Caractéristiques d'une interface d'acquisition

Documents pareils
Etudier l influence de différents paramètres sur un phénomène physique Communiquer et argumenter en utilisant un vocabulaire scientifique adapté

TS 35 Numériser. Activité introductive - Exercice et démarche expérimentale en fin d activité Notions et contenus du programme de Terminale S

Partie Agir : Défis du XXI ème siècle CHAP 20-ACT EXP Convertisseur Analogique Numérique (CAN)

Régler les paramètres de mesure en choisissant un intervalle de mesure 10µs et 200 mesures.

I- Définitions des signaux.

TRAVAUX PRATIQUES SCIENTIFIQUES SUR SYSTÈME

CH IV) Courant alternatif Oscilloscope.

La conversion de données : Convertisseur Analogique Numérique (CAN) Convertisseur Numérique Analogique (CNA)

BACCALAURÉAT PROFESSIONNEL EPREUVE DE TRAVAUX PRATIQUES DE SCIENCES PHYSIQUES SUJET A.1

CHAPITRE IX : Les appareils de mesures électriques

Chap17 - CORRECTİON DES EXERCİCES

USTL - Licence ST-A 1ère année Codage de l information TP 1 :

Cours Informatique 1. Monsieur SADOUNI Salheddine

Chapitre 13 Numérisation de l information

PRODUIRE DES SIGNAUX 1 : LES ONDES ELECTROMAGNETIQUES, SUPPORT DE CHOIX POUR TRANSMETTRE DES INFORMATIONS

Codage d information. Codage d information : -Définition-

Précision d un résultat et calculs d incertitudes

Architecture des ordinateurs Introduction à l informatique

ANALYSE TRAMEs LIAISON SERIE

INTRODUCTION A L ELECTRONIQUE NUMERIQUE ECHANTILLONNAGE ET QUANTIFICATION I. ARCHITECTURE DE L ELECRONIQUE NUMERIQUE

Acquisition et conditionnement de l information Les capteurs

Le multiplexage. Sommaire

Enregistreur sans papier. Interface LON. B Description des interfaces 10.99/

AMICUS 18 (2ème partie) 4) Présentation du logiciel Amicus IDE

L AUTOMATISME LE SIGNAL

REALISATION D UNE CALCULATRICE GRACE AU LOGICIEL CROCODILE CLIPS 3.

T500 DUAlTACH. JAQUET T500 DualTach Instrument de mesure et de surveillance équipé de 2 entrées fréquence TACHYMETRE 2 CANAUX

Caractéristiques des ondes

Infos. Indicateurs analogiques encastrables pour installation à courants forts. Série M W/P/ LSP BWQ BGQ TP TG WQ /0S WQ /2S FQ /2 W BI BIW DFQ

Conversion d un entier. Méthode par soustraction

TP Détection d intrusion Sommaire

Système d automation TROVIS 6400 Régulateur compact TROVIS 6493

TP 1 : 1 Calculs en binaire, octal et hexadécimal

SYSTEME DE GESTION DES ENERGIES EWTS EMBEDDED WIRELESS TELEMETRY SYSTEM

J TB/TW Limiteur de température, contrôleur de température avec afficheur LCD, montage sur rail oméga 35 mm

Modules d automatismes simples

COMMUNICATION ENTRE DEUX ORDINATEURS PAR LASER MODULE EN CODE MORSE OU BINAIRE.

Enregistreur de Température pour PC DALLAS 1820

Approche expérimentale du rayonnement électromagnétique émis par un téléphone portable

1 Savoirs fondamentaux

Nouveauté. Enregistreur sans papier, au coût étudié, avec carte CompactFlash, lifecycle management des données et serveur Web.

