Pressiométrie L une au moins des espèces de la transformation chimique étudiée est un gaz.

Documents pareils
EXERCICE 2 : SUIVI CINETIQUE D UNE TRANSFORMATION PAR SPECTROPHOTOMETRIE (6 points)

SUIVI CINETIQUE PAR SPECTROPHOTOMETRIE (CORRECTION)

Comment suivre l évolution d une transformation chimique? + S 2 O 8 = I SO 4

LABORATOIRES DE CHIMIE Techniques de dosage

La spectrophotométrie

A chaque couleur dans l'air correspond une longueur d'onde.

TP : Suivi d'une réaction par spectrophotométrie

(aq) sont colorées et donnent à la solution cette teinte violette, assimilable au magenta.»

Spectrophotométrie - Dilution 1 Dilution et facteur de dilution. 1.1 Mode opératoire :

DM n o 8 TS Physique 10 (satellites) + Chimie 12 (catalyse) Exercice 1 Lancement d un satellite météorologique

EXERCICE II. SYNTHÈSE D UN ANESTHÉSIQUE : LA BENZOCAÏNE (9 points)

FICHE 1 Fiche à destination des enseignants

PHYSIQUE-CHIMIE. Partie I - Spectrophotomètre à réseau

BAC BLANC SCIENCES PHYSIQUES. Durée : 3 heures 30

pka D UN INDICATEUR COLORE

Vitesse d une réaction chimique

Chapitre 7 Les solutions colorées

Rappels sur les couples oxydantsréducteurs

Chapitre 02. La lumière des étoiles. Exercices :

SP. 3. Concentration molaire exercices. Savoir son cours. Concentrations : Classement. Concentration encore. Dilution :

Titre alcalimétrique et titre alcalimétrique complet

Meine Flüssigkeit ist gefärbt*, comme disaient August Beer ( ) et Johann Heinrich Lambert ( )

DETERMINATION DE LA CONCENTRATION D UNE SOLUTION COLOREE

THEME 2. LE SPORT CHAP 1. MESURER LA MATIERE: LA MOLE

TPG 12 - Spectrophotométrie

Sujet. calculatrice: autorisée durée: 4 heures

ANALYSE SPECTRALE. monochromateur

SVE 222 & PCL-442. Fascicule de Travaux Pratiques

Fiche de révisions sur les acides et les bases

Bleu comme un Schtroumpf Démarche d investigation

BTS BAT 1 Notions élémentaires de chimie 1

TRAVAUX PRATIQUESDE BIOCHIMIE L1

Exercices sur le thème II : Les savons

Suivi d une réaction lente par chromatographie

TP 3 diffusion à travers une membrane

Séquence 5 Réaction chimique par échange de protons et contrôle de la qualité par dosage

Mesures et incertitudes

Une nouvelle technique d'analyse : La spectrophotométrie

TS1 TS2 02/02/2010 Enseignement obligatoire. DST N 4 - Durée 3h30 - Calculatrice autorisée

Perrothon Sandrine UV Visible. Spectrophotométrie d'absorption moléculaire Étude et dosage de la vitamine B 6

Session 2011 PHYSIQUE-CHIMIE. Série S. Enseignement de Spécialité. Durée de l'épreuve: 3 heures 30 - Coefficient: 8

Exemple de cahier de laboratoire : cas du sujet 2014

K W = [H 3 O + ] [OH - ] = = K a K b à 25 C. [H 3 O + ] = [OH - ] = 10-7 M Solution neutre. [H 3 O + ] > [OH - ] Solution acide

Classe : 1 ère STL Enseignement : Mesure et Instrumentation. d une mesure. Titre : mesure de concentration par spectrophotométrie

TECHNIQUES: Principes de la chromatographie

1 ère partie : tous CAP sauf hôtellerie et alimentation CHIMIE ETRE CAPABLE DE. PROGRAMME - Atomes : structure, étude de quelques exemples.

AGREGATION DE BIOCHIMIE GENIE BIOLOGIQUE

C2 - DOSAGE ACIDE FAIBLE - BASE FORTE

Exemples d utilisation de G2D à l oral de Centrale

EXERCİCE N 1 : «Synthèse de l éthanamide» (7 pts)

TS 31 ATTAQUE DE FOURMIS!

