EXERCICES - ANALYSE GÉNÉRALE
|
|
- Rémy Larochelle
- il y a 4 ans
- Total affichages :
Transcription
1 EXERCICES - ANALYSE GÉNÉRALE OLIVIER COLLIER Exercice 1 (2012) Une entreprise veut faire un prêt de S euros auprès d une banque au taux annuel composé r. Le remboursement sera effectué en n années par annuités constantes égales à la somme a. Le calcul de la banque. Si la banque avait placé la somme S au taux annuel r, elle aurait récupéré au bout d une année la somme S(1 + r). L entreprise a remboursé durant cette année la somme a, et donc ce qui lui reste à rembourser est la somme S 1 = S(1 + r) a. Si par exemple S = euros, n = 5 et r = 4% avec une annuité fixée à euros, au bout de la première année, le capital restant dû par l entreprise sera égal à S 1 = , = euros. Pour la deuxième année, le même raisonnement s applique avec la somme S 1. (1) Justifier que S 2 = euros. (2) Compléter le tableau suivant : Capital Annuités restant dû S S S S S 5 Si le remboursement doit s effectuer en cinq ans, la somme S 5, qui est égale au capital restant dû au bout de la cinquième année, devrait être égale à 0, ce qui n est pas le cas. La seule variable d ajustement dans les calculs précédents est le montant de l annuité a. Si la durée de remboursement est de n années, il faut que le capital restant dû à l issue de la n ième année, c est-à-dire S n avec les notations précédentes, soit égal à 0. Détermination du montant de l annuité. On se place à nouveau dans le cas général. L entreprise emprunte une somme S au taux annuel r avec des annuités constantes égales à a, et un remboursement en n années. On appelle S k le capital restant dû à l issue de la k ième année. On doit déterminer a pour obtenir S n = 0. (1) Ecrire la relation qu il y a entre S k+1 et S k. (2) En déduire la formule donnant S k en fonction de S, a et r. (3) Montrer que la condition S n = 0 donne alors a = rs(1 + r)n (1 + r) n 1. 1
2 2 OLIVIER COLLIER (4) Déterminer le montant de l annuité avec les données chiffrées de la partie précédente. Reprendre le tableau et vérifier que le résultat trouvé pour a convient bien. Une expression de S. On se place à nouveau dans le cas général. (1) En reprenant l expression de a proposée ci-dessus, donner une expression de S en fonction de a et r. (2) Justifier alors que l on a n a S = (1 + r) k = a 1 + r a (1 + r) n. k=1 Exercice 2 (2011) Définir le coefficient de Gini et la courbe de concentration. Utilisations. Exercice 3 (2009) Un capital de euros est placé au taux de t% pendant un an. L intérêt est capitalisé et le nouveau capital est placé l année suivante au taux de t 1%. L intérêt versé la seconde année est égal à euros. (1) Ecrire une équation vérifiée par t. (2) Calculer le taux d intérêt t. Exercice 4 (2009) Dans un pays européen, le taux marginal d imposition est donné suivant les tranches suivantes : Revenu annuel en milliers d euros [0,7[ [7,30[ [30,+ [ Taux 0% 20% 50% (1) Déterminer le montant de l impôt pour un revenu annuel de euros. (2) Déterminer la différence d impôt entre un revenu de euros et de euros. Quel est le taux marginal d imposition? Exercice 5 (2009) Soit la fonction d utilité U définie pour x et y réels positifs ou nuls par U(x, y) = x 0,8 y 0,2, x et y désignant les quantités de deux biens, B 1 et B 2, acquises par un consommateur. (1) Etudier l homogénéité de U et interpréter le résultat. (2) A la date t = 0, le consommateur dispose de la somme S 0. Maximiser U sous la contrainte de budget, p 1 et p 2 désignant respectivement les prix des biens B 1 et B 2 à la date 0. On déterminera les quantités assurant l existence d un extremum et on admettra qu il s agit d un maximum. Application numérique : S 0 = 75, p 1 = 5 et p 2 = 3. (3) Les prix des biens ont augmenté et sont respectivement, à la date 1, p 1 > p 1 et p 2 > p 2. Calculer la somme S 1 que doit consacrer le consommateur s il désire garder le même niveau d utilité. On exprimera S 0 en fonction de S 0, p 1, p 2, p 1 et p 2.
