LE NEL Mathieu PROJET CALCUL. Notice de calcul. Etude des mors de préhension. Page 1 sur 15

Documents pareils
Banc d études des structures Etude de résistances de matériaux (RDM) et structures mécaniques

TUTORIAL 1 ETUDE D UN MODELE SIMPLIFIE DE PORTIQUE PLAN ARTICULE

Information. BASES LITTERAIRES Etre capable de répondre à une question du type «la valeur trouvée respecte t-elle le cahier des charges?

Notice d Utilisation du logiciel Finite Element Method Magnetics version 3.4 auteur: David Meeker

1 Définition. 2 Systèmes matériels et solides. 3 Les actions mécaniques. Le système matériel : Il peut être un ensemble.un sous-ensemble..

INTRODUCTION. A- Modélisation et paramétrage : CHAPITRE I : MODÉLISATION. I. Paramétrage de la position d un solide : (S1) O O1 X

Fiche technique Ligne de vie SECURIFIL industrie

MOTO ELECTRIQUE. CPGE / Sciences Industrielles pour l Ingénieur TD06_08 Moto électrique DIAGRAMME DES INTER-ACTEURS UTILISATEUR ENVIRONNEMENT HUMAIN

Sujet proposé par Yves M. LEROY. Cet examen se compose d un exercice et de deux problèmes. Ces trois parties sont indépendantes.

DISPOSITIF DE BLOCAGE STATIQUE Ø 32 à 100 mm - double effet ISO 15552

Compte rendu de LA37 B, TP numéro 1. Evolution de la température et du degrée d'hydratation

Corrigé Exercice 1 : BRIDE HYDRAULIQUE AVEC HYPOTHÈSE PROBLÈME PLAN.

DISQUE DUR. Figure 1 Disque dur ouvert

Vanne à tête inclinée VZXF

C.F.A.O. : Conception et Fabrication Assistées par Ordinateur.

PROFIS Installation. Module 4: Module 3D Design

CIRCUITS DE PUISSANCE PNEUMATIQUES

Calcul des pertes de pression et dimensionnement des conduits de ventilation

ÉTUDE DE L EFFICACITÉ DE GÉOGRILLES POUR PRÉVENIR L EFFONDREMENT LOCAL D UNE CHAUSSÉE

BACCALAURÉAT GÉNÉRAL SÉRIE SCIENTIFIQUE

Cours de Résistance des Matériaux (RDM)

Jean-Marc Schaffner Ateliers SCHAFFNER. Laure Delaporte ConstruirAcier. Jérémy Trouart Union des Métalliers

Atelier B : Maintivannes

Analyse statique d une pièce

NOTICE D' UTILISATION CAMWORKS FRAISAGE. Luc Vallée Lycée Blaise Pascal Segré

DÉVERSEMENT ÉLASTIQUE D UNE POUTRE À SECTION BI-SYMÉTRIQUE SOUMISE À DES MOMENTS D EXTRÉMITÉ ET UNE CHARGE RÉPARTIE OU CONCENTRÉE

CAHIER DES CLAUSES TECHNIQUES PARTICULIERES (CCTP)

SSNL126 - Flambement élastoplastique d'une poutre droite. Deux modélisations permettent de tester le critère de flambement en élastoplasticité :

BACCALAURÉAT TECHNOLOGIQUE SESSION 2008 POSITIONNEUR DE PANNEAU SOLAIRE POUR CAMPING-CAR

Long Carbon Europe Sections and Merchant Bars. Poutrelle Angelina. L alchimie réussie entre résistance, légèreté et transparence

Généralités. Aperçu. Introduction. Précision. Instruction de montage. Lubrification. Conception. Produits. Guides à brides FNS. Guides standards GNS

Force de serrage 123 N N. Pince de préhension parallèle à 2 doigts PGN-plus 160 avec doigts de préhension spécifiques à la pièce à manipuler

Recopieur de position Type 4748

Soupape de sécurité trois voies DSV

Z-Axis Compliance Device Compliance en z

Exemples de dynamique sur base modale

Vanne " Tout ou Rien" à siège incliné Type 3353

Table basse avec tablette encastrée

Systèmes de transmission

Cours de résistance des matériaux

Épreuve E5 : Conception détaillée. Sous-épreuve E51 : Conception détaillée d une chaîne fonctionnelle

