Cryptographie RSA. Introduction Opérations Attaques. Cryptographie RSA NGUYEN Tuong Lan - LIU Yi 1
|
|
|
- Mireille Desroches
- il y a 10 ans
- Total affichages :
Transcription
1 Cryptographie RSA Introduction Opérations Attaques Cryptographie RSA NGUYEN Tuong Lan - LIU Yi 1
2 Introduction Historique: Rivest Shamir Adleman ou RSA est un algorithme asymétrique de cryptographie à clé publique, très utilisé dans le commerce électronique, et plus généralement pour échanger des données confidentielles sur Internet. Cet algorithme est fondé sur l'utilisation d'une paire de clés composée d'une clé publique pour chiffrer et d'une clé privée pour déchiffrer des données confidentielles Cryptographie RSA NGUYEN Tuong Lan - LIU Yi 2
3 Introduction Fonctionnement général Alice crée la paire de clés (public et privé), envoie sa clé public à Bob. Bob chiffre message M avec ce clé, renvoyer message chiffré C àalice. Alice déchiffre C avec sa clé privée Cryptographie RSA NGUYEN Tuong Lan - LIU Yi 3
4 Opérations Génération des clés Choisir p et q, deux nombres premiers distincts n=pq Calculer l'indicatrice d'euler de n : ϕ ( n) = ( p 1)( q 1) Choisir un entier e, tel que 1 < e< ϕ( n) et premier avec, ϕ( n) appelé «exposant de chiffrement». Calculer d : de 1 mod ϕ( n) de 1 mod ϕ( n) de k ϕ( n) = 1 Extended Euclidean Algorithm : ax + by = gcd( ab, ) (n,e) clé public (n,d) clé privé Cryptographie RSA NGUYEN Tuong Lan - LIU Yi 4
5 Opérations Encryptions c Décryptions mod n mod n Car mod n ed = 1 + kϕ( n). m m c c ( m ) m d d e d ed ed 1 + kϕ( n) k ϕ( n) m m m( m ) m e mod n Cryptographie RSA NGUYEN Tuong Lan - LIU Yi 5
6 Opérations k mm ( ) ϕ ( n)? m mod n Si m premier avec n, d après le théorème d Euler ( n) a ϕ 1 mod n m ϕ mod n m 1 m mod n k ( n) ( ) 1 Cryptographie RSA NGUYEN Tuong Lan - LIU Yi 6
7 Opérations Si m n est pas premier avec n, d après le théorème Chinese remainder, x a 1 x a 2... mod x a k n mod mod 1 n 2 n K Du coup, toutes les solutions x pour ce systeme sont congruentes modulo le produit N = n1n2 nk D après ce théorème on peut séparer à deux: mm ( ) mm ( ) k ( p 1)( q 1) k ( p 1)( q 1) m m mod p mod q Cryptographie RSA NGUYEN Tuong Lan - LIU Yi 7
8 Opérations Supposons m n est pas premier avec p, donc m est un multiple de p mm k ( p 1)( q 1) ( ) 0 m mod p Donc m est premier avec q, d après le théorème d Euler mm ( ) k( p 1) ( q 1) m mod q Grâce au théorème Chinese remainder mm ( ) k ( p 1)( q 1) m mod p q Cryptographie RSA NGUYEN Tuong Lan - LIU Yi 8
9 Exemple 1. Choisir deux entier premier p = 7 et q = n = pq ; n = 7*19 = ϕ ( n) = ( p 1)( q 1) ; ϕ( n) = (7-1)(19-1) = Choisir e > 1 premier avec 108; e = 5 5. Calculer d par ϕ n de 1 mod () d = 65 car 5 65 = 325 = Donc la clé public est (n=133, e=5); la clé privé est (n=133, d=65) Ensuite on prend un message m=6. Cryptographie RSA NGUYEN Tuong Lan - LIU Yi 9
10 Exemple Chiffrer 5 c = 6 Déchiffrer mod 133 = m = 62 mod 133 = 6 On utilise la méthode modulo exponentiation m = C d % n = % 133 = 62 * % 133 = 62 * (62 2 ) 32 % 133 = 62 * % 133 = 62 * (3844 % 133) 32 % 133 = 62 * % 133 Cryptographie RSA NGUYEN Tuong Lan - LIU Yi 10
11 Exemple = 62 * % 133 = 62 * 99 8 % 133 = 62 * 92 4 % 133 = 62 * 85 2 % 133 = 62 * 43 % 133 = 2666 % 133 = 6 Cryptographie RSA NGUYEN Tuong Lan - LIU Yi 11
12 Attaques Mathématique Attaques: Factorisation un Grand nombre Idée: retrouver p et q en factoriser le modulo N Méthode Fermat Méthode Euler Méthode Pollard s Rho Implémentation Attaque: Obtention de physique implémentation d un système cryptographie Timing Attack Cryptographie RSA NGUYEN Tuong Lan - LIU Yi 12
