SUPERCONDENSATEURS : Patrice SIMON. Chaire Développement durable Environnement, Énergie et Société. Chaire annuelle Année académique 2010-2011



Documents pareils
Supercondensateurs électrochimiques : des matériaux aux dispositifs.

Les Rencontres Scientifiques Colas

stockage électrique, le besoin de lisser la production et la nécessité de modifier les réseaux de transport de l électricité, d où le développement

CH-1728 Rossens, Suisse

Batteries. Choix judicieux, résultats performants

Qu'est-ce qu'une batterie Li-Ion? 26 juin 2013 Page 1

T4 Pourquoi éteindre les phares d une voiture quand le moteur est arrêté? Comment fabriquer une pile? un accumulateur?

Les batteries électriques pour les camions et bus électriques Etat de l'art, perspectives et interrogations

Ecologie Economie d Energie

Principe de fonctionnement des batteries au lithium

Rencontre des savoirs. L énergie électrique est-elle bien adaptée à une mobilité durable?

Anodes nanostructurées pour microbatteries 3D Li-ion

véhicule hybride (première

Batteries Lithium-ion et stockage des énergies renouvelables

1 ère partie : tous CAP sauf hôtellerie et alimentation CHIMIE ETRE CAPABLE DE. PROGRAMME - Atomes : structure, étude de quelques exemples.

Nouveau Partner Electrique : 100% Partner, 100% électrique

La voiture électrique. Cliquez pour modifier le style des sous-titres du masque

BATTERIES D ACCUMULATEURS POUR VÉHICULES ÉLECTRIQUES

Méthodes de Caractérisation des Matériaux. Cours, annales

dossier Véhicules électriques et hybrides Édité avec le concours de l Éducation Nationale

Véhicules électriques

AVERTISSEMENT. Contact SCD INPL : scdinpl@inpl-nancy.fr LIENS

Le projet HBS. LETI/DSIS Jean-Jacques Chaillout CEA. All rights reserved

LES GENERATEURS ELECTROCHIMIQUES Energie, Puissance et Technologie

Le VÉHICULE «grand public»

Élaboration et caractérisation de cellules photovoltaïques de troisième génération à colorant (DSSC)

Procédés plasmas à faisceau d ions. P.Y. Tessier

Accumulateurs portables

Notes. Schéma général PRODUCTION ÉLECTROLYTIQUE Composés inorganiques, nonmétaux

Bus hybrides Scania : un concept novateur qui améliore le rendement de 25 %

Contribution des faisceaux d ions à l élaboration de dispositifs pour l électronique souple

Les recherches du CEA sur les batteries pour véhicules électriques 14 septembre 2010

La citadine 100% électrique 250 KM D AUTONOMIE

Batterie Li-ion Evolion. La solution éprouvée ultracompacte de Saft pour les applications télécoms

Polissage des Miroirs d Advanced Virgo : un nouveau défi. Les solutions envisagées

Développement d accumulateurs Li/S

Brochure ALD ELECTRIC PART OF ALD NEWMOBILITY

Autos électriques ou hybrides

Le véhicule électrique

Contribution à la conception par la simulation en électronique de puissance : application à l onduleur basse tension

Préparations avant peinture. Solutions sans CrVI. Michel JANNIER (expert)

MOTO ELECTRIQUE. CPGE / Sciences Industrielles pour l Ingénieur TD06_08 Moto électrique DIAGRAMME DES INTER-ACTEURS UTILISATEUR ENVIRONNEMENT HUMAIN

BICNanoCat. Bombardement Ionique pour la Création de Nano Catalyseurs. Denis Busardo Directeur Scientifique, Quertech

Origine du courant électrique Constitution d un atome

LABORATOIRES DE CHIMIE Techniques de dosage

Conseils pour le choix d un chariot de manutention et pour son utilisation

Traçant le chemin vers l Electrification de l Automobile - Les Véhicules à Pile à Combustible de GM

Technologies. Monoblocs / Traction. Présentation de la gamme. » Quand Innovante rime avec Endurante «

Circuits intégrés micro-ondes

Tous les produits de la gamme SAF offrent des résistances :

Module d Electricité. 2 ème partie : Electrostatique. Fabrice Sincère (version 3.0.1)

Plate forme de modélisation en vue de la prédiction de la durée de vie des bétons vis-à-vis de la pénétration d agents agressifs

Solutions pour le calibrage et l entretien Gamme complète d accessoires indispensables

H E L I O S - S T E N H Y

Le cabriolet 100% électrique 200 KM D AUTONOMIE

Fiche technique Mai, 2011 Dernière version : Oct Produits transparents : SJ 3460 : non adhésif SJ 3560 : Muni d un adhésif acrylique VHB

Projet SETHER Appel à projets Adrien Patenôtre, POWEO

Université de Technologie de Belfort-Montbéliard École doctorale SPIM «Sciences pour l ingénieur et microtechniques» THÈSE.