Instruments de mesure

MESURE DE LA PUISSANCE

APPENDICE B SYSTÈME DE PESAGE INTELLIGENT MODÈLE ILC3 ET LM3D VERSION 1.7

Recommandations pour la définition des appareils de mesures utilisés en protection cathodique

Le codage informatique

SOLUTIONS DE CONTRÔLE INDUSTRIEL SYSTÈME AVANCÉ DE COMMANDE DU TRAÇAGE ÉLECTRIQUE NGC-30

CONFIGURATION ET UTILISATION

LECON 2 : PROPRIETES DE L'AFFICHAGE Version aout 2011

ARDUINO DOSSIER RESSOURCE POUR LA CLASSE

Module Relais de temporisation DC V, programmable

UFR de Mathématiques et Informatique Année 2009/2010. Réseaux Locaux TP 04 : ICMP, ARP, IP

Initiation au binaire

Leçon 1 : Les principaux composants d un ordinateur

RÉALISATION DE GRAPHIQUES AVEC OPENOFFICE.ORG 2.3

Informatique Générale

Information. BASES LITTERAIRES Etre capable de répondre à une question du type «la valeur trouvée respecte t-elle le cahier des charges?

Transmission de données. A) Principaux éléments intervenant dans la transmission

à l édition de textes

OBJECTIFS. I. A quoi sert un oscilloscope?

LOGICIEL DC4D MONITOR

Chapitre 18 : Transmettre et stocker de l information

Définition 0,752 = 0,7 + 0,05 + 0,002 SYSTÈMES DE NUMÉRATION POSITIONNELS =

ENREGISTREUR DE TEMPERATURE

Série D65/D75/D72 Afficheurs digitaux modulaires

Mini_guide_Isis_v6.doc le 10/02/2005 Page 1/15

Représentation d un entier en base b

1. PRESENTATION DU PROJET

RELAIS STATIQUE. Tension commutée

Numérisation du signal

NOTICE D EMPLOI SLT-TR

Réseau électrique. Le transport de l énergie électrique depuis la centrale électrique jusqu à la maison de Monsieur Toulemonde

Energie et conversions d énergie

CONVERTISSEURS NA ET AN

TABLE DES MATIÈRES 1. DÉMARRER ISIS 2 2. SAISIE D UN SCHÉMA 3 & ' " ( ) '*+ ", ##) # " -. /0 " 1 2 " 3. SIMULATION 7 " - 4.

Q6 : Comment calcule t-on l intensité sonore à partir du niveau d intensité?

Observer TP Ondes CELERITE DES ONDES SONORES

STI2D : Enseignements Technologiques Transversaux

Mesure de la pression différentielle et différentielle bidirectionnelle expliquée à l'aide du capteur

I GENERALITES SUR LES MESURES

1 000 W ; W ; W ; W. La chambre que je dois équiper a pour dimensions : longueur : 6 m largeur : 4 m hauteur : 2,50 m.

MEMOIRES MAGNETIQUES A DISQUES RIGIDES

Modules d entrées/sorties pour FX série XM07 et XM14

MESURE DE LA TEMPERATURE

Oscilloscope actif de précision CONCEPT 4000M

AP1.1 : Montages électroniques élémentaires. Électricité et électronique

Utilisation de KoXo Computers V2.1

I.1- DÉFINITIONS ET NOTIONS DE BASE

Chapitre 22 : (Cours) Numérisation, transmission, et stockage de l information

Fiche technique CPU 314SC/DPM (314-6CG13)

Equipement. électronique

Solutions pour la mesure. de courant et d énergie

Cours 1 : Introduction Ordinateurs - Langages de haut niveau - Application

Architecture matérielle des systèmes informatiques

ELP 304 : Électronique Numérique. Cours 1 Introduction

Algorithme. Table des matières

Chapitre 1 Régime transitoire dans les systèmes physiques

Mini_guide_Isis.pdf le 23/09/2001 Page 1/14

Transcription:

