La méthode "FSC" : un outil très puissant



Documents pareils
L offre DualSun pour l eau chaude et le chauffage (SSC)

Suivi des Systèmes Solaires Combinés Guide méthodologique

Domosol : Système solaire combiné (SSC) de production d eau chaude et chauffage

Des systèmes de chauffage avec pompe à chaleur et accumulateur de chaleur pour les construction dans les zones de montagne.

Solar Heating System Factsheet (SHSF) - Dossier guide

Aide à l'application EN-1 Part maximale d'énergies non renouvelables dans les bâtiments à construire Edition janvier 2009

Formation Bâtiment Durable :

Eau chaude sanitaire

Copropriété: 31, rue des Abondances Boulogne-Billancourt

Installations de production d Eau Chaude Sanitaire Collective. La Garantie de Résultats Solaires (GRS)

Performances énergétiques de capteurs solaires hybrides PV-T pour la production d eau chaude sanitaire.

GLEIZE ENERGIE SERVICE

À DRAINAGE GRAVITAIRE

Accumulateur combiné au service de la chaleur solaire et des pompes à chaleur. Michel Haller, Robert Haberl, Daniel Philippen

de faible capacité (inférieure ou égale à 75 litres) doivent être certifiés et porter la marque NF électricité performance.

Autonome en énergie, la maison du futur

Stockage de chaleur solaire par sorption : Analyse et contrôle du système à partir de sa simulation dynamique

Maison Modèle BIG BOX Altersmith

Le Chauffe Eau Solaire Individuel

RAPPORT COMPLET D'ETUDE DUALSYS

DROUHIN Bernard. Le chauffe-eau solaire

2.0. Ballon de stockage : Marque : Modèle : Capacité : L. Lien vers la documentation technique :

Annexe 3 Captation d énergie

Technique de pointe. Une autoconsommation efficace de l'électricité solaire

Fiche-conseil C5 Production d eau chaude sanitaire

Prévisions ensoleillées

Energies. D ambiance REFERENCES : ACTIONS MENEES : CONTACT : DESCRIPTION TECHNIQUE DES ACTIONS ENGAGEES : GAINS OU BENEFICES DEGAGES : renouvelables

Notice d'utilisation. Installation solaire avec appareil de régulation KR /2002 FR Pour l'utilisateur

Apports thermiques avec collecteurs solaires pour de l eau chaude sanitaire dans la Maison de retraite Korian Pontlieue

Aide à l'application Chauffage et production d'eau chaude sanitaire Edition décembre 2007

Formulaire standardisé pour un chauffe-eau solaire

Formulaire standardisé pour un chauffe-eau solaire

Résumé et comparaison des coûts

Stockage ou pas stockage?

ballons ECS vendus en France, en 2010

Formation Continue FORMATION INTRA PRESENTATION DES TECHNOLOGIES SOLAIRES. FCIA093 Bis FORMATION DECEMBRE 2007-JANVIER 2008

Production d eau chaude sanitaire thermodynamique, que dois-je savoir?

ROTEX Solaris - Utiliser l énergie solaire gratuite. Nouveau : Chauffe-eau électro-solaire ROTEX HybridCube 343/0/0

Soltherm Personnes morales

CATALOGUE FORMATIONS CLIENTS 2012 SPÉCIAL ÉNERGIES RENOUVELABLES

Le chauffe-eau thermodynamique à l horizon

SOLAIRE BALLERUP LA VILLE CONTEXTE. (Danemark) Ballerup

En recherche, simuler des expériences : Trop coûteuses Trop dangereuses Trop longues Impossibles

Ballon d'eau chaude sanitaire et composants hydrauliques

ÉVOLUTION DE L'ACCIDENTALITÉ ROUTIÈRE DANS LE DÉPARTEMENT DE LA HAUTE-VIENNE Valeurs cumulées sur les 12 derniers mois avec courbe de tendance