3 EXERCICES - ANALYSE GÉNÉRALE 3 (4) On appelle indice vrai du coût de la vie, de la date 1, base 100 l année 0, le réel V défini par V 1/0 = S S 0 (a) Calculer V 1/0. (b) Montrer que cet indice peut être considéré comme une moyenne géométrique des indices élémentaires de prix. (5) Calculer l indice de Laspeyres des prix pour un consommateur qui maximise son utilité. (6) Rappeler le lien existant entre cet indice et les indices élémentaires des prix. (7) On admettra le résultat suivant, concernant des réels positifs : H G x, H, G et x désignant respectivement les moyennes harmonique, géométrique et arithmétique. (a) Comparer l indice de Laspeyres et l indice vrai du coût de la vie. (b) Application numérique : S 0 = 75, p 1 = 5, p 2 = 3, p 1 = 7 et p 2 = 4. Exercice 6 (2009) Si la croissance d un pays en l an 2000 était de 5, 3%, qu elle était de 2, 1% en 2001, de 0, 5% en 2002 et de 0, 1% en 2003, quelle fut la croissance de ce pays entre 2000 et 2004? Quelle est le taux de croissance annuel moyen? Quelle devrait être la croissance en 2004 pour que la croissance entre 2000 et 2005 s élève à 12%? Exercice 7 (2009) PARTIE A. Un épargnant dépose dans un organisme de crédit un capital A 0 de euros à la date t = 0, la capitalisation étant effectuées à intérêts composés, au taux annuel i, durant n années, n entier naturel strictement positif. A l issue du placement, l organisme de crédit lui verse une prime égale au montant total des intérêts. (1) Exprimer en fonction de n et de i la valeur acquise A n du capital A 0 à l issue du placement. (2) Calculer la prime I n en fonction de n et de i. Application numérique : i = 4% et n = 6. (3) Démontrer que le taux de rendement j de ce placement est j n = ( 2(1 + i) n 1 ) 1/n 1. (4) On suppose que i = 4%. (a) Compléter le tableau suivant : n j n (b) Que peut-on conjecturer sur le sens de variation de la suite (j n )? On ne cherchera pas à le démontrer. (c) Déterminer la limite de j n quand n tend vers +. On pourra étudier ln(1 + j n ). PARTIE B. Dans cette partie, on suppose qu en plus du versement initial A 0, l épargnant verse à la fin de chaque mois, depuis la date t = 0, des mensualités, selon les modalités suivantes : Ces mensualités sont constantes et égales à 50 euros, et ce durant les n années.
4 4 OLIVIER COLLIER Elles sont capitalisées à la fin de chaque année à intérêts simples, au taux annuel i. On note S la somme capitalisée à la fin d une année, des 12 mensualités de cette année. Les sommes S seront ensuite capitalisées à intérêts composés au même taux i à la date n de fermeture de ce plan-épargne. A l issue de ce placement, l organisme de crédit verse à l épargnant une prime égale au montant total des intérêts. (1) Démontrer que S = i. Application numérique : i = 4%. (2) Calculer, en fonction de i et de n, la valeur totale acquise, notée S n, obtenue à la fermeture du plan par la capitalisation des intérêts composés de l ensemble des sommes S des n années. (3) Calculer la valeur capitalisée des dépôts (A 0 et les mensualités), notée V n, à la fermeture du plan-épargne. Application numérique : i = 4% et n = 6. (4) Calculer la valeur de la prime P n, en fonction de n, pour i = 4%. Application numérique : n = 6. Exercice 8 (2009) Un magasin A affiche en temps ordinaire des tarifs 10% moins chers que ceux d un magasin B se trouvant à proximité. Le magasin B décide d augmenter ses tarifs de 20% avant le début des soldes, puis de solder à 50%, tandis que le magasin A propose des soldes à 40%. Chez quel vendeur vaut-il mieux aller si l on veut payer le moins cher? Exercice 9 (2009) (1) On s intéresse à la répartition de la masse salariale entre les employés d une entreprise A. La courbe de Lorentz en rendant compte est représentée ici. On répondra aux questions suivantes par lecture graphique. (a) Déterminer les coordonnées du point D et les interpréter. (b) Quelle part des richesses se partagent les 10% des salariés les mieux rémunérés? (2) On admet que la courbe de Lorentz représente la fonction f A définie sur [0, 1] par f A (x) = x 2. (a) Rappeler la définition de l indice de Gini ainsi que ses propriétés essentielles et son interprétation. (b) Estimer, par la méthode des trapèzes, l indice de Gini noté γ A de la courbe, en utilisant les points correspondants aux fréquences associées aux quartiles. Interprétez votre résultat. (c) Que devient l indice de Gini si tous les salaires augmentent de 10%? (3) On note γ l indice de Gini lié à une courbe de Lorentz. (a) Démontrer que, si la courbe de Lorentz est la courbe représentative d une fonction f donnée sur l intervalle [0, 1], alors γ = (x f(x)) dx. (b) Calculer alors γ A. (4) On considère les fonctions f B et f C définies sur [0, 1] par f B (x) = xe x 1 et f C (x) = x3 +x 2. On admet qu elles correspondent aux courbes de Lorentz de la répartition salariale de deux entreprises B et C. (a) Etudier rapidement ces deux fonctions et préciser leur convexité.
5 (b) Calculer les indices de Gini γ B et γ C. (c) Comparer les trois indices calculés. EXERCICES - ANALYSE GÉNÉRALE 5
ANALYSE GÉNÉRALE - PROPOSITION DE CORRIGÉ. Exercice 1
ANALYSE GÉNÉRALE - PROPOSITION DE CORRIGÉ OLIVIER COLLIER Exercice 1 Le calcul de la banque. 1 Au bout de deux ans, la banque aurait pu, en prêtant la somme S 1 au taux d intérêt r pendant un an, obtenir
Suites numériques. Quelques rappels
Suites numériques 1 Quelques rappels Trouver pour chacune des suites suivantes les termes manquants. Lesquelles sont des suites arithmétiques? (Préciser le premier terme et la raison) Lesquelles sont des
Leçon 01 Exercices d'entraînement
Leçon 01 Exercices d'entraînement Exercice 1 Etudier la convergence des suites ci-dessous définies par leur terme général: 1)u n = 2n3-5n + 1 n 2 + 3 2)u n = 2n2-7n - 5 -n 5-1 4)u n = lnn2 n+1 5)u n =
Suites numériques. Exercice 1 Pour chacune des suites suivantes, calculer u 1, u 2, u 3, u 10 et u 100 : Introduction : Intérêts simpleset composés.