Utilisation historique de nanomatériaux en pneus et possibilités de nouveaux développements

U NIVERSITÉ M ONTPELLIER II SCIENCES ET TECHNIQUES DU LANGUEDOC THÈSE. pour obtenir le grade de. Docteur de l'université Montpellier II

Batteries stationnaires Saft. Une large gamme de solutions fiables et durables

Programme de batteries Véhicules légers

La gravure. *lagravureparvoiehumide *lagravuresèche

Charge Force Poids. Highly Reliable Systems for Measuring and Monitoring Load, Force and Weight

Bateau à moteur PROPULSEURS. Comment choisir le propulseur adapté à vos besoins. Bateau 1 Tableau 1. Bateau 2. Bateau 4. Bateau 1. Bateau 3.

Multichronomètre SA10 Présentation générale

APPLICATIONS DE L'IMPLANTATION IONIQUE POUR LE BIOMEDICAL

Fonctionnalisation de surfaces de carbone nanostructuré et son effet sur la réponse électrochimique

IR Temp 210. Thermomètre infrarouge. Des techniques sur mesure

Les Essentiels COLLECTION. Les règles de sécurité. pour le dépannage. des véhicules électriques. & hybrides. Commission

GUIDE DE BONNES PRATIQUES POUR LA COLLECTE DE PILES ET ACCUMULATEURS AU LUXEMBOURG

<< easylife.dedietrich-thermique.fr >> Wingo EASYLIFE

Le monde nano et ses perspectives très prometteuses.

Prof. Jean-Marie Tarascon

Sophie Guézo Alexandra Junay

Chauffage par induction

OCEANE Machine de brasage double vague

Gamme Véhicules électriques et hybrides

Mesure de conductivité on-line. Mesurer Surveiller Régler. Mesure de conductivité on-line. Eaux d égout communales et eaux usées industrielles

Synthèse des convertisseurs statiques DC/AC pour les systèmes photovoltaïques

Moins de consommation. Moins de stress. Plus de sécurité.

l énergie Technologies disponibles et recherches du CEA Jeudi 18 octobre 2012

VEHICULES ELECTRIQUES, HYBRIDES ET A PILE A COMBUSTIBLE. Pierre Duysinx Université de Liège Année Académique

DDPAsa CLIM AUTONOME ET RAFRAICHISSEURS A HAUT RENDEMENT MINICOOL : L ÉCONOMIE VERTE. Économie de combustible. 100% Écologique.

RELAIS STATIQUE. Tension commutée

Sondes de conductivité pour applications industrielles hygiéniques

Électricité et électronique

Colle époxydique multi usages, à 2 composants

Metrohm. ph-mètre 780 ph-/ionomètre 781. Un nouveau concept qui fait référence. Analyse des ions

Recommandations pour le contrôle par méthode électrique des défauts des revêtements organiques appliqués sur acier en usine ou sur site de pose

LA nouvelle station service. économies. Green up prises et bornes de recharge. (durables) rechargeable

Laboratoire de Photophysique et de Photochimie Supra- et Macromoléculaires (UMR 8531)

POWER + SA Series 10kVA-40kVA & "POWER kVA-20kVA. Notre alimentation Votre confiance

Styrodur C, un XPS exempt de CFC, HCFC et HFC. De l air, tout simplement. Ecologique, tout simplement.

L automobile de demain 5 fronts à attaquer: les pollutions, la diversité énergétique, la congestion, l amélioration de la sécurité, le confort.