13 Mathématiques Attaques Méthode Fermat n p + = 2 q 2 p q 2 2 Choisir k, le plus petit entier tell que Augmenter k un par un jusqu à ce qu il existe un entier h Et n = (k+g+h)(k+g-h) 2 k > n ( ) 2 2 k + g n = h Cryptographie RSA NGUYEN Tuong Lan - LIU Yi 13
14 Mathématiques Attaques Méthode Pollard s Rho Choisir r, s plus petit que N Si pgcd(r-s,n) # 1, pgcd(r-s,n) est un diviseur de N Sinon, choisir une autre couple (r,s) En effet, a la prochaine itération r = f(r), s = (f(s)) En général f(x)= x 2 + a Cryptographie RSA NGUYEN Tuong Lan - LIU Yi 14
15 Mathématiques Attaques Résultats d implémentions en Java Dell Inspiron D6000 processor 1.6 Ghz chips Intel Pentium M Number of bit (N) Method Rho Fermat Cryptographie RSA NGUYEN Tuong Lan - LIU Yi 15
16 Implémentation Attaque Timing Attack : But: retrouver la clé privé d Algorithme de Square and Multiply mod n. d= d = d.. od1 d t 1 z = C for j = 1 to t-1 do z (1) d j if then (2) endif endfor return z 2 z mod n ==1 z z. C mod n C d t 1 i= 0 d i.2 t 1 i Cryptographie RSA NGUYEN Tuong Lan - LIU Yi 16
17 Implémentation Attaque Attaques Choisir 2 messages E F, tel que d Si nous devons faire mod n et mod n. j = 1 E F 2 E. E 3 2 < n < n < F 3 2 F.F Et, encore 3 F n - Si d 2 2 =0 nous devons faire mod n et F mod n j - Conclusion, si temp(e) < temp(f) le bit est 1, 0 dans le cas contraire. E Cryptographie RSA NGUYEN Tuong Lan - LIU Yi 17
18 Implémentation Attaque The messages E et F Problème: difficile de décider le temps différent En effet, on doit baser sur les probabilités Choisir 2 séries E1..Ek, F1..Fk, calculer le temps moyen, et si temp(emoy) < temp(fmoy)+e c est le bit 1 e peut être déterminée par expériences. En réalité le nombre k de messages est de taille Cryptographie RSA NGUYEN Tuong Lan - LIU Yi 18
19 Implémentation Attaque Résultats en Java (Dell Inspiron D6000 processor 1.6 Ghz chips Intel Pentium M ) Length of private key Number of bits error Cryptographie RSA NGUYEN Tuong Lan - LIU Yi 19
20 Implémentation Attaque Réalité Document Pratical Timing Attack Cryptographie RSA NGUYEN Tuong Lan - LIU Yi 20
21 Conclusion Fort algorithme peut être détruit par une attaque simple Cryptographie RSA NGUYEN Tuong Lan - LIU Yi 21
Cryptographie. Cours 3/8 - Chiffrement asymétrique
Cryptographie Cours 3/8 - Chiffrement asymétrique Plan du cours Différents types de cryptographie Cryptographie à clé publique Motivation Applications, caractéristiques Exemples: ElGamal, RSA Faiblesses,
Cryptographie et fonctions à sens unique
Cryptographie et fonctions à sens unique Pierre Rouchon Centre Automatique et Systèmes Mines ParisTech [email protected] Octobre 2012 P.Rouchon (Mines ParisTech) Cryptographie et fonctions
Calculateur quantique: factorisation des entiers
Calculateur quantique: factorisation des entiers Plan Introduction Difficulté de la factorisation des entiers Cryptographie et la factorisation Exemple RSA L'informatique quantique L'algorithme quantique
Cryptologie. Algorithmes à clé publique. Jean-Marc Robert. Génie logiciel et des TI
Cryptologie Algorithmes à clé publique Jean-Marc Robert Génie logiciel et des TI Plan de la présentation Introduction Cryptographie à clé publique Les principes essentiels La signature électronique Infrastructures
Factorisation d entiers (première partie)
Factorisation d entiers ÉCOLE DE THEORIE DES NOMBRES 0 Factorisation d entiers (première partie) Francesco Pappalardi Théorie des nombres et algorithmique 22 novembre, Bamako (Mali) Factorisation d entiers