AUTOPORTE III Notice de pose

ITAS Escaliers industriels et plate-formes de travail

Dossier Logique câblée pneumatique

HELIOS UNITÉ SUSPENDUE

BACCALAURÉAT GÉNÉRAL SÉRIE SCIENTIFIQUE

LES LOIS PHYSIQUES APPLIQUÉES AUX DEUX-ROUES : 1. LA FORCE DE GUIDAGE

Chapitre 7. Circuits Magnétiques et Inductance. 7.1 Introduction Production d un champ magnétique

CFAO Usinage sur machine à commande numérique

TUBES ET ACCESSOIRES Serrurier A ailettes Construction Canalisation Spéciaux

MODE D EMPLOI ST Route de la Neuville LALOBBE FABRICANT DE MATERIEL SCENIQUE MANUEL D UTILISATION ST Rapport N 2520/14/7656

Douille expansibleécarteur

POMPIERS TERRAIN DIFFICILE

Sertissage Aciers COMAP,

SOL FORTE ÉPAISSEUR INDUSTRIAL FLORIM

NOTE SUR LA MODELISATION DU RISQUE D INFLATION

NORMES PATENTED L EXPERTISE AU SERVICE DE LA SÉCURITÉ ET DES PERFORMANCES. Catalogue Général A N D OT H E R P E N DI N G

Le transistor bipolaire

Synoptique. Instructions de service et de montage

ANNEXE J POTEAUX TESTÉS SELON UN CHARGEMENT STATIQUE ET TESTÉS SELON UN CHARGEMENT CYCLIQUE ET STATIQUE

CYLINDRE ET BÉQUILLE ÉLECTRONIQUES À BADGE Aperio E100 & C100

Vannes à 2 ou 3 voies, PN16

TD 11. Les trois montages fondamentaux E.C, B.C, C.C ; comparaisons et propriétés. Association d étages. *** :exercice traité en classe.

Cylindres de roue ATE d origine Allégés et résistants aux liquides de frein

ICS Destiné à remplacer EN 926-1:1995. Version Française

Cours IV Mise en orbite

Série 2600/2700. Détermination du n de longueur de l axe de fermeture en cas d utilisation de réceptacle: Type 1 + 3* G = P + F

FROID ET CLIMATISATION

Bateau à moteur PROPULSEURS. Comment choisir le propulseur adapté à vos besoins. Bateau 1 Tableau 1. Bateau 2. Bateau 4. Bateau 1. Bateau 3.

Système multicouche raccords à sertir et tubes

SOMMAIRE Thématique : Matériaux

QUINCAILLERIE POUR CAISSONS

Concours EPITA 2009 Epreuve de Sciences Industrielles pour l ingénieur La suspension anti-plongée de la motocyclette BMW K1200S

Les monte escaliers de MediTek La solution pour votre mobilité à votre domicile

LA RUBRIQUE «SUR MESURE»

MODE OPÉRATOIRE. VI) Le projet mené dans le cadre de la technologie. Le projet porte sur la réalisation d une horloge CD.

EPFL TP n 3 Essai oedomètrique. Moncef Radi Sehaqui Hamza - Nguyen Ha-Phong - Ilias Nafaï Weil Florian

Mini projet n 1 DOSSIER DE CONCEPTION Clef USB

Qualité du logiciel: Méthodes de test

Manuel de validation Fascicule v4.25 : Thermique transitoire des structures volumiques

Serrure Motorisée Asservie - Mise en Applique

ANALYSE STATIQUE D UNE POUTRE SOUMISE A UNE CHARGE VARIABLE

NEOTECHA. Robinets à tournant sphérique - Modèles SNB et SNC

Exemple d application en CFD : Coefficient de traînée d un cylindre

BACCALAURÉAT TECHNOLOGIQUE Sciences et Technologies de l Industrie et du Développement Durable ENSEIGNEMENTS TECHNOLOGIQUES TRANSVERSAUX

LE NOUVEAU SYSTEME DE BRAS PORTEUR

La presse plieuse de référence

FROID ET CLIMATISATION

Moto électrique Quantya'"

La température du filament mesurée et mémorisée par ce thermomètre Infra-Rouge(IR) est de 285 C. EST-CE POSSIBLE?