DISQUE DUR. Figure 1 Disque dur ouvert

Résumé des activités de Recherche de Nicolas VIVET

T500 DUAlTACH. JAQUET T500 DualTach Instrument de mesure et de surveillance équipé de 2 entrées fréquence TACHYMETRE 2 CANAUX

Présentations GTF. Point de vue d un utilisateur final. Durée de vie des ouvrages : Approche Prédictive, PerformantielLE et probabiliste

Distribué par / Distributed by:

Transcription:

Chaire Développement durable Environnement, Énergie et Société Chaire annuelle Année académique 2010-2011 SUPERCONDENSATEURS : Principes et Evolutions Patrice SIMON Université Paul Sabatier CIRIMAT UMR CNRS 5085 Toulouse FRANCE simon@chimie.ups-tlse.fr

Plan 1. Les supercondensateurs - principes - applications 2. Les matériaux carbonés pour les supercondensateurs - les différents formes de carbones - les carbones microporeux (poudres, films) 3. Les autres types de supercondensateurs

1. Pourquoi les supercondensateurs? Supercondensateurs: - forte puissance (10-20 kw/kg) - énergie : 5 Wh/kg - constante de temps : ~ 5 s performances intermédiaires entre les capacités et les batteries Différents types de supercondensateurs: - à base d oxydes (pseudo-capacités) - à base de Carbone (> 90% des systèmes commerciaux) Groupes sur les SCs : F. Béguin (CRMD, Orléans), T. Brousse (IMN Nantes), F. Favier (IGC, Montpellier) P. Simon, Y. Gogotsi, Nature Materials, 7 (2008) 845-854

Condensateur classique V + - + - ε r + + - - d 1.1 Stockage des charges : électrostatique Armatures conductrices Q (Ah) = C. V diélectrique (isolant) Supercondensateur : Capacité de double couche électrochimique Electrode Electrolyte C dl 10-20 µf/cm²

1.1 Stockage des charges dans les SCs Stockage électrostatique : pas de réaction d oxydo-réduction V appliqué : adsorption des ions sur C charge de la Double Couche (10-20 µf/cm²) Carbone poreux (grande surface) (1000-2000 m²/g) 100 F/g de CA Electrolyte aqueux : Emax = 1 V Electrolyte organique : Emax = 2,7 V Points-clés : - Pas de Rédox forte Puissance - Cyclabilité : > 10 6 cycles - charge/décharge rapide (qqs) Circuit équivalent simplifié - basses températures (- 40 C)

1.1 Un peu d histoire 1853 : Concept de la double couche (Helmholtz) 1957 : Brevet Becker (U.S. Patent 2,800,616) General Electric : deux électrodes en acier inox recouvertes de carbone électrolyte acide sulfurique) 1966-1970 : Brevets SOHIO Corporation (US patent 3,288,641, US patent 3,536,963) ; électrolyte organique) «Electrokinetic Capacitor» 1978 : NEC (JP) premiers systèmes «Supercapacitor» (licence SOHIO, aqueux) 1991 : Maxwell (USA) ; Boostscap ; 1F < C < 3000F, 2,7V 1995 : Nippon Chemicon (JP) ; DLCAP ; C > 300F, 2,7V 1998 : Nesscap (Cor) ; 10 < C < 2500 F en milieu organique ; Capacité > 300F 2001 : Bolloré (Fr) : Batscap, 600 F à 9000F ; 2,7V

1.1 Résumé : batteries vs SCs Caractéristiques Batteries Li-ion SuperCondensateurs Temps de décharge* 3-5 min. ~ 1s Temps de charge* > 6 min. ~ 1s Durée de vie (cycles) < 5000 (@C) > 1 000 000 Energie (Wh/kg) 100-150 5 Puissance (kw/kg) < 1** > 10 Fonctionnement ( C) -20 C - +70 C -40 C - +70 C Rendement 70% - 95% > 95% Coût ( par Wh) 0,8 1,5 8-15 Coût ( par kw) 60 120 20-40 * pour récupérer la totalité de l énergie stockée ; ** temps minimal de décharge avec un rendement de 90% A. Burke, Electrochimica Acta 53 (2007) 1083 1091, J. Miller ECS Interface (2008) SC et batteries sont complémentaires : puissance et énergie Applications Capacité < 100F : Visseuse électrique - appels de puissance, - tampons de puissance Nombreuses applications existantes : outillage, véhicule, électronique de puissance

Ouverture des portes de l A380 1.2 Applications : la puissance http://www.airbus.com (Maxwell) 16 portes alimentées par des modules 35 V / 28.5 F (14 séries de 4 SC 100F en parallèle)