CRYPTOGRAPHIE. Signature électronique. E. Bresson. [email protected]. SGDN/DCSSI Laboratoire de cryptographie
CRYPTOGRAPHIE Signature électronique E. Bresson SGDN/DCSSI Laboratoire de cryptographie [email protected] I. SIGNATURE ÉLECTRONIQUE I.1. GÉNÉRALITÉS Organisation de la section «GÉNÉRALITÉS»
INF 4420: Sécurité Informatique Cryptographie II
: Cryptographie II José M. Fernandez M-3106 340-4711 poste 5433 Aperçu Crypto II Types de chiffrement Par bloc vs. par flux Symétrique vs. asymétrique Algorithmes symétriques modernes DES AES Masque jetable
Cours 14. Crypto. 2004, Marc-André Léger
Cours 14 Crypto Cryptographie Définition Science du chiffrement Meilleur moyen de protéger une information = la rendre illisible ou incompréhensible Bases Une clé = chaîne de nombres binaires (0 et 1)
Les risques liés à la signature numérique. Pascal Seeger Expert en cybercriminalité
Les risques liés à la signature numérique Pascal Seeger Expert en cybercriminalité Présentation Pascal Seeger, expert en cybercriminalité Practeo SA, Lausanne Partenariat avec Swisscom SA, Zurich Kyos
Quelques tests de primalité
Quelques tests de primalité J.-M. Couveignes (merci à T. Ezome et R. Lercier) Institut de Mathématiques de Bordeaux & INRIA Bordeaux Sud-Ouest [email protected] École de printemps C2 Mars
La cryptographie du futur
La cryptographie du futur Abderrahmane Nitaj Laboratoire de Mathématiques Nicolas Oresme Université de Caen, France [email protected] http://www.math.unicaen.fr/~nitaj Résumé Sans nous rendre compte,
Cryptologie à clé publique
Cryptologie à clé publique La cryptologie est partout Chacun utilise de la crypto tous les jours sans forcément sans rendre compte en : - téléphonant avec un portable - payant avec sa carte bancaire -
Travail d intérêt personnel encadré : La cryptographie
DÉCAMPS Régis & JUÈS Thomas 110101 111011 111001 111100 100011 001111 001110 110111 111011 111111 011111.......... 011111 110101 110100 011110 001111 000110 101111 010100 011011 100110 101111 010110 101010
Problèmes arithmétiques issus de la cryptographie reposant sur les réseaux
Problèmes arithmétiques issus de la cryptographie reposant sur les réseaux Damien Stehlé LIP CNRS/ENSL/INRIA/UCBL/U. Lyon Perpignan, Février 2011 Damien Stehlé Problèmes arithmétiques issus de la cryptographie
Petite introduction aux protocoles cryptographiques. Master d informatique M2
Petite introduction aux protocoles cryptographiques Master d informatique M2 Les protocoles cryptographiques p.1/48-1 Internet - confidentialité - anonymat - authentification (s agit-il bien de ma banque?)
Panorama de la cryptographie des courbes elliptiques
Panorama de la cryptographie des courbes elliptiques Damien Robert 09/02/2012 (Conseil régional de Lorraine) La cryptographie, qu est-ce que c est? Définition La cryptographie est la science des messages
Certificats X509 & Infrastructure de Gestion de Clés. Claude Gross CNRS/UREC
Certificats X509 & Infrastructure de Gestion de Clés Claude Gross CNRS/UREC 1 Confiance et Internet Comment établir une relation de confiance indispensable à la réalisation de transaction à distance entre
Sécurité de l'information
Sécurité de l'information Sylvain Duquesne Université Rennes 1, laboratoire de Mathématiques 24 novembre 2010 Les Rendez-Vous Mathématiques de l'irem S. Duquesne (Université Rennes 1) Sécurité de l'information
Chapitre VI - Méthodes de factorisation
Université Pierre et Marie Curie Cours de cryptographie MM067-2012/13 Alain Kraus Chapitre VI - Méthodes de factorisation Le problème de la factorisation des grands entiers est a priori très difficile.
