Activité documentaire : introduction à la physique quantique. Objectif : extraire et exploiter des informations sur les phénomènes quantiques.

Documents pareils
DIFFRACTion des ondes

Chapitre 02. La lumière des étoiles. Exercices :

POLY-PREPAS Centre de Préparation aux Concours Paramédicaux. - Section Orthoptiste / stage i-prépa intensif -

ANALYSE SPECTRALE. monochromateur

EXERCICE 2 : SUIVI CINETIQUE D UNE TRANSFORMATION PAR SPECTROPHOTOMETRIE (6 points)

Comprendre l Univers grâce aux messages de la lumière

La physique quantique couvre plus de 60 ordres de grandeur!

SUIVI CINETIQUE PAR SPECTROPHOTOMETRIE (CORRECTION)

Mécanique Quantique EL OUARDI EL MOKHTAR LABORATOIRE MÉCANIQUE & ÉNERGÉTIQUE SPÉCIALITÉ : PROCÈDES & ÉNERGÉTIQUE. dataelouardi@yahoo.

TD 9 Problème à deux corps

Qu est-ce qu un ordinateur quantique et à quoi pourrait-il servir?

La spectrophotométrie

Etrangeté et paradoxe du monde quantique

Les Prix Nobel de Physique

Comment réaliser physiquement un ordinateur quantique. Yves LEROYER

Chapitre 6. Réactions nucléaires. 6.1 Généralités Définitions Lois de conservation

Résonance Magnétique Nucléaire : RMN

SPECTROSCOPIE D ABSORPTION DANS L UV- VISIBLE

Professeur Eva PEBAY-PEYROULA

Puissance et étrangeté du quantique Serge Haroche Collège de France et Ecole Normale Supérieure (Paris)

Lycée Galilée Gennevilliers. chap. 6. JALLU Laurent. I. Introduction... 2 La source d énergie nucléaire... 2

Nouveau programme de première S (2011) : l essentiel du cours.

Les rayons X. Olivier Ernst

L histoire de la Physique, d Aristote à nos jours: Evolution, Révolutions

Quelleestlavaleurdel intensitéiaupointm?

Chapitre 22 : (Cours) Numérisation, transmission, et stockage de l information

10 leçon 2. Leçon n 2 : Contact entre deux solides. Frottement de glissement. Exemples. (PC ou 1 er CU)

Fiche professeur. L analyse spectrale : spectroscopies IR et RMN

Le Bon Accueil Lieu d art contemporain - Sound Art INTERFÉRENCES ATELIERS / EXPOSITION / CONCERT

Cryptologie et physique quantique : Espoirs et menaces. Objectifs 2. distribué sous licence creative common détails sur

Les impulsions laser sont passées en quarante ans de la

Un spectromètre à fibre plus précis, plus résistant, plus pratique Concept et logiciel innovants

Caractéristiques des ondes

Niveau 2 nde THEME : L UNIVERS. Programme : BO spécial n 4 du 29/04/10 L UNIVERS

FICHE 1 Fiche à destination des enseignants

PHYSIQUE Discipline fondamentale

Bases de la mécanique quantique

TP 2: LES SPECTRES, MESSAGES DE LA LUMIERE

Photons, expériences de pensée et chat de Schrödinger: une promenade quantique

La chanson lumineuse ou Peut-on faire chanter la lumière?

Chapitre 2 Caractéristiques des ondes

Spectrophotométrie - Dilution 1 Dilution et facteur de dilution. 1.1 Mode opératoire :

Transformations nucléaires

Sujet. calculatrice: autorisée durée: 4 heures

Introduction à la physique quantique. Juin 2014

LE PHYSICIEN FRANCAIS SERGE HAROCHE RECOIT CONJOINTEMENT LE PRIX NOBEL DE PHYSIQUE 2012 AVEC LE PHYSICIEN AMERCAIN DAVID WINELAND

INTRODUCTION A L ELECTRONIQUE NUMERIQUE ECHANTILLONNAGE ET QUANTIFICATION I. ARCHITECTURE DE L ELECRONIQUE NUMERIQUE

Fluorescent ou phosphorescent?

Correction ex feuille Etoiles-Spectres.