1.2 Exemples d applications : récupération énergie Récupération énergie Grue portuaire motorisée Levage de containers de 12 m, 40 t 157,000 t de containers par bateau Source: T. Furukawa, NCC SC Module DLCAP Capacitor Module Moteur Diesel SC récupère l énergie lors de la descente et la restitute en phase de levage -40% consommation carburant -25% émission de CO 2 J.R. Miller and P. Simon, Science 321 (2008) 651

1.2 Applications : récupération de l énergie Source : Alstom Collaboration Alstom / Batscap Module SCs : 1) récupération de l énergie de freinage 2) autonomie de traction sur 100s m

1.2 Applications : l automobile Credit: Argone Nal Lab Alterno/démarreur micro-hybride e-hdi pour Citroen C5 and C4 diesel (2012) -15 % gasoil CO 2 < 130g par km

1.3 Quelques exemples de EDLCs NessCap Maxwell De la cellule - de 0,1 F à 9000F - de 10 g à 1kg au module - de 5V à 250 V - de 50g à 450 kg Batscap Nippon Chemi-Con

1.4 Energie et Puissance des EDLCs Energie (max.) W = 1/2 C V 0 ² (J) Puissance (max.) P = V 0 ² / (4R) (W) V 0 : - tension de décomposition de l électrolyte (red/ox) - corrosion collecteur de courant ou carbone Capacité : - Carbone (Farads par gramme ou par cm 3 de carbone) - interface Carbone / électrolyte Résistance : - principalement R électrolyte - impédance d interface Film / collecteur

1.5 EDLCs : défis technologiques Prochains Challenges pour les Supercondensateurs Densité de puissance (Pmax=V²/4R) aujourd hui >10 kw/kg satisfaisante Augmenter la densité d énergie (E=1/2 C.V²) > 10 Wh/kg t décharge > 10s 1. Augmenter la capacité des carbones Travailler sur l interface carbone / électrolyte relation taille des pores / taille des ions? 2. Augmenter la tension de fonctionnement - électrolytes - systèmes hybrides : association électrode batterie à une électrode SC (carbone)

Plan 1. Les supercondensateurs - principes - applications 2. Les supercondensateurs carbone / carbone - les différents formes de carbones (carbone activé) - les carbones microporeux (poudres, films) 3. Les supercondensateurs à base d oxydes

2.1 Le matériau actif : le carbone Matériau actif : pourquoi le carbone? - stable électrochimiquement, conducteur électronique - possibilité de développer de grandes surfaces (> 500 m².g -1 ) 1. Le Carbone activé Carbone activé = carbone poreux S élevée ~1500 m 2 /g

2.1 Le matériau actif : le carbone activé Carbone activé : matériau désordonné Feuillet de graphène Graphite + = A. Terzyk et al., Phys. Chem. Chem. Phys., 2007, 9, 5919 Carbone activé Distribution de taille de pore Photo MET d un CA

2.1 Le matériau actif : le carbone activé Comment augmenter la capacité (charge stockée)? syntétiser des carbones activés de grande surface C dl = (ε 0 ε S) / δ Nanotubes de Carbone Saturation de capacité pour S > 1500 m²/g vers ~ 100 F/g 1. Augmenter la surface spécifique des carbones (m²/g) 2. Rôle de la taille des pores

2.3 Les carbones poreux pour EDLCs Quelle est la taille de pore optimale pour les Carbones? Modèle classique utilisé depuis 20 ans : micropores inactifs Carbones Activés (CA) distribution de taille de pore (PSD) vérification difficile avec CA 0,5 nm 3,5 nm Besoin de nouveaux carbones

Plan 1. Les supercondensateurs - principes - applications 2. Les supercondensateurs carbone / carbone 2.1 les différents formes de carbones 2.2 Carbones microporeux : les CDCs a) électrolyte organique liquide b) liquide ionique 3. Les supercondensateurs à base d oxydes

2. Les Carbones Dérivés de Carbure (CDCs) Collaboration : Prof Y. Gogotsi (USA) Dissolution sélective du métal d un carbure (TiC, SiC, ZrC ) TiC (s) + 2 Cl 2(g) TiCl 4(g) + C (s) ( Tsynthèse, recuit H 2 ) Pourquoi CDCs? Contrôle précis de la taille de pore + PSD étroite Pores de 0,6 à 1 nm (< 2 nm) 1700 1.2 1.1 nm BETSSA (m 2 /g) 1600 1500 1400 1300 1200 1100 1.1 1.0 0.9 0.8 0.7 Average pore size (nm) 8.1 Å 7.6 Å 7.4 Å 7.0 Å 1000 500 600 700 800 900 1000 Chlorination temperature ( C) 0.6 6.8 Å