Suites numériques 1ère STG Introduction : Intérêts simpleset composés. On dispose d un capital de 1 000 euros que l on peut placer de deux façons différentes : à intérêts simples au taux annuel de 10%.
T.D. 1. Licence 2, 2014 15 - Université Paris 8
Mathématiques Financières Licence 2, 2014 15 - Université Paris 8 C. FISCHLER & S. GOUTTE T.D. 1 Exercice 1. Pour chacune des suites ci-dessous, répondre aux questions suivantes : Est-ce une suite monotone?
Suites numériques 2. n=0
Suites numériques 1 Somme des termes d une suite Dans les applications, il est souvent nécessaire de calculer la somme de quelques premiers termes d une suite (ou même de tous les termes, mais on étudiera
Chapitre 4 : cas Transversaux. Cas d Emprunts
Chapitre 4 : cas Transversaux Cas d Emprunts Échéanciers, capital restant dû, renégociation d un emprunt - Cas E1 Afin de financer l achat de son appartement, un particulier souscrit un prêt auprès de
La revalorisation des droits à la retraite avant leur liquidation différences entre les régimes de base et les régimes complémentaires
CONSEIL D ORIENTATION DES RETRAITES Séance plénière du 11 février 2015 à 9 h 30 «La revalorisation des pensions et des droits à la retraite : problématique et résultats de projection» Document N 5 Document
Chapitre 1 : Évolution COURS
Chapitre 1 : Évolution COURS OBJECTIFS DU CHAPITRE Savoir déterminer le taux d évolution, le coefficient multiplicateur et l indice en base d une évolution. Connaître les liens entre ces notions et savoir
Baccalauréat général Antilles-Guyane
Baccalauréat général Antilles-Guyane Mathématiques-informatique - série L - juin 2004 La calculatrice est autorisée. Le candidat doit traiter les DEUX exercices Les annexes 1 et 2 sont à rendre avec la
MATHÉMATIQUES FINANCIÈRES
MATHÉMATIQUES FINANCIÈRES Table des matières Version 2012 Lang Fred 1 Intérêts et taux 2 1.1 Définitions et notations................................ 2 1.2 Intérêt simple......................................
ANNUITES. Les annuités définissent une suite de versements identiques ou non effectués à intervalles de temps égaux. -annuités non constantes
ANNUITES I Notions d annuités a.définition Les annuités définissent une suite de versements identiques ou non effectués à intervalles de temps égaux. Le processus de versements dépend du montant de l annuité,
Cours de mathématiques - Alternance Gea
Cours de mathématiques - Alternance Gea Anne Fredet 17 octobre 2005 1 Suites On appelle suite numérique toute application de N ou une partie de N vers R. On notera par u n le terme général d une suite.
Chapitre II : Les emprunts indivis
Chapitre II : Les emprunts indivis I. Caractéristiques générales On appelle emprunt indivis, un contrat entre un et un seul prêteur et un et un seul emprunteur. Un tel emprunt fait l objet d un remboursement
BACCALAURÉAT TECHNOLOGIQUE Hiver 2 009
blabla BACCALAURÉAT TECHNOLOGIQUE Hiver 2 009 Épreuve : MATHÉMATIQUES Série SCIENCES ET TECHNOLOGIES DE LA GESTION Spécialités : Comptabilité et finance d entreprise (coefficient : 3) Gestion des systèmes
Apllication au calcul financier
Apllication au calcul financier Hervé Hocquard Université de Bordeaux, France 1 er novembre 2011 Intérêts Généralités L intérêt est la rémunération du placement d argent. Il dépend : du taux d intérêts
EMPRUNT INDIVIS. alors : a = III. Comment établir un tableau de remboursement d emprunt à amortissements constants?