CAP CAMION A ASSISTANCE PNEUMATIQUE

BROSSE DE DESHERBAGE

SOLUTIONS COMMANDES À DISTANCE

Construire. Statique. Styled by Smou. SEMA France SARL: 50, avenue d Alsace F Colmar Tél Fax

Outillage Plomberie. Clés. Clé serre-tube suèdois. Clé à crémaillère. Pince multiprise. Clé à sangle. Clé Stillson acier

Tous les produits de la gamme SAF offrent des résistances :

MANUEL D UTILISATION MODE D EMPLOI ALT 600 MODE D EMPLOI ALT 600 FABRICANT DE MATERIEL SCENIQUE

TSTI 2D CH X : Exemples de lois à densité 1

Transcription:

PROJET CALCUL Notice de calcul Etude des mors de préhension Page 1 sur 15

Sommaire I) Objectifs du projet :... 3 II) Objet de l étude :... 3 1) Présentation du système :... 3 2) Fonctionnement de la pince :... 3 3) Démarche :... 4 4) Outil utilisé :... 4 III) Etude du système global :... 4 1) Force maximale de serrage :... 4 2) Déterminer la valeur des efforts sur les mors :... 6 IV) Etude d un mors de préhension :... 7 1) Calcul sous Abaqus :... 7 2) Calcul sous Herezh:... 13 V) Conclusion :... 13 VI) Annexes :... 14 Page 2 sur 15

I) Objectifs du projet : L objectif de ce projet est d analyser le comportement d'une structure ou d'un ensemble de pièces (mécanisme), en terme des actions exercées par l'environnement mécanique, de réaliser un modèle CAO, de dimensionner certains des éléments constitutifs. Parmi ces trois composantes (analyse de mécanismes - CAO - calculs éléments finis), deux au moins doivent être traitées de façon approfondie. II) Objet de l étude : 1) Présentation du système : Nous avons choisi d étudier une pince pneumatique HGW de marque FESTO, plus particulièrement les supports des mors de préhension. En effet, il nous semble important de bien dimensionner ces pièces afin qu elles maintiennent l objet correctement, sans trop subir de déformation. Pièces étudiées 2) Fonctionnement de la pince : Cette pince fonctionne grâce à de l air comprimé. Lorsqu on fait circuler de l air, on a la translation du piston qui lui entraine la rotation des supports des mors. Page 3 sur 15

3) Démarche : Dans le cadre de ce projet, nous allons procéder aux étapes suivantes qui peuvent être séparés en 2 parties. Chaque partie fera l objet d un chapitre : Etude du système global : Connaître la force maximale de serrage Déterminer la position et la valeur des efforts sur les mors de préhension Etude d un mors de préhension : Définir le matériau ainsi que sa loi de comportement Définir les conditions initiales et les conditions limites Calcul par éléments finis Analyse du dimensionnement du mors à partir des résultats. 4) Outil utilisé : Pour réaliser ce projet, nous allons utiliser les outils suivants : CAO : Solidworks Etude statique : méca 3D Maillage : Abaqus et Gmsh Solveur numérique : Abaqus et Herezh++ Post-traitement : Gmsh, Abaqus III) Etude du système global : Nous avons récupéré la CAO de ce système sur le site http://www.cnr-cmao.enscachan.fr/. Nous retrouvons sur ce site, plusieurs systèmes techniques. Nous avons choisi d étudier un outil de préhension, de la marque FESTO, plus particulièrement la pince HGW. 1) Force maximale de serrage : Afin de quantifier la force maximale de serrage, nous avons étudié la documentation technique. Cette pince possède une certaine particularité car l on peut s en servir en serrage externe comme en serrage interne. Ainsi ce mécanisme est actionné par un piston qui peut transmettre une force de poussée et une force de rentrée. Page 4 sur 15