2.a Les tests Cellules Labo Electrolyte (C 2 H 5 ) 4 N +,BF 4-1,5M in ACN Et 4 N + BF 4-95% CDC, 5% PTFE sur feuille Al électrode 4cm 2, 15 mg/cm²

2.a CDCs: Augmentation de la capacité dans l électrolyte AN + 1M (C 2 H 5 ) 4 N +,BF 4 - Pores < ions solvatés accessible aux ions Capacité dans les micropores (+50%) Hypothése: micropores accessible par déformation de la couche de solvatation J. Chmiola, G. Yushin, Y. Gogotsi, C. Portet, P.L. Taberna and P. Simon, Science 313, 1760-1763 (2006)

2.a Structure des CDCs? Modélisation par Quenched Molecular Dynamics CDCs 600 C (0,74 nm), 800 C (0,8 nm) et 1200 C CDC 600 C (0,74 nm) CDC 800 C (1,2 nm) 4 nm 4 nm 4 nm Structures très désordonnées (pas de plans graphitiques, pas de pores en fente) structure poreuse interconnectée, ouverte J. C. Palmer, et al, Carbon, 48. 1116-1123 (2010)

2.a Mesures 3-électrodes, électrolyte TEABF 4 Cellules 2-electrode mesure de Ccellule Cellules 3-électrodes accès à C(+) et C(-) Cellule Solvant : AN Cyclage Galva. 800ºC TiC CDC +/-20 ma

2.a Mesures 3 electrodes, AN+1,5M TEABF 4 Specific capacitance (F/g) 170 160 150 140 130 120 110 Cell Capacitance Positive electrode Negative electrode < 0.7 nm < < 0.76 nm < 100 0.6 0.7 0.8 0.9 1 1.1 Pore size (nm) 1. Adapter la taille des pores aux ions 2. Ions partiellement désolvatés pour «entrer» dans les pores 3. Cmax pour une taille donnée J. Chmiola. C. Largeot, P.L. Taberna, P. Simon and Y. Gogotsi, Angewandte Chemie Int. 120 (18), 2008, 3440 R. Lin, P.L. Taberna, J. Chmiola, D. Guay, Y. Gogotsi and P. Simon, JECS 158 (2009) A7-A12

2.b Mesures en milieu liquide ionique Cellules 3-electrodes dans (CH 3 )CN + (C 2 H 5 ) 4 N +,BF 4 - ions solvatés Liquides Ioniques: Pas de solvant (sels fondus) Etude du comportement électrochimique des CDCs en ILs

2.b Cellules 3-electrode dans EMI-TFSI Cellules Labo Electrolyte Ethyl-MethylImmidazolium-TriFluoro -methane-sulfonylimide (EMI-TFSI) EMI + TFSI - EMI + : 0,76 nm (longueur) TFSI - : 0,79 nm (longueur) Tailles très proches Temp. 60 C; Carbones: CDCs

2.b Cellules 3-electrode dans EMI-TFSI C (F/g) 180 160 140 120 100 Positive Electrode (F/g) Cell Capacitance (F/g) Negative Electrode (F/g) TFSI - EMI + 80 AC 60 0,6 0,7 0,8 0,9 1 1,1 Pore Size (nm) Augmentation de capacité > 50% vs Carbones Activés (AC) Maximum ~ 0,72 nm quand taille ion ~ taille pore!!! P. Simon, Y. Gogotsi Nature Materials, 7 (2008) 845-854 C. Largeot, C. Portet, J. Chmiola, P.L. Taberna, Y. Gogotsi and P. Simon JACS, 130 (9), 2730-2731 (2008)

2.b Cellules 3-electrode dans EMI-TFSI Maximum de Capacité quand taille ion ~ taille pore : Carbone Carbone Ions alignés dans les pores = augmentation de capacité (>50%) Double-couche dans les pores sub-nanométriques? - puit de potentiel (K. Kaneko, Carbon 2009)? - écrantage (Kornyshev et al.?) - exclusions de contre-ions (Shim et al.) Importance de la modélisation