Royal Military Academy Brussels, BELGIUM www.rma.ac.be. Secure Information Storage in the Cloud
Royal Military Academy Brussels, BELGIUM www.rma.ac.be Secure Information Storage in the Cloud Thibault-Alexandre SWENNEN 2014 Préface Dans le cadre de la réalisation du mémoire de fin d'étude, parmi plusieurs
Gestion des certificats digitaux et méthodes alternatives de chiffrement
Gestion des certificats digitaux et méthodes alternatives de chiffrement Mai 2011 Julien Cathalo Section Recherches Cryptographie à clé publique Invention du concept : 1976 (Diffie, Hellman) Premier système
LES SECURITES DE LA CARTE BANCAIRE
Projet tutoré 2007 TENEUR Jérôme Groupe: III MAHIEU Maxime Année 2006 / 2007 BINARD Romain RTFI1A LES SECURITES DE LA CARTE BANCAIRE 1 SOMMAIRE I - Introduction II - Le chiffrement symétrique 1 - Les principes
Gestion des Clés. Pr Belkhir Abdelkader. 10/04/2013 Pr BELKHIR Abdelkader
Gestion des Clés Pr Belkhir Abdelkader Gestion des clés cryptographiques 1. La génération des clés: attention aux clés faibles,... et veiller à utiliser des générateurs fiables 2. Le transfert de la clé:
Tests de primalité et cryptographie
UNIVERSITE D EVRY VAL D ESSONNE Tests de primalité et cryptographie Latifa Elkhati Chargé de TER : Mr.Abdelmajid.BAYAD composé d une courbe de Weierstrass et la fonction (exp(x), cos (y), cos(z) ) Maîtrise
Cryptographie. Master de cryptographie Architectures PKI. 23 mars 2015. Université Rennes 1
Cryptographie Master de cryptographie Architectures PKI 23 mars 2015 Université Rennes 1 Master Crypto (2014-2015) Cryptographie 23 mars 2015 1 / 17 Cadre Principe de Kercho : "La sécurité d'un système
Sommaire Introduction Les bases de la cryptographie Introduction aux concepts d infrastructure à clés publiques Conclusions Références
Sommaire Introduction Les bases de la cryptographie Introduction aux concepts d infrastructure à clés publiques Conclusions Références 2 http://securit.free.fr Introduction aux concepts de PKI Page 1/20
Fonction de hachage et signatures électroniques
Université de Limoges, XLIM-DMI, 123, Av. Albert Thomas 87060 Limoges Cedex France 05.55.45.73.10 [email protected] Licence professionnelle Administrateur de Réseaux et de Bases de Données IUT
Résolution d équations non linéaires
Analyse Numérique Résolution d équations non linéaires Said EL HAJJI et Touria GHEMIRES Université Mohammed V - Agdal. Faculté des Sciences Département de Mathématiques. Laboratoire de Mathématiques, Informatique
TECHNIQUES DE CRYPTOGRAPHIE
Jonathan BLANC Enseignant : Sandrine JULIA Adrien DE GEORGES Année universitaire 23/24 Licence Informatique TECHNIQUES DE CRYPTOGRAPHIE - - TABLE DES MATIERES INTRODUCTION 3. TECHNIQUES DE CRYPTOGRAPHIE
Cryptographie appliquée
Cryptographie appliquée Les bases de la cryptographie et ses applications 5INFO INSA m2ri réseau et sécurité Stage sécurité ENSTB 15 mai 2007 1 Grandes idées Cryptographie ancienne : les bases César, Vigenère,
Livre blanc. Sécuriser les échanges
Livre blanc d information Sécuriser les échanges par emails Octobre 2013 www.bssi.fr @BSSI_Conseil «Sécuriser les échanges d information par emails» Par David Isal Consultant en Sécurité des Systèmes d
0x700. Cryptologie. 2012 Pearson France Techniques de hacking, 2e éd. Jon Erickson
0x700 Cryptologie La cryptologie est une science qui englobe la cryptographie et la cryptanalyse. La cryptographie sous-tend le processus de communication secrète à l aide de codes. La cryptanalyse correspond
Sécurité et sûreté des systèmes embarqués et mobiles
Sécurité et sûreté des systèmes embarqués et mobiles Pierre.Paradinas / @ / cnam.fr Cnam/Cedric Systèmes Enfouis et Embarqués (SEE) Plan du cours Sécurité des SEMs La plate-forme et exemple (GameBoy, Smart
Nombres premiers. Comment reconnaître un nombre premier? Mais...
Introduction Nombres premiers Nombres premiers Rutger Noot IRMA Université de Strasbourg et CNRS Le 19 janvier 2011 IREM Strasbourg Definition Un nombre premier est un entier naturel p > 1 ayant exactement
Sécuristation du Cloud
Schémas de recherche sur données chiffrées avancés Laboratoire de Cryptologie Thales Communications & Security 9 Avril 215 9/4/215 1 / 75 Contexte Introduction Contexte Objectif Applications Aujourd hui
Introduction à l étude des Corps Finis
Introduction à l étude des Corps Finis Robert Rolland (Résumé) 1 Introduction La structure de corps fini intervient dans divers domaines des mathématiques, en particulier dans la théorie de Galois sur
Chapitre 7. Sécurité des réseaux. Services, attaques et mécanismes cryptographiques. Hdhili M.H. Cours Administration et sécurité des réseaux
Chapitre 7 Sécurité des réseaux Services, attaques et mécanismes cryptographiques Hdhili M.H Cours Administration et sécurité des réseaux 1 Partie 1: Introduction à la sécurité des réseaux Hdhili M.H Cours
I.1. Chiffrement I.1.1 Chiffrement symétrique I.1.2 Chiffrement asymétrique I.2 La signature numérique I.2.1 Les fonctions de hachage I.2.