La pince que nous étudions a un diamètre de piston de 25mm, nous l utilisons à une pression de 6 bars. Le diamètre de la tige est de 14mm. Ainsi nous pouvons calculer l effort du piston. La force de poussée du piston équivaut à : La force de rentrée du piston équivaut à : Ainsi nous pourrons rentrer ces différentes forces lors de l étude du mécanisme sous le logiciel Méca3D. Cette étude, nous permettra ainsi de vérifier les efforts de serrage indiqué dans la documentation du constructeur que nous verrons dans la partie suivante. D après la documentation, la force de serrage maximum dépend du bras de levier r comme on peut voir sur l image suivante. On retrouve sur les graphiques suivants, la force de préhension en fonction du bras de levier r. Comme on peut le constater la force de serrage diminue lorsque la longueur augmente. Il est évident de retrouver ce type de courbe, car la force exercé par le piston reste constante peut importe la longueur du bras de levier. Page 5 sur 15

0 0,06 0,12 0,18 0,24 0,3 0,36 0,42 0,48 0,54 0,6 0,66 0,72 0,78 0,84 0,9 0,96 Effort (N) KERGOURLAY Erwan 2) Déterminer la valeur des efforts sur les mors : Afin de connaître les efforts sur les mors de préhension, nous avons réalisé une étude statique sous Méca3D. Cette dernière nous permettra ainsi de vérifier les efforts de préhension indiquée par le constructeur. Nous avons donc crée sous Méca3D, 4 sous ensembles. Le premier sous ensemble correspond au bâti, le deuxième sous ensemble correspond au piston, et les deux derniers correspondent aux mors. 1 2 3 Nous avons ainsi réalisé les liaisons suivantes entre chaque sous ensemble : - Liaison pivot glissante entre le piston et le bâti - Liaison pivot entre le mors et le bâti - Liaison linéaire rectiligne entre la tige et le mors Nous sommes passés à la partie calcul sous Méca3D, en définissant la position initiale et la vitesse d ouverture. Nous avons également défini sur le piston l effort de poussé et l effort de rentré (calculé dans la partie précédente). Nous avons également défini un effort inconnu sur le mors (situer à l extrémité du mors). Nous trouvons ainsi les courbes suivantes : 4 160 140 120 100 80 60 40 20 0 Effort en bout de pince Effort serrage extérieur Effort serrage intérieur Temps Page 6 sur 15

Comme nous pouvons le constater, l effort de serrage évolue au cours du temps et de l ouverture. En effet, il est normal d obtenir ce type de résultat car le bras de levier évolue également en fonction de l ouverture ou la fermeture de la pince. Lorsqu on compare par rapport à la documentation technique, nous ne retrouvons pas les mêmes résultats. En effet, la longueur du bras de levier étant de 28.10mm, nous devrions trouver un effort de serrage externe de 55N et un effort de serrage interne de 65N. Pour retrouver ce résultat, il faut diviser les efforts trouvés par calcul par 2 car nous avons deux mors de préhension. On retrouve ainsi les forces indiquées par le constructeur à ce point donné. IV) Etude d un mors de préhension : Cette partie s intéresse aux calculs par éléments finis effectués sur un mors de préhension. Le premier point traitera du calcul réalisé sous le logiciel Abaqus et le second sous le logiciel Herezh. Nous pourrons ainsi comparer les résultats. 1) Calcul sous Abaqus : Nous avons décidé de modéliser les contraintes sur notre pièce d étude par éléments finis sous le logiciel Abaqus. On va tout d abord faire une modélisation du mors original sans extension. Etant donné la géométrie de notre pièce et le type d actions qui lui sont imposées, nous avons pu effectuer une simplification de géométrie et ainsi réaliser une étude avec un modèle 2D et non 3D : On a alors modifié la CAO originale pour obtenir une surface et non un volume, on l a ensuite exportée en.step afin de l importer dans Abaqus. Nous avons ainsi simulé une pièce en acier d un module d Young de 210000 MPa avec un coefficient de Poisson de 0.3. La densité est de 7.8 tonnes/m 3. Sous Abaqus le maillage a été réalisé est composé de quadrangle à interpolation quadratique. Afin d obtenir un maillage structuré, nous avons du créer de nombreuses partitions sur notre pièce, voici le maillage qui nous a servi pour les calculs : Page 7 sur 15