2.c Modélisation par Reverse Monte Carlo Etude de la solvatation dans des fibres de C de 1 nm taille de pore Electrolyte : + 1) Immersion des fibres de carbone dans l électrolyte 2) XRD (synchroton) ; transformée de Fourier 3) Reconstruction du diffractogramme par Reverse Monte Carlo

2.c Modélisation par Reverse Monte Carlo PC seul (sans sel) XRD Distribution du PC selon Z K. Kaneko et al., JACS 132, 2112 (2010) Pas d organisation du PC Carbone PC+sel PC organisé Molécules de solvant concentrées sur les parois du carbone en présence de sel Environnement différent de l électrolyte libre Début d explication sur la structure des ions dans les nanopores en cours!

Plan 1. Les supercondensateurs - principes et applications 2. Adsorption dans les carbones microporeux (CDCs) a) électrolyte organique liquide b) liquide ionique c) modélisation d) films de CDC massifs 3. Les supercondensateurs à base d oxydes

2.d Films massifs de CDCs Micro-systèmes pour: - alimenter des MEMS (accéléromètres) - récupérer l énergie (vibration) TiC massif (céramique) 1. Chlorination @ 500 C TiC derived carbon film Monolithic TiC 2. Cellule Pas de liant, électrode dense TiC plate CDC film Teflon plates Electrolyte + separator

2.d SEM et Raman A B Films craquelés mais adhérents CDC CDC Spectres Raman similaires dans l épaisseur du film

2.d CDCs films : Capacités volumiques ACN + 1M NEt 4 BF 4 H 2 SO 4 1M A B CA CA Capacité volumique 180 F/cm 3 pour e = 1 µm (CA = 50 F/cm 3 ) Films minces de haute densité d énergie (+300%!!!) J. Chmiola, C. Largeot, P.L. Taberna, P. Simon and Y. Gogotsi, Science 328, 480-483 (April 2010)

2.d CDCs films : vers SC intégrés sur Si? A B SiO 2 Sputtered TiC thin film Chlorination (500 C<T<1000 C) SiO 2 TiC-CDC thin film Si waffer Si waffer D Electrolyte Au collectors C Masking and Au sputterring Au collector Au collector SiO 2 CDC etching SiO 2 Si waffer Si waffer CDC film J. Chmiola, C. Largeot, P.L. Taberna, P. Simon and Y. Gogotsi, Science 328, 480-483 (April 2010)

2.d Films minces de CDC sur supports (PVD) Préparés @ 500 C 400 C 300 C 300 C Plusieurs types de substrats peuvent être utilisés M. Heon, S. Lofland, J. Applegate, J. D. Hettinger, P.-L. Taberna, P. Simon, P. Huang, M. Brunet, Y. Gogotsi, Energy and Envi. Science in press.

2.d Couches minces CDC: Electrochimie TEA-BF 4 dans ACN CVs de films de CDC Impédance 300 C Capacité Volumique 190 F.cm -3 100 F.cm -3 @ 0,5 V.s -1 M. Heon, et al., Energy and Envi. Science in press. Capacité Volumique vs. Vitesse de balayage

2.d Essais de gravure Laser Patterning (FIB) ; 2 électrodes inter-digitées. 5 µm Y. Gogotsi, M. Heon (Drexel Univ.) Application : micro-systèmes intégrés sur Si de haute densité d énergie

Plan 1. Les supercondensateurs - principes et applications 2. Adsorption dans les carbones microporeux (CDCs) a) électrolyte organique liquide b) liquide ionique c) modélisation d) films de CDC massifs 3. Les supercondensateurs à base d oxydes

3. Autres types de supercondensateurs Prochains Défis pour les Supercondensateurs Augmenter la densité d énergie (E=1/2 C.V²) > 10 Wh/kg t décharge > 10s 1. Augmenter la capacité des carbones Travailler sur l interface carbone / électrolyte relation taille des pores / taille des ions 2. Augmenter la tension de fonctionnement

2. Augmenter la tension de fonctionnement a) Nouveaux électrolytes : 3. Autres types de supercondensateurs Mettre au point des électrolytes stables à haut potentiel Potential / V vs. Ag/AgCl 5 Cathode 4 3 2 1 0 K. Naoi E a Anode Q 1 2,7 V Potential / V vs. Ag/AgCl 5 4 3 2 1 0 Cathode E c Anode 3.5 V Q 3 (Q 2 > Q 3 > Q 1 ) Liquides ioniques : E max = 4 V MAIS peu conducteurs ; OK pour T>30 C Travaux sur les électrolytes organiques : remplacement AN Electrolytes aqueux : C/C avec E max = 2V Travaux F. Beguin, E. Pinero-Raymundo (CRMD)