EMPRUNT INDIVIS Objectifs : - Savoir calculer une annuité de remboursement constante ; - Dresser un tableau d amortissement d emprunt par annuités constantes ou par amortissements constants ; - Calculer
Chapitre 1 - Suites. Suites géométriques. I.1 Définition et propriétés
Chapitre 1 - Suites I Suites géométriques I.1 Définition et propriétés TD 1 : Évolutions de populations Le premier janvier 2011, une ville A compte 350 000 habitants. A la même date, une ville B compte
) est une suite croissante si et seulement si, pour tout entier n, u n + 1
1> Généralités sur les suites numériques Définition Une suite numérique est une fonction définie sur 0 ou sur une partie de 0 Sens de variation d une suite La suite ( est une suite croissante si et seulement
I Exercices. 1 Définition de suites. 2 Sens de variation d une suite
I Exercices 1 Définition de suites Pour toutes les suites (u n ) définies ci-dessous, on demande de calculer u 1, u, u 3 et u 6 1 u n = 7n n + { u0 = u n+1 = u n + 3 3 u n est le n ième nombre premier
Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé
Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé A. P. M. E. P. Exercice 1 5 points 1. Réponse d. : 1 e Le coefficient directeur de la tangente est négatif et n est manifestement pas 2e
RAPPEL MATHÉMATIQUE Méthodes quantitatives (30 610 94 + 30 620 92)
RAPPEL MATHÉMATIQUE Méthodes quantitatives (30 610 94 + 30 620 92) 1. Suites géométriques Définition Suite Une suite,,,, est un ensemble de nombres. L indice de chaque terme de la suite indique la ou l
Mathématiques. Ch. 1 Suites : Exercices
1 BTS CGO - LYCÉE LOUIS PAYEN - Mathématiques Ch. 1 Suites : Exercices Cours J-L NEULAT 1 Suites et tableurs EXERCICE 1 Un grand magasin estime que chaque année sa clientèle de l année précédente satisfaite
15/02/2009. Le calcul des intérêts. Le calcul des intérêts. Le calcul des intérêts Les intérêts simples. Le calcul des intérêts Les intérêts simples
Le taux d intérêt Comparer ce qui est comparable 2 Chapitre 1 La valeur du temps Aide-mémoire - 2009 1 Deux sommes de même montant ne sont équivalentes que si elles sont considérées à une même date. Un
Un peu de calculs financiers
Un peu de calculs financiers 1. Les intérêts simples Intérêt : somme rapportée par le prêt d un capital. Il est proportionnel au montant de la somme prêtée et à la durée du prêt Période : le temps est
Exercice 1 Métropole juin 2014 5 points
Le sujet comporte 6 pages. Seule l annexe est à rendre avec la copie. BAC BLANC MATHÉMATIQUES TERMINALE STMG Durée de l épreuve : 3 heures Les calculs doivent être détaillés. Les calculatrices sont autorisées,
Devoir commun de Mathématiques
Exercice 1 3,5 points Le tableau suivant donne la répartition des internautes par continent pour les années 2001, 2002, 2003 et 2004 en millions d individus. Il est incomplet. Pour le remplir il faut utiliser
Chapitre 1. La valeur et le temps. 1 Exercice 01-16. 2 Corrigé rigé de l exercice 01-16
Chapitre 1 La valeur et le temps 1 Exercice 01-16 16 Échéance commune de plusieurs effets Définition. L échéance commune de plusieurs effets est l échéance d un effet unique qui, le jour de l équivalence,
ADMISSION AU COLLEGE UNIVERSITAIRE Samedi 1 mars 2014 MATHEMATIQUES durée de l épreuve : 3h coefficient 2
ADMISSION AU COLLEGE UNIVERSITAIRE Samedi 1 mars 2014 MATHEMATIQUES durée de l épreuve : 3h coefficient 2 Le sujet est numéroté de 1 à 5. L annexe 1 est à rendre avec la copie. L exercice Vrai-Faux est
Propriétés des options sur actions
Propriétés des options sur actions Bornes supérieure et inférieure du premium / Parité call put 1 / 1 Taux d intérêt, capitalisation, actualisation Taux d intéret composés Du point de vue de l investisseur,
Master en Droit et Economie / Automne 2015 / Prof. F. Alessandrini. Chapitre 1 : principes. 2 ème partie : la valeur temps de l argent 23.09.
Chapitre 1 : principes 2 ème partie : la valeur temps de l argent 23.09.2015 Plan du cours Arbitrage et décisions financières valeur actuelle arbitrage loi du prix unique Valeur temps valeur actuelle et
Commun à tous les candidats
BACCALAURÉAT GÉNÉRAL SESSION 213 MATHÉMATIQUES Série ES/L Durée de l épreuve : 3 heures Coefficient : 5 (ES), 4 (L) ES : ENSEIGNEMENT OBLIGATOIRE L : ENSEIGNEMENT DE SPECIALITE Les calculatrices électroniques
SENS DE VARIATION D UNE SUITE
1 Les suites SENS DE VARIATION D UNE SUITE La suite (u n ) est croissante lorsque pour tout entier n, u n + 1 u n. La suite (u n ) est décroissante lorsque pour tout entier n, u n + 1 u n. La suite (u
Chapitre 5. Calculs financiers. 5.1 Introduction - notations
Chapitre 5 Calculs financiers 5.1 Introduction - notations Sur un marché économique, des acteurs peuvent prêter ou emprunter un capital (une somme d argent) en contrepartie de quoi ils perçoivent ou respectivement
SESSION 2011 BACCALAURÉAT TECHNOLOGIQUE. Sciences et Technologies de la Gestion. Communication et Gestion des Ressources Humaines MATHÉMATIQUES
SESSION 2011 BACCALAURÉAT TECHNOLOGIQUE Sciences et Technologies de la Gestion Communication et Gestion des Ressources Humaines MATHÉMATIQUES Durée de l épreuve : 2 heures Coefficient : 2 Dès que le sujet
Lycée Alexis de Tocqueville. BACCALAUREAT TECHNOLOGIQUE Blanc Corrigé. Série S.T.M.G. Février 2015 Épreuve de mathématiques.