Systèmes de mesure ou d estimation des consommations en logement

«Le solaire au sein des énergies nouvelles et re

Les répartiteurs de frais de chauffage dans les immeubles collectifs

Etude de faisabilité

ARCHITECTE-FICHES RESSOURCES

ALFÉA HYBRID DUO FIOUL BAS NOX

SYNOPTIQUE GTB Architecture Générale

J O U R N E E S G EOT H E R M I E EN R E G I O N C E N T R E

1,2,3 SOLEIL EN AVANT PREMIERE

Aide à l'application Preuve du besoin de réfrigération et/ou d humidification de l air Edition mai 2003

VERSION Ce document doit être complété et signé par l installateur agréé Soltherm ayant réalisé les travaux

1 RÉPUBLIQUE FRANÇAISE MINISTÈRE DE L EMPLOI, DE LA COHÉSION SOCIALE ET DU LOGEMENT ARRÊTÉ

Simuler le cumul pour valider

QU EST-CE QU UN CHAUFFE-EAU THERMODYNAMIQUE?

STIMERGY. Data Centers distribués

T. BONNARDOT 17/12/2010

Réduction de la consommation énergétique des datacenter : optimisation du conditionnement d air, influence de. l architecture

Système d énergie solaire et de gain énergétique

Arrêté du XXXX. relatif au contenu et aux modalités de réalisation d un audit énergétique NOR :

Comment peut-on produire du chauffage et de l'eau chaude à partir de l'air? EFFICACITÉ POUR LES MAISONS

La combinaison. naturelle DAIKIN ALTHERMA HYDRIDE POMPE À CHALEUR CHAUFFAGE ET EAU CHAUDE SANITAIRE. Informations préliminaires

48,5 Bcf RAPPORT T SUR L'ÉNERGIE DE L ONTARIO JAN MAR 2015 PÉTROLE ET GAZ NATUREL. Infrastructure de transport du gaz naturel

Récupération de calories pour le chauffage et la production d eau chaude

TP N 5 EDF, compteur

Daikin. DAIKIN ALTHERMA BI-BLOC, Solution pour le tertiaire et le résidentiel collectif. Pompes à chaleur Air / Eau. Inverter. » Economies d énergie

Remeha ZentaSOL. La nouvelle norme en matière de simplicité, design et rendement

Note sur la procédure XnA pour l application au Fonds Chaleur

Installateur en Chauffage, Climatisation, Sanitaire et Energies Renouvelables en alternance

Réseau de chaleur Cantagrelh. Commune d Onet-le-Château

Le recensement du marché de l énergie solaire en 2010

Fiche explicative pour la saisie des équipements du génie climatique dans la RT2012

CRÉDIT D IMPÔT LES GRANDS PRINCIPES. Un crédit d impôt : pourquoi? AVANT-PROPOS. Un crédit d impôt : comment? Un crédit d impôt : dans quels cas?

le chauffage et l eau chaude solaires

Retours d expériences: le suivi de bureaux. Christophe Schmauch Pierrick Nussbaumer CETE de l Est

36% T.Flow VMC hygroréglable & chauffe eau thermodynamique QUAND LA VENTILATION RÉINVENTE L EAU CHAUDE. BÉNÉFICIEZ DE

Innovation Centrosolar SOLARMIX, découvrez le solaire 2 en 1. Janvier 2015

greng /77 L( ~ d el '. parlementaire 1 ~ :.UV Monsieur Laurent Mosar Président de la Chambre des Député-e-s Luxembourg

Mesure de performance énergétique Retour d'expérience

Huit bonnes raisons. sous nos latitudes. Raison 1 Le chauffe-eau solaire est un compagnon idéal

ROTEX Solaris - Energie solaire pour la production d eau chaude sanitaire et le chauffage. Le Chauffage!

Eau Chaude Solaire. Manuel pour la conception, le dimensionnement et la réalisation des installations collectives. Avril 2002 A D E M E

AUDIT DES CONSOMMATIONS D ELECTRICITE DE LA CHAUFFERIE DE LA RESIDENCE LOUIS RIGAL (328 et 330 avenue BERTHELOT Lyon)

Modèle de budget mensuel

Le concept Sunoptimo. L énergie solaire : Gratuite, inépuisable et naturelle

Grenoble ZAC de Bonne

Étude d un système solaire thermique : Effet de l orientation des panneaux solaires

Monitoring THPE. Soutien au projet. Présentation du projet

Installations Solaires Collectives Individualisées

L opération étudiée : le SDEF

Que nous enseigne la base de données PAE?