DTIC@Alg 2012 16 et 17 mai 2012, CERIST, Alger, Algérie Aspects techniques et juridiques de la signature électronique et de la certification électronique Mohammed Ouamrane, Idir Rassoul Laboratoire de
Signatures électroniques dans les applications INTERNET
ECOLE ROYALE MILITAIRE 156 e Promotion Polytechnique Lieutenant-Général Baron de GREEF Année académique 2005 2006 3 ème épreuve Signatures électroniques dans les applications INTERNET Par le Sous-lieutenant
Probabilités. Rappel : trois exemples. Exemple 2 : On dispose d un dé truqué. On sait que : p(1) = p(2) =1/6 ; p(3) = 1/3 p(4) = p(5) =1/12
Probabilités. I - Rappel : trois exemples. Exemple 1 : Dans une classe de 25 élèves, il y a 16 filles. Tous les élèves sont blonds ou bruns. Parmi les filles, 6 sont blondes. Parmi les garçons, 3 sont
Des codes secrets dans la carte bleue. François Dubois 1
Des codes secrets dans la carte bleue François Dubois 1 Kafemath Le Mouton Noir, Paris 11 ième jeudi 25 juin 2009 1 animateur du Kafemath, café mathématique à Paris. Carte bleue Un geste du quotidien...
De la sécurité physique des crypto-systèmes embarqués
Université de Versailles Saint-Quentin Laboratoire de recherche en informatique De la sécurité physique des crypto-systèmes embarqués THÈSE présentée et soutenue publiquement le 23 novembre 2007 à l École
Objets Combinatoires élementaires
Objets Combinatoires élementaires 0-0 Permutations Arrangements Permutations pour un multi-ensemble mots sous-ensemble à k éléments (Problème du choix) Compositions LE2I 04 1 Permutations Supposons que
titre : CENTOS_CUPS_install&config Système : CentOs 5.7 Technologie : Cups 1.3.7 Auteur : Charles-Alban BENEZECH
2012 Les tutos à toto CUPS server - install and configure Réalisée sur CentOS 5.7 Ecrit par Charles-Alban BENEZECH 2012 titre : CENTOS_CUPS_install&config Système : CentOs 5.7 Technologie : Cups 1.3.7
MEMOIRE DE MAGISTER EN ELECTRONIQUE. OPTION : Télédétection. Application des techniques de cryptage pour la transmission sécurisée d images MSG
REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE MINISTERE DE L ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE UNIVERSITE MOULOUD MAMMERI, TIZI-OUZOU FACULTE DE GENIE ELECTRIQUE ET DE L INFORMATIQUE
Introduction à la sécurité Cours 8 Infrastructure de clés publiques. Catalin Dima
Introduction à la sécurité Cours 8 Infrastructure de clés publiques Catalin Dima 1 Gestion des clés La gestion des clés concerne : La distribution de clés cryptographiques, Les mécanismes utilisés pour
Cryptologie et physique quantique : Espoirs et menaces. Objectifs 2. distribué sous licence creative common détails sur www.matthieuamiguet.
: Espoirs et menaces Matthieu Amiguet 2005 2006 Objectifs 2 Obtenir une compréhension de base des principes régissant le calcul quantique et la cryptographie quantique Comprendre les implications sur la
- un jeu de K cartes représentées par des nombres C 1, C 2 à C K avec K entier strictement
- 0 - - 1 - Domaine technique : Lorsque des personnes jouent aux cartes, ils ont habituellement recours à un tas de cartes mélangées, un joueur tire une carte dans le tas, il ne la voit pas, mais il sait
Exercices - Polynômes : corrigé. Opérations sur les polynômes
Opérations sur les polynômes Exercice 1 - Carré - L1/Math Sup - Si P = Q est le carré d un polynôme, alors Q est nécessairement de degré, et son coefficient dominant est égal à 1. On peut donc écrire Q(X)
Protocoles cryptographiques
MGR850 Hiver 2014 Protocoles cryptographiques Hakima Ould-Slimane Chargée de cours École de technologie supérieure (ÉTS) Département de génie électrique 1 Plan Motivation et Contexte Notations Protocoles
FONDEMENTS DES MATHÉMATIQUES
FONDEMENTS DES MATHÉMATIQUES AYBERK ZEYTİN 1. DIVISIBILITÉ Comment on peut écrire un entier naturel comme un produit des petits entiers? Cette question a une infinitude d interconnexions entre les nombres