Nous avons ensuite réalisé les conditions de chargement. On a choisi de la modéliser en fermeture (serrage externe) afin de pouvoir observer ce qui se passe dans la zone en vert que l on supposait comme zone de concentration de contrainte. Tout d abord nous avons mis une liaison pivot (blocage en X et Y) au niveau de la jonction avec l axe de rotation, puis une force ponctuelle au niveau de la jonction avec la tige de vérin et enfin un blocage suivant Y au niveau de la préhension de la pièce, au départ les congés n avait pas été représentés, il nous a vite fallu les représenter pour éviter les trop fortes concentrations de contrainte : Cette modélisation a montré ses limites dans la représentation car la pièce s enfonçait fortement au niveau du point d application de la force ponctuelle. Ainsi, nous avons décidé de changer cette force en condition de contact surfacique. Il s agissait de notre première utilisation de ce type d action, il nous a donc fallu un peu de temps pour la prise en main. On a ainsi une droite (représentant l action de la tige de vérin sur le mors) qui vient en contact avec le mors grâce à un déplacement piloté. Pour l instant, les autres conditions de chargement n ont pas changées : Page 8 sur 15

Enfin, afin de simuler l effet de rallonge de mors, nous avons modifié les conditions de chargement en respectant la condition de montage suivante : En effet, on sait qu une vis n est jamais censée travailler en cisaillement, la goupille centrale doit alors encaisser tous les efforts liés à la préhension. C est pour cela qu au lieu de bloquer l extrémité de notre pièce d étude nous avons bloqué le perçage central en Y : Page 9 sur 15

Nous avons ensuite effectué le calcul avec ces différentes conditions de chargement. Voici la visualisation de ce que nous obtenions pour la seconde modélisation (la première était trop loin de la réalité car la pièce s écrasait beaucoup trop en un point au niveau de la force ponctuelle). Le déplacement effectué est de 0.015mm, il commence sans contact au départ puis au bout d un certain temps, la pièce représenter par le segment de droite entre en contact avec la pièce étudiée. On remarque ainsi que le maximum de contrainte est de 257 MPa et qu il est à l extrémité de la pièce (où il y a le blocage en Y). Une préhension dans ce cas de figure est très rare car la plupart du temps on ajoute des rallonges de mors s adaptant mieux à la forme de la pièce à prendre. Ce cas n est donc pas dimensionnant, nous avons décidé de vérifier le dimensionnement sur la troisième modélisation. Ainsi, voici les isovaleurs de contrainte concernant la dernière modélisation : Page 10 sur 15

On a ainsi une contrainte maximale dans une zone plus prévisible, à savoir 142 MPa au niveau du contact avec la tige de vérin. On peut également noter une zone de contrainte au niveau de la zone entourée en rouge, elle est due à la forme de la pièce à cet endroit, en effet il semble que cette zone soit prévue comme amorce de rupture de la pièce par ses concepteurs. Ces contraintes sont purement relative au déplacement imposé dans la zone de contact, étudions désormais la résistance en comparaison avec la plage d utilisation du constructeur. Nous pouvons ensuite sortir la courbe des réactions au niveau de la liaison pivot et notamment la réaction suivant Y au cours du temps. La force en Y au niveau du blocage du perçage vaudra exactement la même valeur : Ry perçage Ry pivot Avant tout, regardons les conseils d utilisation du fabricant et plaçons la position de notre réaction sur ce graphe (le blocage se trouve à 18.7mm du centre de rotation de la pièce) : On trouve ainsi une force maximale de serrage de 80N. On repère ensuite cette force sur la courbe de la réaction suivant Y au cours du temps, au niveau de la liaison pivot. On détermine à quel moment cela arrive durant notre mise en contact progressive : Page 11 sur 15

Ainsi, on trouve une réaction de 80 N au bout de 0.96s, il nous reste à regarder la zone de contrainte maximale à ce temps précis et en déduire la contrainte maximale qu encaisse la pièce dans sa limite d utilisation. On se place alors au point où il y a le plus de contrainte et on trace la courbe des contraintes en fonction du temps : On observe alors une contrainte maximale d environ 190 MPa. Cependant, nous avons appliqué des caractéristiques d acier standard (Re 270 MPa) à notre pièce, si on considère (comme le montre la documentation constructeur) que la pièce est réalisée en acier à outil, alors on peut valider sa résistance (on aura un coefficient de sécurité certainement supérieur à 2 avec l utilisation de ce matériau dont nous n avons pas trouvé les caractéristiques complètes pour notre calcul). Page 12 sur 15