3. Les systèmes hybrides (asymétriques) b) Systèmes hybrides : Associer une électrode de carbone à une électrode faradique (type batterie) 5 Cathode 5 Cathode Potential / V vs. Ag/AgCl 4 3 2 1 0 E Anode Q 1 2,7 V Ex. Anode Li-ion Potential / V vs. Ag/AgCl 4 3 2 1 0 E Anode Q 1 4.2 V Le Li-ion capacitor Cell Voltage (V) 3.8 2.2 C (F) / Ah 2200 / 1 Energy (Wh/kg) R 1 khz (mω) R DC (mω) Power max. (kw/kg) W. (g) Vol. (ml) 14 1.4 2.3 10 208 124 Energie augmentée mais : - durée de vie limitée - vitesse de recharge limitée http://jmenergy.co.jp/en/index.html

3. Les systèmes C / PbO 2 et C / NiOOH c) Systèmes hybrides en milieu aqueux : Le système Carbone / PbO 2 Accumulateur au plomb Pb/PbO 2 : peu performant (énergie, puissance) mais bas coût Remplacement de la négative pour augmenter la puissance 1 Cathode Potential / V vs. Pb/PbSO4 0,5 0-0,5-1 Anode E 2,0 V Q 1 Axion Power PbC battery (www.axionpower.com) Solution pour applications stationnaires Temps (s) Le système Carbone / NiOOH : remplacement de la négative de Cadmium dans Ni/Cd Fonctionne en milieu alcalin ; application démarrage à froid des moteurs http://www.saftbatteries.com

3. Le système C / MnO 2 c) Systèmes hybrides en milieu aqueux : Les systèmes Carbone / MnO 2 Voltammétrie d un condensateur parfait C Voltammétrie d une électrode de carbone en milieu aqueux (K 2 SO 4 0,5M) Réponse capacitive = CV rectangulaire

3. Le système Carbone / MnO 2 c) Systèmes hybrides en milieu aqueux : Les systèmes Carbone / MnO2 MnO 2 : stockage électrochimique Mais réaction rédox très rapide, de surface MnO 2 + xe + xh+ MnOOHx MnOOHx MnO 2 Comportement Pseudo-capacitif Système Carbone / MnO 2 V max 1,5V (milieu aqueux), mais bas coût Alternative pour applications spécifiques Travaux T. Brousse (IMN), F. Favier (IGC)

Evolution des performances des systèmes

4. Conclusions Les supercondensateurs à base de carbon (EDLCs)20 1. Stockage électrostatique en surface ; pas de réaction rédox; 2. Forte P (10 kw/kg) et E = 5Wh/kg ; durée de vie > 10 6 cycles complémentaire aux batteries (énergie) 3. Récupération énergie (cinétique freinage -, potentielle ) Carbones Microporeux (CDCs) pour les EDLCs 1. Augmentation de capacité grâce à la désolvatation partielle double la capacité volumique ; pas de limitation en puissance 2. Capacité exacerbée quand taille pore taille ion ; mécanisme? besoin de modélisations couplées aux expériences (in-situ) 3. Micro-supercondensateurs pour MEMS ou récupération µ-sc de grande densité d énergie (x3) avec C microporeux Systèmes hybrides pour augmenter l énergie : 1. Carbone / MnO 2, carbone PbO 2 en milieux aqueux : solution faible coût 2. Couplage avec électrode à intercalation de Li : forte E mais pb cyclabilité

THANKS PUF ATUPS CIRIMAT P.L. Taberna, B. Daffos, A. Balducci, R. Dugast, P. Huang, E. Iwama, C. Largeot, R. Lin C. Portet, J. Ségalini LAAS-CNRS M. Brunet, D. Pech Drexel University (Philadelphia) Y. Gogotsi, J. Chmiola, M. Heon, C. Perez V. Pressler, Jake Mc Donough Autres P. Mattesco, J. Dalenq (EADS-Astrium) J.P. Bellomo (Alstom), J.F. Cazaux (SkyLab) Shinshu Univ. (Nagano) K. Kaneko Tokyo Univ. K. Naoi