Mesures calorimétriques

TP n 1: Initiation au laboratoire

33-Dosage des composés phénoliques

Comprendre l Univers grâce aux messages de la lumière

PRISE EN MAIN DU SPECTROPHOTOMETRE UV-VISIBLE SHIMADZU U.V. 240

Séquence 9. Étudiez le chapitre 11 de physique des «Notions fondamentales» : Physique : Dispersion de la lumière

De nombreux composés comportant le squelette aryléthanolamine (Ar-CHOH-CH2-NHR) interfèrent avec le

β-galactosidase A.2.1) à 37 C, en tampon phosphate de sodium 0,1 mol/l ph 7 plus 2-mercaptoéthanol 1 mmol/l et MgCl 2 1 mmol/l (tampon P)

CONCOURS COMMUN 2010 PHYSIQUE

U-31 CHIMIE-PHYSIQUE INDUSTRIELLES

SESSION 2013 ÉPREUVE À OPTION. (durée : 4 heures coefficient : 6 note éliminatoire 4 sur 20) CHIMIE

1 Mise en application

Sartorius DocuClip & Docu-pH Meter. La nouvelle référence pour des analyses électrochimiques sûres

Spectrophotométrie. Spectrophotomètre CCD2. Réf : Version 1.0. Français p 2. Version : 4105

Synthèse et propriétés des savons.

CODEX ŒNOLOGIQUE INTERNATIONAL. SUCRE DE RAISIN (MOUTS DE RAISIN CONCENTRES RECTIFIES) (Oeno 47/2000, Oeno 419A-2011, Oeno 419B-2012)

L ÉLECTROCUTION Intensité Durée Perception des effets 0,5 à 1 ma. Seuil de perception suivant l'état de la peau 8 ma

Indicateur d'unité Voyant Marche/Arrêt

document proposé sur le site «Sciences Physiques en BTS» : BTS AVA 2015

TP 2: LES SPECTRES, MESSAGES DE LA LUMIERE

101 Adoptée : 12 mai 1981

4. Conditionnement et conservation de l échantillon

Correction ex feuille Etoiles-Spectres.

Physique Chimie. Réaliser les tests de reconnaissance des ions Cl -,

SCIENCES PHYSIQUES. Durée : 3 heures. L usage d une calculatrice est interdit pour cette épreuve. CHIMIE

REACTIONS D OXYDATION ET DE REDUCTION

BACCALAURÉAT GÉNÉRAL PHYSIQUE-CHIMIE

Les solutions. Chapitre 2 - Modèle. 1 Définitions sur les solutions. 2 Concentration massique d une solution. 3 Dilution d une solution

Séquence 1. Physique Couleur, vision et image Chimie La réaction chimique. Sommaire

HRP H 2 O 2. O-nitro aniline (λmax = 490 nm) O-phénylène diamine NO 2 NH 2

Mesure de Salinité Réalisation d'un conductimètre

Site : mail : mennier@isnab.fr SUJET ES - session 2003 Page 1 68-(7(6VHVVLRQ

Un spectromètre à fibre plus précis, plus résistant, plus pratique Concept et logiciel innovants

TP 7 : oscillateur de torsion

MASSE, VOLUME ET QUANTITE DE MATIERE

SUJET ZÉRO Epreuve d'informatique et modélisation de systèmes physiques

PRODUIRE DES SIGNAUX 1 : LES ONDES ELECTROMAGNETIQUES, SUPPORT DE CHOIX POUR TRANSMETTRE DES INFORMATIONS

CORRIGE. CHAP 04-ACT PB/DOC Electrolyse de l eau 1/12 1. ALIMENTATION ELECTRIQUE D'UNE NAVETTE SPATIALE

Niveau 2 nde THEME : L UNIVERS. Programme : BO spécial n 4 du 29/04/10 L UNIVERS

Visite à l ICV. En 2009, la création du GIE ICV-VVS permet de franchir un cap en regroupant toutes les ressources disponibles aux filiales ICV et VVS.

Physique : Thermodynamique

FIOLAX. SCHOTT Instruments Solutions. Les solutions tampon dans les ampoules uniques à deux pointes offrent une haute sureté et précision.