2) Calcul sous Herezh: Nous avons également décidé de modéliser notre pièce d étude par éléments finis sous le logiciel Herezh. Nous avons ainsi réalisé la géométrie et le maillage sous le logiciel Gmsh. Nous avons choisi un maillage composé de triangle et de quadrangle linéaire. Nous avons également réalisé un autre maillage qui nous permettra par la suite de modéliser la liaison pivot. Voici la visualisation du maillage : En ce qui concerne les conditions limites, nous avons réalisé les mêmes que sous le logiciel Abaqus. C'est-à-dire une liaison pivot (blocage X et Y), et une force ponctuelle de 100N au niveau de la jonction avec la tige de vérin et enfin un blocage suivant Y au niveau du perçage central. Nous avons ainsi intégré ces conditions limites dans le fichier de paramètre pour le calcul (.info). Cependant nous n avons pas pu obtenir de résultats en raison de la nonconvergence du calcul. Cette non-convergence s explique par la condition limite de la liaison pivot. V) Conclusion : Ainsi, nous pouvons conclure sur cette étude complète d une pièce commercialisée. On peut dire que la pièce étudiée résiste en termes de contrainte dans le domaine d utilisation du système préconisé par le fabricant. On a pu s apercevoir que les conditions de chargement et la prise en compte de contact avait une importance considérable dans la modélisation pour être au plus proche des conditions d utilisation. Ce projet nous a permis de mettre en application les compétences acquises en cours de simulation numérique mais aussi de découvrir un nouveau mode de chargement par contact entre plusieurs pièces. Page 13 sur 15

VI) Annexes : # fichier de commande.info # # flexion d'une éprouvette rectangulaire #---------------------------------------------------- # definition de la dimension de l'espace de travail #---------------------------------------------------- dimension 2 #--------------------------------------------------------------- # definition facultative du niveau d'impression (entre 0 et 10) #--------------------------------------------------------------- niveau_commentaire 5 #------------------------------- # definition du type de calcul #------------------------------- TYPE_DE_CALCUL non_dynamique #avec plus visualisation #informations avec plus creation_reference #utilitaires avec plus suppression_noeud_non_references #utilitaires avec plus renumerotation_des_noeuds #-------------------------------------- # definition du (ou des) maillage(s) #-------------------------------------- < mors.her < mors.lis #******************************************** # definition des lois de comportement #-------------------------------------- choix_materiaux ---------- #---------------------------------------- # Elements Nom Materiau #---------------------------------------- E_tout acier materiaux ---------- #--------------------------------------------------- # Nom Materiau Type loi Potentiel #--------------------------------------------------- acier ISOELAS2D_C # # E NU #---------------------------------------- 210000. 0.3 Page 14 sur 15

masse_volumique ------------ E_tout 7.8 epaisseurs------------ E_tout 5 charges ------------ #------------------------------------------- # Ref noeud Type de charge valeurs #------------------------------------------- N_force PONCTUELLE 10 #294.52 0. blocages ------------ #----------------------------------------------------------- # Ref noeud Bloquages #----------------------------------------------------------- N_pivot UX UY N_LIGNE_blocage UY controle ------------ #--------------------------- # PARAMETRE VALEUR #--------------------------- SAUVEGARDE 0 DELTAtMAXI 0.1#02 TEMPSFIN 1. DELTAt 0.1#01 MULTIPLICATEUR 1. ITERATIONS 5000 PRECISION 1e-3 para_affichage ------------ #--------------------------- # PARAMETRE VALEUR #--------------------------- #FREQUENCE_AFFICHAGE_INCREMENT 10#0 FREQUENCE_AFFICHAGE_ITERATION 1 FREQUENCE_SORTIE_FIL_DU_CALCUL 1 #INTER_TEMPS 0.01 resultats pas_de_sortie_finale_ # ----------- #--------------------------- # PARAMETRE VALEUR #--------------------------- COPIE 0 _fin_point_info_ Page 15 sur 15