OPTIQUE GEOMETRIQUE POLYCOPIE DE COURS

BACCALAURÉAT GÉNÉRAL

Nouvelles techniques d imagerie laser

Cisco Certified Network Associate

Chapitre 2 Les ondes progressives périodiques

Équivalence masse-énergie

Structure quantique cohérente et incohérente de l eau liquide

TD1 PROPAGATION DANS UN MILIEU PRESENTANT UN GRADIENT D'INDICE

Chapitre 10 : Radioactivité et réactions nucléaires (chapitre 11 du livre)

Application à l astrophysique ACTIVITE

Chapitre 11 Bilans thermiques

Une fréquence peut-elle être instantanée?

Le concept cellulaire

Sensibilisation à la Sécurité LASER. Aspet, le 26/06/2013

Contenu pédagogique des unités d enseignement Semestre 1(1 ère année) Domaine : Sciences et techniques et Sciences de la matière

Présentation du programme. de physique-chimie. de Terminale S. applicable en septembre 2012

Transformations nucléaires

Aucune frontière entre. Jean-Louis Aimar

Objectifs pédagogiques : spectrophotomètre Décrire les procédures d entretien d un spectrophotomètre Savoir changer l ampoule d un

Rayonnements dans l univers

Partie Observer : Ondes et matière CHAP 04-ACT/DOC Analyse spectrale : Spectroscopies IR et RMN

Une nouvelle technique d'analyse : La spectrophotométrie

RDP : Voir ou conduire

1 Savoirs fondamentaux

THEME 2. LE SPORT CHAP 1. MESURER LA MATIERE: LA MOLE

Transmission de données. A) Principaux éléments intervenant dans la transmission

INTRODUCTION À LA SPECTROSCOPIE

Systèmes de transmission

Didier Pietquin. Timbre et fréquence : fondamentale et harmoniques

A retenir : A Z m n. m noyau MASSE ET ÉNERGIE RÉACTIONS NUCLÉAIRES I) EQUIVALENCE MASSE-ÉNERGIE

Sujet. calculatrice: autorisée durée: 4 heures

Chapitre 4 - Spectroscopie rotationnelle

2. Couche physique (Couche 1 OSI et TCP/IP)

1STI2D - Les ondes au service de la santé

Chapitre n 6 MASSE ET ÉNERGIE DES NOYAUX

Pour commencer : Qu'est-ce que la diffraction? p : 76 n 6 : Connaître le phénomène de diffraction

A chaque couleur dans l'air correspond une longueur d'onde.

intrication quantique corrélations à distance et instantanées

LES CARACTERISTIQUES DES SUPPORTS DE TRANSMISSION

Repérage de l artillerie par le son.

Interactions des rayonnements avec la matière

Communication parlée L2F01 TD 7 Phonétique acoustique (1) Jiayin GAO <jiayin.gao@univ-paris3.fr> 20 mars 2014

G.P. DNS02 Septembre Réfraction...1 I.Préliminaires...1 II.Première partie...1 III.Deuxième partie...3. Réfraction

Chap 2 : Noyaux, masse, énergie.

Champ électromagnétique?

TSTI 2D CH X : Exemples de lois à densité 1

Chapitre 5 : Noyaux, masse et énergie

III.2 SPECTROPHOTOMÈTRES

Mise en pratique : Etude de spectres

Transcription:

Activité documentaire : introduction à la physique quantique. Objectif : extraire et exploiter des informations sur les phénomènes quantiques. Document 1 : l expérience lumineuse des fentes d Young. Lorsqu on éclaire, avec une source lumineuse cohérente comme un laser par exemple, un écran percé de deux fentes fines espacées d une distance a relativement faible, on obtient une figure d interférence : l intensité lumineuse passe par des maxima et des minima. Cela indique que la lumière se comporte comme une onde. Document 2 : l effet photoélectrique L effet photoélectrique fut découvert par H.Hertz en 1887 alors qu il effectuait des expériences pour démontrer l existence d ondes électromagnétiques. Lorsque la lumière arrive sur deux plaques métalliques séparées, Hertz constata qu un courant électrique s établissait entre les plaques. Son assistant P.Lenard découvrit en 1902 que cet effet consistait en l émission d un électron lorsque la lumière arrivait sur le métal (c est le cas des panneaux photovoltaïques). Cependant, il se passait plusieurs choses curieuses. D abord, lorsque de la lumière monochromatique de grande longueur d onde, par exemple dans le rouge, était envoyée sur le métal, rien ne se passait. L intensité de cette lumière rouge avait beau être augmentée fortement, aucun électron n était éjecté. Ensuite, lorsque la longueur d onde était diminuée, passé un certain seuil, des électrons étaient arrachés au métal. Alors, si l intensité de la lumière augmentait, il y avait plus d électrons éjectés, mais ils possédaient tous la même énergie cinétique. Enfin, quand la longueur d onde de la lumière était modifiée pour une intensité constante, l énergie des électrons éjectés était plus grande, et proportionnelle à la fréquence de la lumière. Tout ceci était parfaitement inexplicable avec la théorie ondulatoire de la lumière : en particulier, le fait que l intensité lumineuse n ait aucune influence sur l énergie de l électron éjecté était incompréhensible. C était comme si, en tapant plus fort dans un ballon, celui-ci n était pas envoyé plus vite ou plus loin. C est Albert Einstein qui, en 1905, apporta la réponse. Einstein suggéra que la lumière se comportait comme une particule, qu il appela quantum de lumière, rebaptisé photon en 1926. Chaque photon ne pouvait transporter qu une seule quantité possible d énergie, liée à sa fréquence par la relation de Planck : E = h.. Einstein montra que, si le transfert d énergie entre la lumière et la matière ne se produisait que par quanta d énergie, alors l électron éjecté posséderait effectivement une énergie cinétique proportionnelle à la fréquence de la lumière. Le seuil observé par Lenard s expliquait par l énergie nécessaire pour arracher l électron : si le photon incident ne possédait pas l énergie suffisante, autrement dit si sa fréquence était trop Albert Einstein basse, il ne pouvait pas arracher l électron. Cette explication complète de l effet photoélectrique par la quantification des échanges d énergie entre la lumière et la matière annonça la fin de la prééminence du modèle ondulatoire de la lumière, et fut couronnée par un prix Nobel. Ainsi, la lumière monochromatique peut être décrite comme un flux de photons possédant tous la même énergie, et une lumière polychromatique comme un ensemble de photons possédant des énergies différentes. Lorsque la lumière arrive sur la matière, elle ne peut échanger d énergie avec celle-ci que par paquets correspondant à un ou plusieurs photons : soit un photon est absorbé, et la matière gagne donc un quantum d énergie, soit un photon est émis, et la matière perd un quantum d énergie.

Document 3 : quand les électrons ondulent A partir des années 60, les physiciens ont tenté des expériences d interférence, non plus avec de la lumière, mais avec des électrons. Dans l expérience de l équipe de A.Tonomura réalisée en 1989, des électrons sont accélérés sous une différence de potentiel de 50 kv, puis dirigés vers un ensemble de trois électrodes. Une électrode centrale cylindrique, de diamètre inférieur au micromètre, est portée à un potentiel supérieur de 10 V à celui de deux électrodes planes disposées latéralement. La distance entre les deux électrodes latérales est de 10 mm. Le faisceau électronique est ainsi divisé en deux faisceaux, déviés dans des sens opposés. Un détecteur est placé dans la zone de recouvrement des deux faisceaux. L impact d un électron en un point du détecteur produit des photons (par fluorescence), qui sont ensuite multipliés, détectés et localisés. La position de l impact d un électron sur le détecteur peut ainsi être mesurée. Le flux d électrons est suffisamment faible pour qu un impact corresponde à un seul électron. Plusieurs photographies des impacts des électrons sur le détecteur sont réalisées à différents instants. Le résultat conduit aux quatre images ci-dessous. Nombre d électrons détectés : 8 (a) ; 270 (b) ; 2000 (c) ; 60000 (d) Document 4 : un comportement troublant. A très petite échelle, les choses ne se comportent en rien comme ce dont vous avez une expérience directe. Nous avons choisi d examiner un phénomène qu il est impossible d expliquer de façon classique, et qui contient le cœur de la physique quantique. Imaginons un fusil qui tire des balles une par une, mais dans une direction différente à chaque fois. En face du fusil, nous avons disposé une plaque de blindage percée de deux trous, puis plus loin un mur avec un détecteur mobile qui se déplace le long du mur. Les balles arrivent toujours comme des projectiles identiques : elles ne se coupent pas en deux ou autre chose. L expérience est d abord faite en fermant le trou 1. Nous obtenons la courbe P 1, qui représente la probabilité d arrivée d une balle en fonction de la position x du détecteur. La courbe P 2 est obtenue en fermant le trou 1 et en ouvrant le 2. Enfin, les deux trous sont ouverts simultanément. Nous obtenons alors la courbe P 12, et le résultat important est que : P 12 = P 1 + P 2. Autrement dit, les balles de fusil n interfèrent pas entre elles : cela paraît bien normal, puisqu elles sont tirées une par une.