Nombres, mesures et incertitudes en sciences physiques et chimiques. Groupe des Sciences physiques et chimiques de l IGEN

Mise en pratique : Etude de spectres

259 VOLUMETRIE ET TITRATION DOSAGE DU NaOH DANS LE DESTOP

Atelier : L énergie nucléaire en Astrophysique

I- Définitions des signaux.

TSTI 2D CH X : Exemples de lois à densité 1

Transcription:

CHAPITRE 3 TECHNIQUES DE SUII TEMPOREL D UNE TRANSFORMATION 1 Pressiométrie L une au moins des espèces de la transformation chimique étudiée est un gaz. 1. Gaz parfait L équation d état d un gaz parfait s écrit : P = nrt P s exprime en pascal (Pa) s exprime en m 3 n s exprime en mole (mol) T s exprime en kelvin (K) R est la constante des gaz parfaits et vaut 8,314 unités SI. olume molaire d un gaz C est le volume occupé par une mole de gaz : indépendant de la nature du gaz, il ne dépend que des conditions de température et pression m = RT P 3. Pression d un gaz La pression exercée par le gaz est : P = F S Avec P en pascal, F en newton et S en m 4. Mesure de la pression Elle peut se mesurer à l aide de deux instruments : le manomètre et le capteur de pression. Manomètre Il est constitué d une capsule qui se déforme élastiquement : d un côté sous l action des forces pressantes du gaz dont on veut mesurer la pression ; de l autre côté sous l action de l air. Un manomètre est généralement différentiel : quand le manomètre indique 0, la pression mesurée est égale à la pression atmosphérique. Capteur de pression Il fournit un signal généralement électrique (tension) qui dépend de la valeur de la pression : U = α.p exemple d application Dans un ballon fermé, on fait réagir un morceau de magnésium de masse m = 0,0 g avec de l acide chlorhydrique en excès. L équation de la réaction associée à la transformation est : Mg(s) + H 3 O + Mg + (aq) + H (g) + H O 54

cours savoir-faire exercices corrigés Le ballon est placé dans un bain qui permet de maintenir la température constante. À la sortie analogique du capteur de pression, on mesure à chaque instant la tension U proportionnelle à la pression dans le ballon. 1. Sachant que l avancement x de la réaction est égal à la quantité de dihydrogène formé, montrer que U = U U 0 est directement proportionnel à p H.. Trouver la relation qui permet de déterminer x à partir de la tension U donnée par le tableau et la quantité de réactif limitant. Compléter le tableau de résultats. Tracer la courbe t x = f(t). t (s) 0 5 50 100 150 00 50 300 350 400 450 500 550 600 650 700 750 800 900 U (m) 95 115 135 155 175 00 0 40 60 70 80 95 310 30 330 340 340 340 340 x (10 1 mmol) 0 0,7 1,3,0,7 3,5 4, 4,9 5,5 5,9 6, 6,7 7, 7,5 7,9 8, 8, 8, 8, corrigé commenté 1. Conseil : l acide est en excès, le réactif limitant est donc le magnésium qui est totalement consommé dans la réaction. n Mg = m = 00, = 8,.10 M Mg 4, 3 4 mol = 8,.10 1 mmol Indication : les gaz sont considérés comme parfaits (P = nrt) La quantité de dihydrogène formé est égale à chaque instant à l avancement de la réaction. À t = 0 s : p 0 = p atm = n RT où n = quantité de matière des espèces présentes dans l air contenu dans le ballon et le volume du ballon. À t : p = p 0 + p H = n RT + nh RT U = αp U 0 = α.p 0 (U U 0 ) = α (p p 0 ) = α (n RT + nh RT n RT ) U = αn RT H = αph. Indication : partir de la relation que l on vient d établir : U = αp H p U U = αp H U f = αp fh U f = H n H p fh = n fh = x x max U x = x max. Uf = x (U-U max. 0 ) (Uf -U 0 ) On peut dès lors compléter le tableau de résultats et tracer la courbe t x = f(t). 9 x (10 _ 1 mmol) 8 7 6 5 4 3 1 0 0 100 00 300 400 500 600 700 800 900 1000 t (s) 55