TIW4 : SÉCURITÉ DES SYSTÈMES D INFORMATION
TIW4 : SÉCURITÉ DES SYSTÈMES D INFORMATION PROTECTION CRYPTOGRAPHIQUE [email protected] http://liris.cnrs.fr/~rthion/dokuwiki/enseignement:tiw4 Master «Technologies de l Information» Romuald
Richard MONTBEYRE Master 2 Professionnel Droit de l Internet Administration Entreprises. La banque en ligne et le protocole TLS : exemple
Richard MONTBEYRE Master 2 Professionnel Droit de l Internet Administration Entreprises La banque en ligne et le protocole TLS : exemple 1 Introduction Définition du protocole TLS Transport Layer Security
ÉPREUVE COMMUNE DE TIPE 2008 - Partie D
ÉPREUVE COMMUNE DE TIPE 2008 - Partie D TITRE : Les Fonctions de Hachage Temps de préparation :.. 2 h 15 minutes Temps de présentation devant le jury :.10 minutes Entretien avec le jury :..10 minutes GUIDE
Aristote Groupe PIN. Utilisations pratiques de la cryptographie. Frédéric Pailler (CNES) 13 janvier 2009
Aristote Groupe PIN Utilisations pratiques de la cryptographie Frédéric Pailler (CNES) 13 janvier 2009 Objectifs Décrire les techniques de cryptographie les plus courantes Et les applications qui les utilisent
D31: Protocoles Cryptographiques
D31: Protocoles Cryptographiques Certificats et échange de clés Nicolas Méloni Master 2: 1er semestre (2014/2015) Nicolas Méloni D31: Protocoles Cryptographiques 1/21 Introduction Protocole Diffie Hellman:
Trouver un vecteur le plus court dans un réseau euclidien
Trouver un vecteur le plus court dans un réseau euclidien Damien STEHLÉ http://perso.ens-lyon.fr/damien.stehle Travail en commun avec Guillaume HANROT (INRIA Lorraine) CNRS/LIP/INRIA/ÉNS Lyon/Université
Université Paris-Dauphine DUMI2E 1ère année, 2009-2010. Applications
Université Paris-Dauphine DUMI2E 1ère année, 2009-2010 Applications 1 Introduction Une fonction f (plus précisément, une fonction réelle d une variable réelle) est une règle qui associe à tout réel x au
MATHÉMATIQUES DISCRÈTES (4) CRYPTOGRAPHIE CLASSIQUE
MATHÉMATIQUES DISCRÈTES (4) CRYPTOGRAPHIE CLASSIQUE Michel Rigo http://www.discmath.ulg.ac.be/ Année 2007 2008 CRYPTOGRAPHIE. N. F. Art d écrire en chiffres ou d une façon secrète quelconque. Ensemble
Pascal Gachet Travail de diplôme 2001. Déploiement de solutions VPN : PKI Etude de cas
Travail de diplôme 2001 Déploiement de solutions VPN : Département E+I Filière : Télécommunication Orientation : Réseaux et services Professeur responsable : Stefano Ventura Date : 20 décembre 2001 : Remerciements
Nouveaux résultats en cryptographie basée sur les codes correcteurs d erreurs
MajecSTIC 2009 Avignon, France, du 16 au 18 novembre 2009 Nouveaux résultats en cryptographie basée sur les codes correcteurs d erreurs Pierre-Louis CAYREL Université Paris VIII Département de Mathématiques
Le partage de clés cryptographiques : Théorie et Pratique
École Normale Supérieure Université Paris 7 Département d Informatique Groupe de Recherche En Complexité et Cryptographie Le partage de clés cryptographiques : Théorie et Pratique THÈSE présentée et soutenue
Qu est-ce qu un ordinateur quantique et à quoi pourrait-il servir?
exposé UE SCI, Valence Qu est-ce qu un ordinateur quantique et à quoi pourrait-il servir? Dominique Spehner Institut Fourier et Laboratoire de Physique et Modélisation des Milieux Condensés Université
Feuille TD n 1 Exercices d algorithmique éléments de correction
Master Sciences, Technologies, Santé Mention Mathématiques, spécialité Enseignement des mathématiques Algorithmique et graphes, thèmes du second degré Feuille TD n 1 Exercices d algorithmique éléments
Les algorithmes de cryptographie dans les réseaux Wi-Fi
Rapport sécurité Les algorithmes de cryptographie dans les réseaux Wi-Fi Delahaye François-Xavier, Chenailler Jean-Christophe le 2 mars 2003 1 Table des matières 1 Introduction 3 1.1 Utilisation des réseaux
Le format OpenPGP. Traduit par : Sébastien Person. [email protected]. Matthieu Hautreux. [email protected].