Lycée Alexis de Tocqueville BACCALAUREAT TECHNOLOGIQUE Blanc Corrigé Série S.T.M.G. Février 2015 Épreuve de mathématiques Durée 3 heures Le candidat traitera obligatoirement les quatre exercices ******
S5 Info-MIAGE 2010-2011 Mathématiques Financières Intérêts composés. Université de Picardie Jules Verne Année 2010-2011 UFR des Sciences
Université de Picardie Jules Verne Année 2010-2011 UFR des Sciences Licence mention Informatique parcours MIAGE - Semestre 5 Mathématiques Financières I - Généralités LES INTERETS COMPOSES 1) Définitions
Bac Blanc Terminale ES - Février 2014 Épreuve de Mathématiques (durée 3 heures)
Bac Blanc Terminale ES - Février 2014 Épreuve de Mathématiques (durée 3 heures) L attention des candidats est attirée sur le fait que la qualité de la rédaction, la clarté et la précision des raisonnements
Suites numériques 4. 1 Autres recettes pour calculer les limites
Suites numériques 4 1 Autres recettes pour calculer les limites La propriété suivante permet de calculer certaines limites comme on verra dans les exemples qui suivent. Propriété 1. Si u n l et fx) est
I Suites géométriques, maths fi (1 + α + α 2 + + α n )
UPV MathsL1S1 1 Suites. Maths fi I Suites géométriques, maths fi (1 + α + α 2 + + α n ) I Deux résultats fondamentaux 1) 1 + 2 + + n = n (n + 1) / 2 On peut connaître ce résultat par coeur. (D ailleurs
DUT Techniques de commercialisation Mathématiques et statistiques appliquées
DUT Techniques de commercialisation Mathématiques et statistiques appliquées Francois.Kauffmann@unicaen.fr Université de Caen Basse-Normandie 3 novembre 2014 Francois.Kauffmann@unicaen.fr UCBN MathStat
Session 2011. Enseignement de Spécialité. Durée de l épreuve : 3 heures. Coefficient : 7. Ce sujet comporte 7 pages numérotées de 1 à 7.
BACCALAURÉAT GENÉRAL Session 2011 MATHÉMATIQUES Série ES Enseignement de Spécialité Durée de l épreuve : 3 heures Coefficient : 7 Ce sujet comporte 7 pages numérotées de 1 à 7. L utilisation d une calculatrice
BACCALAURÉAT GÉNÉRAL SESSION 2012 OBLIGATOIRE MATHÉMATIQUES. Série S. Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE
BACCALAURÉAT GÉNÉRAL SESSION 2012 MATHÉMATIQUES Série S Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE Les calculatrices électroniques de poche sont autorisées, conformément à la
Devoir Commun : 3 heures -27.01.10- Terminales ES - Lycée Newton - Y. Angeli et L. Arab
Exercice Devoir Commun : 3 heures -7..- Terminales ES - Lycée Newton - Y. Angeli et L. Arab Soient f : R { } R, x x3 + x + x + (x + ), et C la courbe de f dans un repère orthonormé d unité, 5cm.. Limites.
BACCALAURÉAT BLANC DE MATHÉMATIQUES. Terminales ES (Spécialité)
BACCALAURÉAT BLANC DE MATHÉMATIQUES Terminales ES (Spécialité) Vendredi 7 février 0 8h - h coefficient : 7 Les calculatrices sont autorisées Le sujet est composé de exercices indépendants. Le candidat
Mathématiques Financières Exercices
Mathématiques Financières Exercices Licence 2, 2015-16 - Université Paris 8 J.CORIS & C.FISCHLER & S.GOUTTE 1 TD 1 : Suites numériques et somme de suites Exercice 1. Pour chacune des suites ci-dessous,
Agrégation interne de Sciences économiques et sociales - Session 2008 Épreuve de Mathématiques - sujet A
Épreuve de Mathématiques - sujet A Exercice Une société de location de voitures possède trois agences, une à Rennes, une à Lyon, une à Marseille. Lorsqu un client loue une voiture, un jour donné, dans
Baccalauréat ES/L Métropole La Réunion 13 septembre 2013 Corrigé
Baccalauréat S/L Métropole La Réunion 13 septembre 2013 Corrigé A. P. M.. P. XRCIC 1 Commun à tous les candidats Partie A 1. L arbre de probabilité correspondant aux données du problème est : 0,3 0,6 H
A propos du calcul des rentabilités des actions et des rentabilités moyennes
A propos du calcul des rentabilités des actions et des rentabilités moyennes On peut calculer les rentabilités de différentes façons, sous différentes hypothèses. Cette note n a d autre prétention que
Les emprunts indivis. Administration Économique et Sociale. Mathématiques XA100M
Les emprunts indivis Administration Économique et Sociale Mathématiques XA100M Les emprunts indivis sont les emprunts faits auprès d un seul prêteur. On va étudier le cas où le prêteur met à disposition
Baccalauréat STG - Mercatique - CFE - GSI Antilles-Guyane 13 septembre 2012 Correction
Baccalauréat STG - Mercatique - FE - GSI Antilles-Guyane 13 septembre 2012 orrection EXERIE 1 et exercice est un questionnaire à choix multiples (QM). Pour chaque question, quatre réponses sont proposées
Devoir a la Maison n 7
Nom :.....Prénom : LFKL 1ere L Note :.. / 20 Appréciation : Signature d'un parent : Temps de préparation 3 10 mai 2006 semaines Code des couleurs de font : Devoir a la Maison n 7 En noir : questions En
2. u 3 = 16, u 7 = 1 et u p = 1 8.