CHAPITRE 3 TECHNIQUES DE SUII TEMPOREL D UNE TRANSFORMATION Conductimétrie L une au moins des espèces de la transformation chimique doit être sous forme ionique. 1. Conductance et conductivité d une solution ionique G = I = σ S = l. σ U cell (cf. p. xx chap. 5) l G conductance en siemens (S) ou ohm 1 (Ω 1 ) I en ampère (A), U en volt () et σ conductivité en S.m 1 l distance des plaques (m) et S surface des plaques (m ) : S = κcell l. Conductivité molaire ionique Dans un électrolyte où existent les cations A + (aq) et les anions B (aq), on a : σ + = λ A + [A + (aq)] et σ = λ B [B (aq)] avec : [X] en mol par mètre cube (mol.m 3 ) avec : λ x en siemens mètre carré par mol (S.m.mol 1 ) λ A+ et λ B sont les conductivités molaires ioniques des ions A + et B. Si c est la concentration molaire de l électrolyte, on peut écrire : [A + (aq)] = [B (aq)] = c et σ = (λ A+ + λ B ) c G = κ cell.(λ A+ + λ B ) c 3. Mesure de la conductance On mesure la tension U à la sortie analogique du conductimètre : elle est proportionnelle à la conductance G ou à la conductivité σ : U = α.g = k.σ exemple d application On introduit, à l instant t = 0 s,,0 ml de -chloro--méthylpropane dans 75 ml de mélange eau-éthanol à 50 %. On suit l évolution de la réaction par conductimétrie. L équation de la réaction associée à la transformation est : RCl + H O ROH + H 3 O + + Cl (aq) 1. Sachant que l eau est en excès, trouver la relation qui lie la quantité d ions oxonium formés à chaque instant et l avancement x de la réaction. En déduire la valeur de l avancement maximal.. Établir la relation qui relie l avancement x de la réaction à la tension U enregistrée à la sortie analogique du conductimètre, à la tension maximale atteinte et à l avancement maximal. 56

cours savoir-faire exercices corrigés 3. Compléter le tableau de résultats et tracer la courbe t x = f(t). t (ks) 0 0, 0,4 0,6 0,8 1 1, 1,4 1,6 1,8,,4,6,8 3 U () 0 0,44 0,88 1,19 1,5 1,78 1,95,13,1,8,38,44,5,5,5,5 x (mmol) Données : -chloro--méthylpropane : M = 9,5 g.mol 1, masse volumique ρ = 0,85 g.cm 3, solubilité : très faible dans l eau, infinie dans l éthanol. corrigé commenté 1. Indication : l eau est en excès : elle a le rôle de réactif et de solvant, conjointement à l éthanol. m m RCl = ρ. = 0,85,0 = 1,7 g n RCl = RCl 17, = = 18,4 mmol M RCl 9, 5 Équation RCl + H O ROH + H 3 O + + Cl État du système Avancement (mol) Quantités de matière (mol) Initial x i = 0 1,84.10 excès 0 0 0 En cours x 1,84.10 x excès x x x Final x max = 1,84.10 0 excès 1,84.10 1,84.10 1,84.10 L avancement x de la réaction est égal à la quantité d ions oxonium. À l état final, la quantité de matière de -chloro--méthylpropane est nulle 1,84.10 x max = 0 x max = 18,4 mmol.. Indication : utiliser la relation entre la conductance G et les conductivités molaires ioniques. G = κ cell.(λ H3 O + + λ Cl ) [H 3 O + ] et U = α G U = α. κ cell. (λ H3 O + + λ Cl ) x U = k x et Umax = k xmax U = U max x x max xmax. U x = Umax 3. Indication : déterminer U max et compléter le tableau de résultats. t (ks) 0 0, 0,4 0,6 0,8 1 1, 1,4 1,6 1,8,,4,6,8 3 U () 0 0,44 0,88 1,19 1,5 1,78 1,95,13,1,8,38,44,5,5,5,5 x (mmol) 0,0 3, 6,5 8,8 11,0 13,1 14,4 15,7 16,3 16,8 17,5 18,0 18,4 18,4 18,4 18,4 0 18 16 14 1 10 xmax 8 6 4 0 t1 0 0,5 1 1,5,5 3 3,5 x (mmol) t (s) 57