I- L'analogique et le numérique Caractéristiques d'une interface d'acquisition Un signal analogique peut prendre une infinité de valeurs possibles, valeurs généralement contenues dans un intervalle donné. Les grandeurs du monde réel qui nous entoure sont essentiellement analogiques (intensité sonore, température, intensité lumineuse etc.) L oscillogramme de la figure 1 est celui recueilli par un microphone placé à proximité d une guitare sur laquelle a été jouée la note Mi. Il illustre un exemple de grandeur analogique : t Figure 1 : un signal analogique : note Mi émise par une guitare Un signal numérique, lui, ne peut prendre que deux valeurs stables appelées niveau haut et niveau bas : l'information transportée est alors qualifiée de binaire. La figure 2 montre un exemple de signal numérique : il s'agit des signaux émis sur deux lignes distinctes par le clavier du PC lors de l'appui sur la touche A d'un clavier français. Figure 2 : Un signal numérique : transmission du code de la touche A du clavier Caractéristiques d une interface Exao www.laboiteaphysique.fr Page 1

Pour passer des grandeurs du monde réel (analogiques) à celles gérées par les microprocesseurs (numériques) il y a nécessité de réaliser une conversion analogique numérique. II- Conversion analogique-numérique A - Résolution Pour réaliser cette opération, on utilise un circuit intégré appelé convertisseur analogique-numérique (CAN). En voici un exemple : La tension à convertir est appliquée à l'entrée du circuit ; il la compare à la tension de référence (Vref) et délivre sur ses sorties (D0 à D7) un code numérique proportionnel à la valeur de cette tension. Dans l'exemple ci-dessus, le code numérique est délivré sur 8 lignes ce qui donne un code d'une "largeur" de 8 bits (soit un octet) (Cf Annexe : Notations décimale et binaire) La valeur numérique peut donc prendre 256 valeurs différentes (de 0 à 255), pour une tension d'entrée évoluant entre 0 et 5 volts. La figure ci-dessous donne la "fonction de transfert" d'un tel convertisseur : Le code numérique augmente d'une unité lorsque la tension d'entrée augmente de : Vref 256 soit ici 5V 256 20 mv C'est la résolution que l'on peut obtenir avec ce montage. Comme cette résolution dépend de la valeur de la tension de référence choisie par le concepteur du montage (avec Vref = 2,5V on obtiendrait environ 10 mv de résolution mais une mesure maxi de 2,5V), les fabricants expriment la résolution en nombre de bits. Ici c'est un CAN 8 bits Avec un CAN 10 bits, on peut sortir un code compris entre 0000000000 et1111111111 (soit en décimal de 0 à 1023). Avec un tel convertisseur la plage de tension est découpée plus finement (1024 valeurs différentes) Avec un CAN 12 bits le code numérique fourni peut prendre 4096 valeurs différentes. Caractéristiques d une interface Exao www.laboiteaphysique.fr Page 2

Application : mesure de la résolution de l interface ESAO 4+ (Jeulin) On relie les entrées d une des voies de la console aux bornes d une source de tension continue stable (sur cet exemple c est un bloc de 2 piles rechargeables qui est utilisé). On réalise l acquisition au cours du temps : Faire un zoom sur l axe vertical (= changer l échelle verticale) 2540 u (mv) 2538 2536 2534 2532 2530 2528 2526 2524 2522 2520 2518 2516 t (ms) 10 20 30 40 50 60 70 80 90 100 On constate : - que la tension mesurée n est pas parfaitement constante - que la tension mesurée ne varie pas de façon continue, mais par sauts de 2,44 mv. Interprétation : Les entrées directes de la console utilisée admettent des valeurs de tension comprises entre -5 et +5 volts. La plage de tensions mesurables vaut alors : U 5 ( 5 ) 10 V Le convertisseur analogique-numérique fonctionne sur 12 bits. Sur l étendue U, on peut donc discriminer 2 12 (= 4096) niveaux. La plus petite variation du mesurable vaut alors : Adaptateurs multicalibres : du 2 U 12 10 4096 2,44.10 3 V Pour changer la plage de mesures possibles, il est usuel de placer en amont un dispositif électronique permettant d atténuer ou d amplifier le signal d entrée. Le système d acquisition dispose alors de plusieurs calibres. Caractéristiques d une interface Exao www.laboiteaphysique.fr Page 3