GSE AIR SYSTEM V3.0 L indépendance énergétique à portée de mains

en Appartement Besoins, Choix du Système, Coûts...

Optimiser le dimensionnement des équipements solaires à partir des bilans de différentes variantes

CONCEPTION ET DIMENSIONNEMENT

Fiche d application. 7 octobre

Transcription:

La méthode "" : un outil très puissant Thomas Letz, INES Education thomas.letz@ines-solaire.fr Un système solaire combiné (SSC) est une installation solaire thermique fournissant de l'énergie provenant de deux sources (solaire et appoint) pour les usages chauffage et eau chaude sanitaire d'une habitation (figure 1) Appoint Eau chaude Pour caractériser ces systèmes, la norme EN 12 977 recommande d'utiliser le taux d'économie d'énergie thermique F sav,th Cet indicateur représente le pourcentage d'énergie d'appoint économisé grâce au SSC par rapport à un système de référence 1 utilisant la même énergie d'appoint et fournissant le même service en chauffage et eau chaude sanitaire (figure 2). Appoint Fig. 2 : Système de référence Eau chaude Circuit chauffage Capteur solaire a de gros besoins de chauffage et d'eau chaude, ou si l'irradiation ou la surface de capteurs solaires sont faibles, sans que cela ne soit dû à un mauvais fonctionnement du système. De même, la productivité (rapport entre l'économie réalisée et la surface de capteurs, en kwh/m²) dépend aussi du dimensionnement des capteurs, des besoins thermiques et du climat. Pour s'affranchir de cette difficulté, une nouvelle méthode a été élaborée, dans le cadre du groupe de travail 26, pour caractériser d'une manière simple les SSC, permettant ainsi la comparaison de systèmes installés dans des climats 2 différents, avec des surfaces de capteurs solaires variées et fournissant de l'énergie à des maisons dont les besoins de chauffage et d'eau chaude sanitaire sont différents. Fig. 1 : Système solaire combiné Circuit chauffage Dans le cadre du groupe de travail 26 de l'agence Internationale de l'energie (programme Solar Heating and Cooling), un deuxième indicateur légèrement différent a été défini : le taux d'économie d'énergie étendu F sav,ext, qui prend également en compte l'électricité utilisée par les auxiliaires des systèmes (pompes, vannes, régulation, brûleur, ) Quand on veut évaluer un SSC, une difficulté majeure provient du fait qu'un seul indicateur ne suffit pas : les taux d'économie seront évidemment faibles si la maison Un SSC de marque A, avec 20 m² de capteurs, qui couvre 25 % des besoins de chauffage et d'eau chaude d'une maison de 180 m² peu isolée située à Strasbourg est-il plus ou moins performant qu'un SSC de marque B, avec 12 m² de capteurs qui couvre 40 % des besoins de chauffage et d'eau chaude d'une maison de 120 m² bien isolée située à Chambéry? 1 Attention : le système de référence n est pas celui qui était en place avant la l installation du SSC, y compris dans le cas de réutilisation de la chaudière : il s agit d un "standard", défini au niveau national ou international. 2 Par climat, on entend ici la température extérieure, et l'irradiation incidente dans le plan des capteurs, qui dépend de la localisation géographique, mais aussi de l'orientation et de l'inclinaison des capteurs, et de la présence éventuelle d'un masque.