EXERCICE 1 (u n ) est une suite arithmétique de raison a, déterminer l entier k dans chacun des cas suivants : 1. u 21 = 34, a=1,5 et u k = 1 2. u 10 = 64, u 5 = 14 et u k = 114. EXERCICE 2 (u n ) est
Exercice 3 (5 points) A(x) = 1-e -0039' -0 156e- 0,039x A '() -'-,..--,-,--,------:-- X = (l_e-0,039x)2
Les parties A et B sont indépendantes. Partie A Exercice 3 (5 points) Commun à tous les candidats On considère la fonction A définie sur l'intervalle [1 ; + 00 [ par A(x) = 1-e -0039' ' x 1. Calculer la
La maison Ecole d ' Amortissement d un emprunt Classe de terminale ES. Ce qui est demandé. Les étapes du travail
La maison Ecole d ' Amortissement d un emprunt Classe de terminale ES Suites géométriques, fonction exponentielle Copyright c 2004 J.- M. Boucart GNU Free Documentation Licence L objectif de cet exercice
Emprunts indivis (amortissement)
1. Amortissement constant : a) Activité : Une entreprise souhaite renouveler son parc informatique. Elle estime qu elle doit dépenser 5 000 ; elle emprunte cette somme au taux de 5 % annuel le 1 er janvier
LES INFORMATIONS GÉNÉRALES
GUIDE D UTILISATION Calculatrice Texas Instrument BA II Plus Avril 2007 LES INFORMATIONS GÉNÉRALES La calculatrice financière Texas Instrument BA II Plus a été conçue pour satisfaire aux diverses applications
Amortissement annuité 1 180 000 14 400 12 425,31 26 825,31 2. 2) Indiquer ce que sera la deuxième ligne du tableau en justifiant chacun des résultats.
EXERCICES SUR LES EMPRUNTS INDIVIS Exercice 1 Pour financer l extension de son magasin, un responsable a contracté un emprunt remboursable, intérêts compris, sur 10 ans par annuités constantes. Voici le
Mathématiques financières
Mathématique financière à court terme I) Les Intérêts : Intérêts simples Mathématiques financières - Intérêts terme échu et terme à échoir - Taux terme échu i u équivalent à un taux terme à échoir i r
Intérêts. Administration Économique et Sociale. Mathématiques XA100M
Intérêts Administration Économique et Sociale Mathématiques XA100M 1. LA NOTION D INTÉRÊT 1.1. Définition. Définition 1. L intérêt est la rémunération d un prêt d argent effectué par un agent économique
Baccalauréat STMG Antilles Guyane / 18 juin 2015
Exercice 1 Durée : 3 heures Baccalauréat STMG Antilles Guyane / 18 juin 2015 4 points Cet exercice est un questionnaire à choix multiples (QCM). Le candidat recopiera sur sa copie le numéro de la question
ALGEBRE FINANCIERE. Calculez la valeur acquise (capital + intérêts) qu Anatole pourra retirer au bout des six mois. Durée Intérêt Valeur acquise
ALGEBRE FINANCIERE 1. Opérations financières à intérêts simples. a Introduction Placement à court terme Un organisme financier propose aux jeunes de moins de 25 ans les conditions de placement suivantes
Commun à tous les candidats
EXERCICE 3 (9 points ) Commun à tous les candidats On s intéresse à des courbes servant de modèle à la distribution de la masse salariale d une entreprise. Les fonctions f associées définies sur l intervalle
Investissements. Plan
Investissements Plan Relation entre placement, revenus et taux d intérêt Relation entre emprunt, sommes remboursées et taux d intérêt Bilan: relation entre flux monétaires résultant d un échange intertemporel
BULLETIN OFFICIEL DES DOUANES ET DES IMPOTS. Texte n DGI 2004/22 NOTE COMMUNE N 18/2004 R E S U M E
BULLETIN OFFICIEL DES DOUANES ET DES IMPOTS DIFFUSION GENERALE N 2004/02/09 0.1.0.0.1.2. Documents Administratifs (IMPOTS) Texte n DGI 2004/22 NOTE COMMUNE N 18/2004 OBJET: Aménagement du taux des intérêts
Les savoir-faire : I. Taux d évolution : Rappels
Les savoir-faire : Calculer une évolution exprimée en pourcentage. Exprimer en pourcentage une évolution. Connaissant deux taux d évolution successifs, déterminer le taux d évolution global. Connaissant
Annuités. Administration Économique et Sociale. Mathématiques XA100M
Annuités Administration Économique et Sociale Mathématiques XA100M En général, un prêt n est pas remboursé en une seule fois. Les remboursements sont étalés sur plusieurs périodes. De même, un capital