La résolution du CAN reste ici de 12 bits, mais la plus petite variation du mesurable, s en trouve modifiée. Exemple : avec un calibre de 20 V, l étendue U = 20 (-20) = 40 V. La plus petite variation du mesurable vaut alors : du U 40 10 2 12 4096 m V B- Fréquence d échantillonnage Sur l'oscillogramme suivant, l'axe horizontal est gradué toutes les 10 ms. La période est donc elle-même de 10 ms, ce qui donne une fréquence pour ce son. f 1 1 100 T 0,010 Hz Imaginons que l'on veuille réaliser l'acquisition de ce son avec une interface ExAO. Le convertisseur analogique numérique de l'interface ne réalise pas de conversions de façon continue : il y a un délai nécessaire pour transformer la tension présente sur son entrée en un code numérique. Cette durée de conversion que l'on pourra noter dt pourra être réglée à volonté mais possède une valeur minimum incompressible (liée au matériel et en particulier au circuit CAN lui-même). Tous les dt, le convertisseur va alors réaliser un échantillonnage du signal appliqué en entrée. La fréquence 1 d'échantillonnage est alors définie par : f éch dt Le choix de la fréquence d'échantillonnage a une importance capitale dans le résultat de l'acquisition. Exemple : prendre une feuille de papier calque et la poser sur l'oscillogramme. Supposons que la fréquence d'échantillonnage choisie soit de 100 Hz soit un dt = 10 ms. Repérer toutes les 10 ms le niveau de tension de l'échantillon acquis par l'interface puis relier ces points entre eux. Comparer la courbe obtenue et l'oscillogramme "vrai" Refaire ce petit travail : - pour une fréquence d'échantillonnage de 200 Hz (dt =5 ms) - " " " " 500 Hz (dt = 2 ms) 0 t(ms) Conclusion : pour visualiser correctement un signal périodique, il est souhaitable d avoir une fréquence d échantillonnage au moins égale à 10 fois la fréquence de ce signal que l on veut visualiser. Caractéristiques d une interface Exao www.laboiteaphysique.fr Page 4

III- Chaîne d'acquisition informatisée A- Les capteurs / adaptateurs : Champ d'expérimentation du monde réel (essentiellement analogique) : Monde numérique : Grandeur physicochimique ( t, pression, intensité lumineuse ) Capteur / adaptateur Tension Interface de conversion analogiquenumérique 10011010 Le convertisseur analogique-numérique nécessite d'être attaqué par une tension. Le rôle du capteur/adaptateur situé en amont est donc de transformer la grandeur physico-chimique étudiée en une tension. La résolution de l'interface et l'étendue de la gamme de mesure d'un capteur/adaptateur déterminent la résolution obtenue sur la grandeur physico-chimique étudiée : Résolution sur une mesure physico-chimique : Voici un exemple tiré d une notice pour un adaptateur thermométrique qui se connecte sur la console précédente (résolution de 12 bits) : La plus petite variation dt mesurable vaut alors : dt T 120 ( 20 ) 140 0, 035 2 12 4096 4096 C Remarque : sur une console 10 bits, on aurait pour la même sonde de mesure : dt T 120 ( 20 ) 140 0, 14 2 10 1024 1024 C Caractéristiques d une interface Exao www.laboiteaphysique.fr Page 5