CHAPITRE 3 TECHNIQUES DE SUII TEMPOREL D UNE TRANSFORMATION 3 Spectrophotométrie : l absorbance Lorsque la lumière arrive sur un milieu homogène, une partie de cette lumière incidente est réfléchie, une partie est absorbée par le milieu et le reste est transmis. 1. Absorbance Un faisceau de lumière traverse une épaisseur l de solution d un corps absorbant (= épaisseur de la cuve) : l absorbance A est la grandeur mesurée par le spectrophotomètre I A = log 0 10 I I 0 intensité lumineuse incidente, I intensité lumineuse transmise. Quand A augmente d une unité, l intensité lumineuse transmise est divisée par 10.. Loi de Beer-Lambert Pour que la loi de Beer-Lambert soit vérifiée, il faut utiliser une lumière monochromatique. A = εl c l : longueur de solution traversée par la lumière (cm), c : concentration molaire de la solution (mol.l 1 ), ε : coefficient d extinction molaire (L.mol 1.cm 1 ). 3. Dosage par étalonnage Préparation du blanc : réglage du zéro Le blanc contient la quantité d eau distillée requise et les mêmes réactifs que l échantillon mais il est exempt de la substance à doser. L absorbance obtenue correspond à une concentration de 0 mg/l. Préparation des solutions étalons Il est difficile d avoir une valeur précise de «ε» qui dépend de la substance à analyser et de la longueur d onde. On trace donc la courbe c A = f(c) avec des solutions étalons et on mesure A pour chaque solution étalon. Courbe d étalonnage et concentration de la solution à titrer On trace la courbe c A = f(c). A est proportionnelle à c : la courbe est donc une droite qui passe par 0 si le zéro a été correctement A fait. Pour titrer une solution S de concentration inconnue, on relève l absorbance A s donnée par le spectrophotomètre pour cet échantillon et on détermine sa A s c concentration c s à l aide de la courbe d étalonnage. 0 c s 58

cours savoir-faire exercices corrigés exemple d application On souhaite suivre par spectrophotomètre la cinétique de l oxydation des ions iodure par des ions peroxodisulfate et, pour cela, on doit réaliser une courbe d étalonnage. À cet effet, on réalise une échelle de teinte à partir d une solution de diiode de concentration molaire 4,00.10 3 mol.l 1. Les résultats obtenus sont rassemblés dans le tableau ci-dessous : [I ] mmol.l 1 0 0,5 1 1,5,5 3 3,5 4 A 0,000 0,139 0,80 0,40 0,561 0,700 0,841 0,980 1,118 1. Tracer la courbe [I ] A = f([i ]).. Peut-on utiliser cette courbe pour déterminer la concentration d une solution inconnue dont on connaît l absorbance? Justifier et préciser à quelle(s) condition(s)? 3. Déterminer la concentration d une solution dont l absorbance est A s = 0,30. corrigé commenté 1. Conseil : attention aux unités et bien positionner A en ordonnée et c en abscisse A 1, 1 0,8 0,6 0,4 0,30 0, 0 c s 0 1 3 4 5 [I ] mmol.l _ 1. Conseil : la courbe doit vérifier la loi de Beer-Lambert et doit donc être une droite. La courbe est une droite : il y a proportionnalité entre l absorbance A et la concentration de la solution. Cette droite passe par l origine des axes : le zéro a été fait. On peut donc utiliser cette courbe pour mesurer la concentration d une solution inconnue à condition que sa concentration soit contenue dans la gamme étalon et que cette solution ne contienne pas de matières en suspension et/ou n interfère pas avec le solvant utilisé. 3. Indication : vérifier que l absorbance de la solution inconnue est bien comprise dans la gamme étalon. A s = 0,30 valeur comprise dans la gamme étalon [0-0,989]. On lit sur le graphique : c s = 1,30 mmol.l 1 59