L'idée consiste à comparer le taux d'économie d'énergie réel avec un taux d'économie idéal ( : Fraction Solarisable des Consommations) ne dépendant pas du système. Définition du coefficient Si on porte sur le même graphique la consommation de référence et l'irradiation solaire incidente sur les capteurs, différentes zones apparaissent (figure 3) : consommation d'énergie du bâtiment qui dépasse le potentiel solaire consommation d'énergie du bâtiment qui pourrait être économisée grâce à l'utilisation de l'énergie solaire. Elle est appelée énergie solaire "utilisable" énergie solaire excédentaire en été Fig. 3 : Définition de En divisant l'énergie solaire utilisable par la consommation de référence +, il apparaît un nouveau paramètre, appelé "Fraction solarisable des consommations" (en anglais: Fractional Solar Consumption) : = énergie solaire utilisable/consommation annuelle de référence est une grandeur sans dimension, qui prend en compte simultanément le climat, le bâtiment (besoins de chauffage et d'eau chaude sanitaire) et la taille du capteur solaire, et qui de ce fait ne dépend pas du système solaire combiné étudié. est calculé sur une base de temps mensuelle à l'aide d'une formule simple, à partir de la surface de capteurs solaires A c (m 2 ), de l'irradiation mensuelle dans le plan des capteurs I cm (kwh/m 2 ) et de la consommation mensuelle de référence sans système solaire combiné C refm (kwh) : 12 min(c 1 = 12 Prenons l'exemple donné dans le tableau suivant : dans la première ligne, on trouve la consommation d'énergie thermique totale de la maison, incluant les pertes du stockage d'eau chaude sanitaire et de la chaudière (consommation dite "de référence") et dans la deuxième ligne, l'irradiation solaire incidente sur toute la surface des capteurs solaires. Dans la troisième ligne, pour chaque mois, c'est-à-dire dans chaque colonne, on trouve la plus petite des deux valeurs des lignes précédentes. 1 refm C, A refm c I cm ) (kwh) Jan Fév Mar Avr Mai Jun Jul Aoû Sep Oct Nov Dec Année Consommation de référence 2755 1926 1285 923 598 476 489 489 488 915 1874 2690 14908 Irradiation solaire incidente 729 1027 1602 1868 2186 2185 2387 2251 1823 1369 779 600 18803 Energie solaire utilisable 729 1027 1285 923 598 476 489 489 488 915 779 600 8796 0,59

Dans l'exemple précédent, le rapport entre le total annuel de l'énergie solaire utilisable (8796 kwh) et la consommation annuelle de référence (14908 kwh) donne une valeur pour de 0,59. Si le SSC n'avait pas de pertes, tout kwh arrivant sur le capteur permettrait d'économiser un kwh d'appoint. Ainsi, peut être considéré comme le taux d'économie d'énergie d'un SSC idéal ayant la même surface de capteurs solaires que le SSC étudié, et placé dans les mêmes conditions de fonctionnement (mêmes besoins de chauffage et d'eau chaude sanitaire, même climat). Dans la réalité, différentes pertes d'énergie solaire (en bleu sur la figure 4) se produisent en différents points du système (capteur solaire, tuyauteries, stockage, etc ) L'énergie réellement économisée (en vert sur la figure) est donc plus faible. Plus le SSC est efficace, plus les pertes sont réduites et plus F sav se rapproche de. Fig. 4: Bilan thermique d'un SSC Les définitions de F sav et sont résumées par les schémas ci-contre. Système idéal Fraction solarisable des consommations F S C = Relation entre F sav et Système réel Taux d économie d énergie Fsav = Les simulations réalisées dans le cadre du groupe de travail 26 ont montré que le taux d'économie d'énergie réel (thermique ou étendu) pouvait être relié à par une expression parabolique très simple : F sav = ( a ² + b + c ) 100% 90% 80% 70% 60% 50% 40% 30% 20% 10% Fsav,therm Stockholm ; 30 kwh/m² Stockholm ; 60 kwh/m² Stockholm ; 100 kwh/m² Zürich ; 30 kwh/m² Zürich ; 60 kwh/m² Zürich ; 100 kwh/m² Carpentras ; 30 kwh/m² Carpentras ; 60 kwh/m² Carpentras ; 100 kwh/m² y = 0.116x 2 + 0.520x + 0.06 R2 = 0.990 6 8 10 12 14 16 18 20 m² 0% 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 La figure 5 donne un exemple de relation entre F sav et. Les points ont été calculés pour les trois climats de référence et les trois maisons de référence définis par le groupe de travail 26, ainsi que pour différentes tailles de capteurs solaires. On peut noter que les différents points sont très proches de la parabole moyenne. De telles courbes ont été tracées pour 9 SSC simulés dans le cadre du groupe de travail 26. Fig. 5 : F sav,th. en fonction de