Faisons maintenant l expérience avec des ondes, par exemple des vagues à la surface de l eau. Notre détecteur est maintenant sensible non plus à l arrivée d un objet, mais au carré de l amplitude des vagues, c est-à-dire à l intensité, autrement dit à l énergie transportée par l onde, plus précisément à l énergie apportée au détecteur. En réalisant les mêmes opérations que dans la première expérience, on obtient les courbes d intensité I 1 et I 2 pour un des trous ouverts, et le résultat est nettement différent pour les deux trous ouverts : la courbe I 12 n est pas égale à la somme de I 1 et I 2. Dans ce cas, les vagues interférent entre elles. Imaginons maintenant une expérience semblable avec des électrons. La première chose que nous remarquons avec notre expérience sur les électrons, est que nous entendons des «clic» provenant du détecteur. Et tous les clics sont semblables : il n y a pas de «demi-clic». Nous dirons : les électrons arrivent toujours en paquets identiques, comme des particules. La seconde chose remarquable est la courbe P 12 obtenue avec les deux trous ouverts pour un très grand nombre d électrons : P 12 P 1 + P 2. Oui! Voilà ce que donnent les électrons. Par analogie avec l expérience d ondes sur l eau, il y a interférence des électrons Tout cela est tout à fait mystérieux. Et pourtant, les mathématiques qui relient P 1 et P 2 sont assez simples : ce sont les mêmes que celles que nous avions pour des ondes sur l eau. Nous concluons ainsi : les électrons arrivent en paquets, comme des particules, et la probabilité d arrivée de ces paquets est distribuée comme l intensité d une onde. C est dans ce sens que les électrons se comportent «quelquefois comme des particules et quelquefois comme des ondes». Ainsi, la distribution d un très grand nombre d électrons sur l écran est régie par une loi statistique, alors que la position d arrivée d un électron est aléatoire. D après R. Feynman, mécanique quantique Document 5 : l analogie féconde de Louis de Broglie En 1923, Le physicien Louis de Broglie eu l idée que la découverte en 1905 par Einstein de la nature corpusculaire de la lumière, considérée auparavant comme ondulatoire, devait être généralisée à toutes les particules matérielles, et notamment aux électrons. De Broglie avait posé cette simple question : si les ondes lumineuses peuvent se comporter comme des particules, des particules telles que les électrons peuvent-elles se comporter comme des ondes? Et, si l électron est confiné, par exemple dans un atome, peut-il être représenté par une onde stationnaire? En effet, on peut facilement produire des ondes stationnaires périodiques sinusoïdales dans des cordes attachées aux deux extrémités. Chaque point de la corde va vibrer avec une amplitude différente, mais ils vont tous vibrer en phase ; il n y a pas de retard d un point sur un autre. La caractéristique essentielle de ces ondes est qu elles sont composées d un nombre entier de demi-longueurs d onde : les deux points fixent imposent des valeurs quantifiées de la longueur d onde. Par analogie, Louis de Broglie considéra que les couches électroniques possibles étaient celles dotées d une circonférence permettant la formation d ondes stationnaires électroniques. Il découvrit que s il attribuait à l électron une onde de fréquence ν et de longueur d onde λ, il pouvait expliquer la quantification des couches électroniques dans l atome de Bohr. A cette fin, de Broglie proposa une formule associant la longueur d onde λ de la particule à sa quantité de mouvement p par l intermédiaire de la constante de Planck h = 6,62.10-34 J.s : λ Cette relation s avéra exacte et porte le nom de son inventeur. h p Ondes stationnaires d une corde vibrante attachée aux deux extrémités Ondes électroniques stationnaires dans l atome d hydrogène