CHAPITRE 3 TECHNIQUES DE SUII TEMPOREL D UNE TRANSFORMATION 4 Spectrophotométrie Le spectrophotomètre peut être utilisé pour suivre la cinétique de certaines réactions lentes qui mettent en jeu une solution contenant une espèce chimique colorée. Pour cela, après avoir établi la courbe d étalonnage, on doit : placer le mélange réactionnel dans une cuve et mesurer l absorbance au cours du temps ; à l aide de la courbe d étalonnage et du tableau descriptif de l évolution du système, déterminer les concentrations et la valeur de l avancement x de la réaction à chaque instant ; tracer la courbe t x = f(t). On souhaite suivre par spectrophotomètre la cinétique de l oxydation des ions iodure par des ions peroxodisulfate. L équation chimique correspondant à cette réaction d oxydoréduction est : S O 8 (aq) + I I (aq) + SO 4 (aq) On dispose d une solution d iodure de potassium de concentration molaire 5,00.10 1 mol.l 1 et d une solution de peroxodisulfate d ammonium de concentration molaire 1,00.10 mol.l 1. À l instant t = 0 s, on mélange 10 ml de chaque solution et on remplit la cuve du spectrophotomètre avec ce mélange. On relève alors les valeurs de l absorbance au cours du temps. Les résultats obtenus sont rassemblés dans le tableau (cf p. 61). 1. Quelle est l espèce chimique colorée? Indiquer la nature du réactif limitant et établir le tableau descriptif de l évolution du système.. En déduire la quantité de matière maximale de réactif ou produit coloré susceptible d être présent dans la solution à un instant t. Cette valeur est-elle bien incluse dans la gamme étalon réalisée précédemment? Peut-on utiliser la courbe d étalonnage préalablement tracée? Justifier. 3. Établir la relation qui relie l avancement x de la réaction à l absorbance A donnée par le spectrophotomètre et à la pente k de la droite d étalonnage c A = f(c). 4. Compléter le tableau de résultats et tracer la courbe t x = f(t). En déduire le temps de demi-réaction. corrigé commenté exemple d application 1. Indication : pour suivre la cinétique d une transformation chimique par spectrophotométrie, il doit y avoir une espèce chimique colorée. 60

cours savoir-faire exercices corrigés L espèce colorée est le diiode. [S O 8 ] = 1.10 mol.l 1 dans la solution initiale. [I ] = 5.10 1 mol.l 1 dans la solution initiale. Les quantités de matière présentes initialement dans le mélange sont donc : n SO8 = [S O 8 ]. = 10.10.10 3 = 10 4 mol et n I = [I ]. = 5.10 1.10.10 3 = 5.10 3 mol ns O- - 3 8-4 n1- Calcul du réactif limitant : k O- 8 = = 10 et k = = 510. - 3 s l =, 5. 10 1 k I > K SO8, le peroxodisulfate est le réactif limitant. Équation S O 8 + I I (aq) + SO 4 État du système Avancement (mol) Quantités de matière (mol) Initial x i = 0 10 4 5.10 3 0 0 En cours x 10 4 x 5.10 3 x x x Final x f = 10 4 0 4,8.10 3 10 4.10 4. Conseil : utiliser le tableau descriptif de l évolution du système. Le réactif limitant est complètement consommé à la fin de l expérience. Donc x f = 10 4 mol. La quantité de diiode en fin d expérience est n I = 10 4 mol. [I ] = n I 10-4 = 0. 10-3 = 5.10 3 mol.l 1 = 5 mmol.l 1 : cette valeur est en dehors de la gamme étalon qui va de 0 à 4 mmol. On devrait théoriquement refaire la gamme étalon. 3. Conseil : calculer la pente en choisissant deux points de la droite. ( A- A1) ( 0, 980-0, 40) A = ε l [I ] = k [I ] k = = = 80 ( 8IB - 8I ) B ( 35, 1510, ) - 3-1 [I ] = k A et [I ] = x s x = A s = k A. 0. 10-3 = 7,1.10 80.A mmol 4. Conseil : vérifier que la valeur maximale de x est voisine de 10 4 mol t(min) 0,5 5 7,5 10 15 0 5 30 35 40 45 50 A 0,000 0,45 0,497 0,73 0,915 1,1 1,375 1,487 1,51 1,518 1,5 1,55 1,55 x (mmol) 0 0,017 0,035 0,05 0,065 0,09 0,098 0,106 0,107 0,108 0,108 0,108 0,108 0,1 x f 0,1 0,08 0,06 x f 0,04 0,0 0 t1 0 10 0 30 40 50 60 t (mm) x f = 0,108 mmol xf = 0,54 mmol t 1 = 7,8 min. 61