Comment utiliser la méthode? Avec l'approche, chaque système solaire combiné est caractérisé par un jeu de coefficients spécifiques (a, b, c) qui décrit le comportement global du système, en tenant compte de la qualité du capteur solaire thermique, du rendement de la chaudière d'appoint, de l'isolation du ou des stockages, et du comportement de la régulation. La courbe caractéristique qui en découle est l'équivalent de la courbe de rendement d'un capteur solaire thermique. Comme la Fraction Solarisable des Consommations d'un SSC peut être calculée facilement à partir des données météorologiques, des besoins en chaleur de la maison et de la surface des capteurs solaires, la méthode présentée ici fournit un moyen simple pour obtenir rapidement les performances moyennes annuelles d'une installation, sous réserve que la maison soit occupée de manière continue pendant toute l'année, que la pose du système soit soignée et que l installation soit correctement réglée et utilisée. La méthode peut également être utilisée pour comparer graphiquement différents systèmes combinés. La figure 6 montre les tailles de capteurs et les volumes de stockage 5000 4500 #15 usuels pour les systèmes simulés par 4000 #11 le groupe de travail 26, repérés par 3500 #9b leur numéro. Chaque polygone 3000 correspond à une plage de #8 2500 dimensionnement préconisée pour le #4 2000 SSC considéré. Un capteur solaire #3a commun a été défini et utilisé pour 1500 toutes ces simulations. De même, 1000 #2 une chaudière commune a été 500 définie pour tous les systèmes 0 n'incluant pas la chaudière d'appoint. Volume de stockage (l) 0 10 20 30 40 50 Surface de capteurs solaires (m²) Fig. 6 : Tailles des systèmes simulés 100% 90% 80% 70% Taux d'économie d'énergie thermique 4 8 15 60% 3a 50% 0,46 19 40% 2 0,32 11gas 30% 11oil 20% 9b 10% 0% 0.0 0.1 0.2 0.3 0.4 0.5 0,59 0.6 0.7 0.8 0.9 1.0 Fig. 7: Performance thermique (F sav en fonction de ) des SSC simulés

La figure 7 montre les courbes caractéristiques obtenues pour ces systèmes. Chaque courbe est repérée par un numéro qui correspond à ceux utilisés sur la figure 6. La courbe n 19 correspond a un système de plus grande taille (plusieurs dizaines ou centaines de m² de capteur et plusieurs m 3 ou dizaines de m 3 de stockage) qui n'a pu être représenté sur la figure 6. Pourtant, la courbe représentative du fonctionnement de ce système a pu être représentée sur la figure 7, ce qui montre la pertinence de l'approche pour des systèmes de toutes tailles. Si on poursuit l'exemple du tableau ci-dessus, le SSC correspondant à la courbe n 15 atteindra un taux d'économie d'énergie de 46 %, donc une économie annuelle de 0,46 x 14 908 = 6 858 kwh, alors que la SSC correspondant à la courbe n 9b atteindra un taux d'économie d'énergie de 32 %, donc une économie annuelle de 0,32 x 14 908 = 4 771 kwh. Conclusion La méthode et la représentation graphique des taux d'économie d'énergie fournissent un outil simple pour comparer les systèmes solaires combinés. Elles peuvent être utilisées pour présenter des résultats de simulation ou de suivis sur site. Elles peuvent être également utilisées pour réaliser des outils de dimensionnement rapide de systèmes solaires combinés, de manière à avoir rapidement une idée de leurs performances en fonction des paramètres de dimensionnement principaux (localisation, surface de capteurs solaires, besoins de chauffage et d'eau chaude sanitaire). C'est cette approche qui a été utilisée dans l'outil CASSSC ( = Calcul Simplifié des Systèmes Solaires Combinés) développé par INES Education et utilisé dans le cadre des formation QualisolCombi.