Document 6 : principe d exclusion de Pauli Le modèle des couches électroniques de l atome quantique, développé par Niels Bohr en 1913, présentait un accord remarquable avec l expérience. Toutefois, ce modèle n avait pas de justification. C est le physicien Wolfgang Pauli qui apporta la solution en 1925, en démontrant que deux électrons liés à un atome ne peuvent coexister dans un même niveau d énergie que si leurs moments cinétiques intrinsèques, appelés «spin», sont opposés. Ainsi, il ne peut y avoir que deux électrons par niveau d énergie, un en spin «haut» et l autre en spin «bas», ce qui permet d expliquer l association des électrons par paires. Ce résultat fondamental est connu sous le nom de «principe d exclusion de Pauli». Wolfgang Pauli Document 7 : des électrons en boîte Les molécules de la famille des cyanines sont présentes dans de nombreux colorants naturels. Elles absorbent la lumière dans des longueurs d onde appartenant au domaine visible. Cette propriété est associée, au niveau moléculaire, à la présence des groupes chromophores, c est-à-dire des alternances de simples et de doubles liaisons, appelées liaisons conjuguées. On observe que plus le nombre de liaisons conjuguées est important, plus la longueur d onde de la lumière absorbée est grande. Par exemple, la cyanine, colorant de couleur bleue, absorbe dans la gamme de couleur jaune pour une longueur d onde voisine de 600 nm. La physique quantique permet d expliquer cette propriété en utilisant un modèle de «boîte quantique.» Longueur d onde absorbée par quelques cyanines Le principe est de considérer que les électrons responsables de l absorption dans le domaine visible sont ceux de la deuxième liaison covalente d une liaison double, appelés «électrons π», puis de modéliser le volume dans lequel les électrons peuvent se mouvoir par une boîte en dehors de laquelle la probabilité de présence des électrons est nulle. Pour simplifier, on suppose ici que les électrons ne peuvent se déplacer que dans une seule dimension, sur une longueur qui est égale à celle du groupe chromophore. Cette longueur est calculée en multipliant le nombre de liaisons du groupe chromophore par la longueur d une liaison, qui vaut 0,14 nm. Pour la cyanine, il y a donc 10 électrons impliqués. L Les ondes électroniques possibles sont quantifiées : ce sont des ondes stationnaires, comparables à des ondes s établissant sur une corde de guitare. L enveloppe figurant les positions extrêmes haute et basse de la corde en vibration peut alors présenter un, deux, trois, etc. fuseaux. Chacune de ces ondes est appelée «mode propre de vibration» de la corde. La longueur d onde d un mode propre n vaut, avec n entier naturel : L λn 2 n En utilisant la relation de de Broglie, il est possible de calculer les valeurs possibles de l énergie cinétique des électrons, sachant que la masse d un électron vaut 9,1.10-31 kg et ainsi de déterminer les niveaux d énergie associés aux électrons π. Par l application du principe d exclusion de Pauli, les électrons sont ensuite répartis dans les différents niveaux. Les transitions électroniques permises sont celles entre le dernier niveau rempli et le premier niveau vide. Représentation des modes propres de vibration électronique dans la boîte quantique Il ne reste plus qu à calculer la variation d énergie correspondant à cette transition, puis d en déduire la longueur d onde du photon absorbé grâce à la relation de Planck-Einstein et de vérifier l accord avec l expérience. D après Pour la Science, n 403 mai 2011, J-M.Courty et E.Kierlik.

Questions 1. Qu entend-on par «dualité onde/corpuscule» lorsqu on parle de la lumière? Quelles expériences illustrent cette dualité? 2. Pourquoi est-il étonnant qu un électron se comporte comme de la lumière? 3. En quoi la physique quantique est-elle de «nature probabiliste»? 4. Calculer la longueur d onde de de Broglie d un électron, dont la masse vaut m = 9,1.10-31 kg, se déplaçant à la vitesse v = 2,0.10 6 m.s -1. Pourquoi le comportement ondulatoire des électrons se manifeste-t-il moins souvent à l échelle macroscopique que celui de la lumière? 5. Pourquoi y a-t-il 10 électrons impliqués dans l absorption de lumière par la cyanine? 6. En déduire la longueur de la boîte quantique modélisant l absorption de lumière de la cyanine. 7. Exprimer de façon générale l énergie cinétique d un électron en fonction de la longueur d onde de de Broglie de l électron. 8. En déduire les niveaux d énergie des 6 premiers niveaux associés aux électrons π, en J puis en ev. Retrouve-t-on les ordres de grandeur correspondant aux niveaux d énergie électronique des molécules ou des atomes? 9. Répartir les électrons concernés dans les différents niveaux. Quel est l énergie du dernier niveau rempli et celle du premier niveau vide? 10. Vérifier que le modèle de boîte quantique permet effectivement de rendre compte de la couleur de la cyanine.