOCABULAIRE

STATISTIQUES I) UN PEU DE VOCABULAIRE STATISTIQUES I) UN PEU DE VOCABULAIRE Toute étude statistique s'appuie sur des données. Dans le cas ou ces données sont numériques (99% des cas), on distingue les données discrètes (qui prennent un nombre

Plus en détail

Loi binomiale Lois normales

Loi binomiale Lois normales Loi binomiale Lois normales Christophe ROSSIGNOL Année scolaire 204/205 Table des matières Rappels sur la loi binomiale 2. Loi de Bernoulli............................................ 2.2 Schéma de Bernoulli

Plus en détail

MATHÉMATIQUES FINANCIÈRES

MATHÉMATIQUES FINANCIÈRES MATHÉMATIQUES FINANCIÈRES Table des matières Version 2012 Lang Fred 1 Intérêts et taux 2 1.1 Définitions et notations................................ 2 1.2 Intérêt simple......................................

Plus en détail

9. Distributions d échantillonnage

9. Distributions d échantillonnage 9. Distributions d échantillonnage MTH2302D S. Le Digabel, École Polytechnique de Montréal H2015 (v3) MTH2302D: distributions d échantillonnage 1/46 Plan 1. Échantillons aléatoires 2. Statistiques et distributions

Plus en détail

9 è et 10 è années 2013

9 è et 10 è années 2013 Partie A: Chaque bonne réponse vaut 3 points. Jeu-concours international KANGOUROU DES MATHÉMATIQUES 1. Le nombre n'est pas divisible par (A). (B). (C). (D). (E). 2. Les huit demi-cercles inscrits à l'intérieur

Plus en détail