Le format OpenPGP Traduit par : Sébastien Person [email protected] Matthieu Hautreux [email protected] Odile Weyckmans [email protected] Relu et maintenu par : Yvon Benoist [email protected]
NOUVELLES TECHNOLOGIES RESEAUX SSH SSL TLS
UNIVERSITE DE MARNE LA VALLEE FILIERE INFORMATIQUE RESEAU ANNEE 2002-2003 STEPHANE BRINSTER GUILLAUME LECOMTE AYMERIC BERNARD NOUVELLES TECHNOLOGIES RESEAUX SSH SSL TLS SSH-SSL-TLS Page 1 sur 40 SOMMAIRE
1 Recherche en table par balayage
1 Recherche en table par balayage 1.1 Problème de la recherche en table Une table désigne une liste ou un tableau d éléments. Le problème de la recherche en table est celui de la recherche d un élément
Certificats (électroniques) : Pourquoi? Comment? CA CNRS-Test et CNRS
Certificats (électroniques) : Pourquoi? Comment? CA CNRS-Test et CNRS Nicole Dausque CNRS/UREC CNRS/UREC IN2P3 Cargèse 23-27/07/2001 http://www.urec.cnrs.fr/securite/articles/certificats.kezako.pdf http://www.urec.cnrs.fr/securite/articles/pc.cnrs.pdf
Ludovic Mé http ://rennes.supelec.fr/rennes/si/equipe/lme/ Campus de Rennes Equipe SSIR
Sécurité et sécurité des grilles Ludovic Mé http ://rennes.supelec.fr/rennes/si/equipe/lme/ Supélec Campus de Rennes Equipe SSIR 1 Sécurité dans les grilles? Nombreux points communs avec la sécurité des
Les protocoles cryptographiques
Les protocoles cryptographiques École des Mines, 3e année 1/79 Véronique Cortier Protocoles cryptographiques - Cours 1 Internet Introduction - confidentialité - anonymat - authentification (s agit-il bien
Probabilités sur un univers fini
[http://mp.cpgedupuydelome.fr] édité le 7 août 204 Enoncés Probabilités sur un univers fini Evènements et langage ensembliste A quelle condition sur (a, b, c, d) ]0, [ 4 existe-t-il une probabilité P sur
Géométrie des nombres et cryptanalyse de NTRU
École normale supérieure Département d informatique Équipe CASCADE INRIA Université Paris 7 Denis Diderot Géométrie des nombres et cryptanalyse de NTRU Thèse présentée et soutenue publiquement le 13 novembre
Cours d arithmétique Première partie
Cours d arithmétique Première partie Pierre Bornsztein Xavier Caruso Pierre Nolin Mehdi Tibouchi Décembre 2004 Ce document est la première partie d un cours d arithmétique écrit pour les élèves préparant
Programmation C++ (débutant)/instructions for, while et do...while
Programmation C++ (débutant)/instructions for, while et do...while 1 Programmation C++ (débutant)/instructions for, while et do...while Le cours du chapitre 4 : le for, while et do...while La notion de
Signature électronique. Romain Kolb 31/10/2008
Romain Kolb 31/10/2008 Signature électronique Sommaire I. Introduction... 3 1. Motivations... 3 2. Définition... 3 3. La signature électronique en bref... 3 II. Fonctionnement... 4 1. Notions requises...
Raisonnement par récurrence Suites numériques
Chapitre 1 Raisonnement par récurrence Suites numériques Terminale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Raisonnement par récurrence. Limite finie ou infinie d une suite.
De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que
Introduction. On suppose connus les ensembles N (des entiers naturels), Z des entiers relatifs et Q (des nombres rationnels). On s est rendu compte, depuis l antiquité, que l on ne peut pas tout mesurer
Algorithmes sur les mots (séquences)
Introduction Algorithmes sur les mots (séquences) Algorithmes sur les mots (textes, séquences, chines de crctères) Nomreuses pplictions : ses de données iliogrphiques ioinformtique (séquences de iomolécules)
Authentification de messages et mots de passe
Sébastien Gambs Autour de l authentification : cours 1 1 et mots de passe Sébastien Gambs [email protected] 1 décembre 2014 Sébastien Gambs Autour de l authentification : cours 1 2 Introduction à l authentification
Skype (v2.5) Protocol Data Structures (French) Author : Ouanilo MEDEGAN http://www.oklabs.net
Skype (v2.5) Protocol Data Structures (French) Author : Ouanilo MEDEGAN http://www.oklabs.net : Champ Encodé SKWRITTEN() : Champ Variable défini Précédemment & définissant l état des champs à suivre ECT
Audit des risques informatiques. Introduction à la Cryptographie Pierre-François Bonnefoi
La cryptographie : Introduction et définitions Introduction Depuis l'egypte ancienne, l'homme a voulu pouvoir échanger des informations de façon confidentielle. En grec : Cryptographie : ( κρυπτο γραφ
Les fonctions de hachage, un domaine à la mode
Les fonctions de hachage, un domaine à la mode JSSI 2009 Thomas Peyrin (Ingenico) 17 mars 2009 - Paris Outline Qu est-ce qu une fonction de hachage Comment construire une fonction de hachage? Les attaques
DOCM 2013 http://docm.math.ca/ Solutions officielles. 1 2 10 + 1 2 9 + 1 2 8 = n 2 10.