Swap et Swap vanille 2 / 9
Les SWAPs 1 / 9 Swap et Swap vanille Définition Un swap est un accord entre deux entreprises pour échanger des flux de trésorerie dans le futur. Cet accord définit les dates auxquelles ces flux (ou cash-flows)
SESSION 2014 MATHÉMATIQUES. Série : SCIENCES ET TECHNOLOGIES DU MANAGEMENT ET DE LA GESTION STMG. DURÉE DE L ÉPREUVE : 3 heures COEFFICIENT : 3
BACCALAURÉAT TECHNOLOGIQUE SESSION 2014 MATHÉMATIQUES Série : SCIENCES ET TECHNOLOGIES DU MANAGEMENT ET DE LA GESTION STMG DURÉE DE L ÉPREUVE : 3 heures COEFFICIENT : 3 Calculatrice autorisée, conformément
CH X Intérêts composés - Amortissements
CH X Intérêts composés - Amortissements I) Les intérêts composés : 1) Situation : Un capital de 20 000,00 est placé à un taux d intérêts de 4 % l an pendant 5 ans. Chaque année les intérêts produits viennent
Fonctions Nombre Dérivé Fonction dérivée
Fonctions Nombre Dérivé Fonction dérivée Ce chapitre est le chapitre central de la classe de Terminale STG. Il permet (en partie) de clore ce qui avait été entamé dés le collège avec les fonctions affines
Baccalauréat STMG Nouvelle-Calédonie 14 novembre 2014 Correction
Baccalauréat STMG Nouvelle-alédonie 14 novembre 014 orrection EXERIE 1 7 points Dans cet exercice, les parties A, B et sont indépendantes. Le tableau suivant donne le prix moyen d un paquet de cigarettes
Corrigé du baccalauréat ES Antilles Guyane 24 juin 2015
Corrigé du baccalauréat ES Antilles Guyane 2 juin 2015 EXERCICE 1 Commun à tous les candidats Aucune justification n était demandée dans cet exercice. 1. La fonction f définie sur R par f (x)= x 3 + 6x
Baccalauréat STL biotechnologies Métropole La Réunion 18 juin 2015
Baccalauréat STL biotechnologies Métropole La Réunion 18 juin 2015 Calculatrice autorisée conformément à la circulaire n o 99-186 du 16 novembre 1999. Le candidat doit traiter les quatre exercices. Il
Le financement des investissements
Les modes de financement Le crédit aux particuliers Le crédit aux entreprises 1 Les modes de financement L autofinancement Le crédit bancaire Le crédit-bail La location longue durée 2 L autofinancement
Baccalauréat Mathématiques-informatique Polynésie juin 2007
Durée : 1 h 30 La calculatrice est autorisée. Le candidat doit traiter les DEUX exercices L annexe 1 est rendre avec la copie Baccalauréat Mathématiques-informatique Polynésie juin 2007 EXERCICE 1 10 points
Exercices de révision
Exercices de révision EXERCICE 1 Le site (imaginaire) «www.musordi.net» propose aux internautes de télécharger des titres de musique sur leur ordinateur. Son offre commerciale pour un trimestre est la
Baccalauréat SMTG Pondichéry 8 avril 2014 Sciences et technologies du management et de la gestion correction
Baccalauréat SMTG Pondichéry 8 avril 0 Sciences et technologies du management et de la gestion correction EXERCICE points Les deux parties de cet exercice peuvent être traitées de manière indépendante.
nous pouvons calculer l intérêt obtenu par ce capital au bout d un an (n =1). 1an
Chapitre IV : Les intérêts composés I. Généralités et définition Avec les intérêts composés, nous abordons les mathématiques financières de moyen et long terme. Pour gérer les comptes de moyen et long
SUITES ET SÉRIES GÉOMÉTRIQUES
SUITES ET SÉRIES GÉOMÉTRIQUES Sommaire 1. Suites géométriques... 2 2. Exercice... 6 3. Application des suites géométriques aux mathématiques financières... 7 4. Vocabulaire... 7 5. Exercices :... 8 6.
Calcul des intérêts d un prêt. Tableau d amortissement.
Calcul des intérêts d un prêt Tableau d amortissement Version 100 du 28 septembre 2010 Soient C capital emprunté t le taux d intérêt mensuel T le taux annuel effectif global (TAEG) correspondant au taux
I Exercices I-1 1... I-1 2... I-1 3... I-2 4... I-2 5... I-2 6... I-2 7... I-3 8... I-3 9... I-4
Chapitre Convexité TABLE DES MATIÈRES page -1 Chapitre Convexité Table des matières I Exercices I-1 1................................................ I-1................................................