B- Les appareils à sortie analogiques De plus en plus de fabricants proposent des appareils de mesure ayant une sortie analogique délivrant une tension directement liée à la grandeur physico-chimique étudiée. L acquisition de tels appareils évite l achat d un adaptateur spécifique à la console d acquisition. De plus un appareil à sortie analogique pourra servir aussi bien dans un TP classique que dans un TP informatisé. Exemple : utilisation d un pressiomètre à sortie analogique Pour faire des mesures de pression dans une séance EXAO, il faut un adaptateur pressiomètre ou un pressiomètre à sortie analogique. - L adaptateur pressiomètre : le logiciel convertit directement les mesures en unité de pression - Le pressiomètre à sortie analogique : la sortie analogique est reliée à une entrée de mesure de tension de l interface (soit une entrée directe, soit un adaptateur voltmètre). Il faut alors informer le logiciel que la tension qu il mesure est proportionnelle à une pression. On se sert pour faire l étalonnage des informations fournies par le constructeur du pressiomètre : Ici: -2,5 V 0 hpa +2,5 V 2000 hpa Ceci se fera dans l onglet «Personnalisé» de l entrée Directe sur laquelle est connectée le pressiomètre ATTENTION : après avoir rentré ces données d étalonnage, il faut sauvegarder cette personnalisation en cliquant sur l icône disquette Caractéristique de transfert du pressiomètre Selon la variation de pression prévue au cours de l expérience, on branchera le pressiomètre sur l entrée directe ou sur un adaptateur voltmètre Caractéristiques d une interface Exao www.laboiteaphysique.fr Page 6

ANNEXE : Notations décimale et binaire Dame nature nous ayant affublés de deux mains comportant chacune cinq doigts, nous avons fini par nous mettre à compter en base 10 comme le disent les mathématiciens : c'est le système décimal. Concrètement, cela signifie que l'on se sert de 10 symboles pour écrire des nombres : ce sont les 10 chiffres que l'on a appris dès notre plus jeune âge : 0 1 2 3 4 5 6 7 8 9. Pour écrire un nombre plus grand que 9, on attribue aux chiffres un poids plus ou moins grand suivant la position occupée par le chiffre à l'intérieur du nombre en question : Position : Milliers Centaines Dizaines Unités Valeur : Poids : 10 3 10 2 10 1 10 0 soit : 1000 100 10 1 Exemple 1 1 2 5 0x1000 + 1x100 + 2x10 + 5x1=125 Exemple 2 1 2 5 0 1x1000 + 2x100 + 5x10 + 0x1=1250 Les circuits logiques, (avec leurs deux niveaux : haut et bas) ne comptent que sur deux doigts, donc en base deux ("en binaire"). Dans cette façon de compter, on ne dispose que de deux symboles pour écrire un nombre : les chiffres 0 et 1. En utilisant la même technique de pondération des chiffres en fonction de leur position cela donne : Position : b7 b6 b5 b4 b3 b2 b1 b0 Valeur en décimal : Poids : 2 7 2 6 2 5 2 4 2 3 2 2 2 1 2 0 soit : 128 64 32 16 8 4 2 1 Exemple 1 0 1 1 1 1 1 0 1 0x128+1x64+1x32+1x16+1x8+1x4+0x2+1x1=12 5 Exemple 2 1 1 1 1 1 0 1 0 1x128+1x64+1x32+1x16+1x8+0x4+1x2+0x1=25 0 Exemple 3 0 1 1 0 1 0 0 1 b0 est appelé bit de poids faible (LSB) alors que b7 est le bit de poids fort (MSB). On travaille ici sur 8 bits (b0 à b7) : c'est un octet encore appelé "byte" en anglais... à ne pas confondre avec bit! Quand on travaille sur un octet, les nombres peuvent être compris entre 00000000 et 11111111 soit de 0 à 255 en décimal. Vous pourrez aisément remplir la case vide de l'exemple 3 (résultat = 105 en décimal). La calculatrice fournie avec Windows permet, en mode scientifique, de faire facilement les conversions Décimal <-> Binaire <-> Hexadécimal et même Octal : Caractéristiques d une interface Exao www.laboiteaphysique.fr Page 7