A1 Trouvez l entier positif n qui satisfait l équation suivante: Solution 1 2 10 + 1 2 9 + 1 2 8 = n 2 10. En additionnant les termes du côté gauche de l équation en les mettant sur le même dénominateur
108y= 1 où x et y sont des entiers
Polynésie Juin 202 Série S Exercice Partie A On considère l équation ( ) relatifs E :x y= où x et y sont des entiers Vérifier que le couple ( ;3 ) est solution de cette équation 2 Déterminer l ensemble
Sécurité des réseaux IPSec
Sécurité des réseaux IPSec A. Guermouche A. Guermouche Cours 4 : IPSec 1 Plan 1. A. Guermouche Cours 4 : IPSec 2 Plan 1. A. Guermouche Cours 4 : IPSec 3 Pourquoi? Premier constat sur l aspect critique
Protocoles d authentification
Sécurité des Réseaux, Master CSI 2 J.Bétréma, LaBRI, Université Bordeaux 1 Protocoles d authentification 1. Authentification simple 2. Authentification mutuelle 3. Clé de session 4. KDC Source 1. Authentification
Les Protocoles de sécurité dans les réseaux WiFi. Ihsane MOUTAIB & Lamia ELOFIR FM05
Les Protocoles de sécurité dans les réseaux WiFi Ihsane MOUTAIB & Lamia ELOFIR FM05 PLAN Introduction Notions de sécurité Types d attaques Les solutions standards Les solutions temporaires La solution
Audit des risques informatiques
Audit des risques informatiques Introduction à la Cryptographie Pierre-François Bonnefoi Université de Limoges Laboratoire XLIM # 1 # La cryptographie : Introduction et définitions Introduction Depuis
Rapport de stage de fin de première année : exemples de groupes, leur traitement par MAGMA, et applications en cryptographie
Rapport de stage de fin de première année : exemples de groupes, leur traitement par MAGMA, et applications en cryptographie Encadré par Guénaël Renault Tristan Vaccon juin 2009-juillet 2009 Table des
Matrice d accès. Master SEMS, 2013-2014. Pierre Paradinas. October 16, 2013
Matrice d accès Master SEMS, 2013-2014 Pierre Paradinas October 16, 2013 Le Concept de Matrice d Accès ntroduit en 1971 par Butler Lampson Definition On note O, l ensemble des entités objet qui sont impliquées
Sub CalculAnnuite() Const TITRE As String = "Calcul d'annuité de remboursement d'un emprunt"
TD1 : traduction en Visual BASIC des exemples du cours sur les structures de contrôle de l'exécution page 1 'TRADUCTION EN VBA DES EXEMPLES ALGORITHMIQUES SUR LES STRUCTURES 'DE CONTROLE DE L'EXECUTION
Résolution de systèmes linéaires par des méthodes directes
Résolution de systèmes linéaires par des méthodes directes J. Erhel Janvier 2014 1 Inverse d une matrice carrée et systèmes linéaires Ce paragraphe a pour objet les matrices carrées et les systèmes linéaires.
STAGE IREM 0- Premiers pas en Python
Université de Bordeaux 16-18 Février 2014/2015 STAGE IREM 0- Premiers pas en Python IREM de Bordeaux Affectation et expressions Le langage python permet tout d abord de faire des calculs. On peut évaluer
3. Caractéristiques et fonctions d une v.a.
3. Caractéristiques et fonctions d une v.a. MTH2302D S. Le Digabel, École Polytechnique de Montréal H2015 (v2) MTH2302D: fonctions d une v.a. 1/32 Plan 1. Caractéristiques d une distribution 2. Fonctions
Traitement et communication de l information quantique
Traitement et communication de l information quantique Moyen terme : cryptographie quantique Long terme : ordinateur quantique Philippe Jorrand CNRS Laboratoire Leibniz, Grenoble, France [email protected]
INITIATION AU LANGAGE C SUR PIC DE MICROSHIP
COURS PROGRAMMATION INITIATION AU LANGAGE C SUR MICROCONTROLEUR PIC page 1 / 7 INITIATION AU LANGAGE C SUR PIC DE MICROSHIP I. Historique du langage C 1972 : naissance du C dans les laboratoires BELL par
Annexe 8. Documents et URL de référence
Documents et URL de référence Normes et standards Normes ANSI ANSI X9.30:1-1997, Public Key Cryptography for the Financial Services Industry: Part 1: The Digital Signature Algorithm (DSA) (revision of