Baccalauréat ES Pondichéry 21 avril 2016
Exercice 1 Commun à tous les candidats Baccalauréat ES Pondichéry 21 avril 216 4 points Cet exercice est un QCM (questionnaire à choix multiples). Pour chacune des quatre questions posées, une seule des
POLY-PREPAS ANNEE 2009/2010 Centre de Préparation aux Concours Paramédicaux
POLY-PREPAS ANNEE 2009/2010 Centre de Préparation aux Concours Paramédicaux - Section : i-prépa Audioprothésiste (annuel) - MATHEMATIQUES 8 : EQUATIONS DIFFERENTIELLES - COURS + ENONCE EXERCICE - Olivier
Baccalauréat ES Polynésie 7 juin 2013
Baccalauréat ES Polnésie 7 juin 2013 EXERCICE 1 Cet exercice est un questionnaire à choix multiples. Pour chaque question, une seule des quatre réponses proposées est correcte. Une réponse juste rapporte
BONUS MALUS. Voici, la façon de calculer la prime : Le montant de la prime à acquitter est égale à : P = PB. C où : P
BONUS MALUS Le propriétaire d un véhicule automobile est tenu d assurer sa voiture auprès d une compagnie d assurances. Pour un véhicule donné, le propriétaire versera annuellement une «prime» à sa compagnie.
DUT Techniques de commercialisation Mathématiques et statistiques appliquées
DUT Techniques de commercialisation Mathématiques et statistiques appliquées Francois.Kauffmann@unicaen.fr Université de Caen Basse-Normandie 15 septembre 2015 Francois.Kauffmann@unicaen.fr UCBN MathStat
Éléments de calcul actuariel
Éléments de calcul actuariel Master Gestion de Portefeuille ESA Paris XII Jacques Printems printems@univ-paris2.fr 3 novembre 27 Valeur-temps de l argent Deux types de décisions duales l une de l autre
Le capital placé reste invariable et produit des intérêts égaux pour chaque période de placement.
3. Les intérêts composés 3. Les intérêts composés 3.1. Introduction ➊ Placement à intérêts simples Le capital placé reste invariable et produit des intérêts égaux pour chaque période de placement. ➋ Placement
LE PERP retraite et protection
LE PERP retraite et protection Benoit Rama http://www.imaf.fr Le PERP (Plan d Épargne Retraite Populaire) est une mesure d encouragement à la préparation de la retraite destinée aux salariés. Il copie
PRÉPARATION DU BACCALAURÉAT MATHÉMATIQUES. SÉRIE ES Obligatoire et Spécialité
PRÉPARATIN DU BACCALAURÉAT MATHÉMATIQUES SÉRIE ES bligatoire et Spécialité Décembre 0 Durée de l épreuve : heures Coefficient : ou L usage d une calculatrice électronique de poche à alimentation autonome,
Première L COMPOSITION DE MATHEMATIQUES - INFORMATIQUE. 2ème trimestre 2010. Durée de l épreuve : 1 h 30
Première L COMPOSITION DE MATHEMATIQUES - INFORMATIQUE 2ème trimestre 2010 Durée de l épreuve : 1 h 30 Le candidat doit traiter les 3 exercices La qualité de la rédaction, la clarté et la précision des
Terminale ES Correction du bac blanc de Mathématiques (version spécialité).
Terminale ES Correction du bac blanc de Mathématiques (version spécialité). Lycée Jacques Monod février 05 Exercice : Voici les graphiques des questions. et.. A 4 A Graphique Question. Graphique Question..
Ou t i l s d a n a l y s e d e l e v o l u t io n d e s
Ou t i l s d a n a l y s e d e l e v o l u t io n d e s c h a r g e s d e p e r s o n n e l Jacques GROLIER Directeur du Master d Économie et de Gestion des Établissements Sanitaires et Sociaux Université
Le financement des investissements par emprunts
Le financement des investissements par emprunts Définition Pour bien démarrer I) Les emprunts a) Remboursables par amortissements constants b) Remboursables par échéances constantes c) Conclusion sur les
L ACCUEIL REGULIER EN ANNEE COMPLETE : DE L EMBAUCHE A LA RUPTURE DU CONTRAT
L ACCUEIL REGULIER EN ANNEE COMPLETE : DE L EMBAUCHE A LA RUPTURE DU CONTRAT Qu est-ce que l accueil en année complète? C est lorsque l assistant maternel accueille un enfant pendant 47 semaines. L enfant
Collège LANGEVIN WALLON CORRIGE du BREVET BLANC DES 25 et 26 mai 2004 SÉRIE COLLÈGE
Collège LANGEVIN WALLON CORRIGE du BREVET BLANC DES 5 et 6 mai 004 SÉRIE COLLÈGE Durée heures MATHEMATIQUES Rédaction, présentation, orthographe (4 points) PARTIE I : ACTIVITES NUMERIQUES (1 points) Dans
Série d exercices 4. /s k
ACT-10412 Mathématiques financières Série d exercices 4 1. Un prêt est remboursé à l aide de n paiements annuels égaux. Après n 1 années, le montant total de capital remboursé s élève à 3 955,20. La part
DUT Techniques de commercialisation Mathématiques et statistiques appliquées
DUT Techniques de commercialisation Mathématiques et statistiques appliquées Francois.Kauffmann@unicaen.fr Université de Caen Basse-Normandie 31 août 2015 Francois.Kauffmann@unicaen.fr UCBN MathStat 31
Correction Bac, série STG CFE
Correction Bac, série STG CFE juin 2011 Exercice n o 1 4 points 1. Pout tout nombre réel strictement positif, le nombre ln(7 a) est égal à ln(7) + ln(a) 2. Dans R, e x 5 = 0 e x = 5 x = ln(5) 3. Dans cette