Conférence Evernity. Les matériaux critiques dans les nouvelles technologies : enjeux et perspectives. Eric Drezet EcoInfo CNRS Orléans - 01/2012

Documents pareils
Impacts de l'informatique : ressources, énergie, déchets ; que nous révèlent les analyses de cycle de vie?

Les impacts cachés des TIC. Quels enjeux et quelles actions concrètes?

Transition énergétique Les enjeux pour les entreprises

Découvrir les électrons par le pliage, à partir de 6 ans. supraconductivité. une histoire d électrøns

Transmission des données de la surveillance de l exposition interne au système SISERI Description du format de fichier

T4 Pourquoi éteindre les phares d une voiture quand le moteur est arrêté? Comment fabriquer une pile? un accumulateur?

ENJEUX ENERGETIQUES. Le Monde et la France. L énergie dans les territoires

Besoin en terres rares dans le secteur de l énergie et focus sur le néodyme

L incidence des hausses de prix des produits de base sur la balance commerciale du Canada 1

ECO-PROFIL Production Stratifié HPL mince fabriqué par Polyrey

Point de Contact National. Assurer l approvisionnement en matières premières non énergétiques et non agricoles

Détermination des métaux : méthode par spectrométrie de masse à source ionisante au plasma d argon

GESTION DES TERRES RARES RÉSIDUELLES EN CONTEXTE QUÉBÉCOIS. Par Renaud Beaucher-Perras

Plate-forme énergie. Filière de la biomasse forestière

PAPIER OU SUPPORT NUMÉRIQUE, QUEL EST LE BON CHOIX ÉCOLOGIQUE?

Les Rencontres Scientifiques Colas

PMI-MASTER Smart. PMI portatif. Le premier spectromètre par émission optique ARC / SPARK réellement portable

1 ère Partie : Concepts de Base

ETUDE DE LA SECONDE VIE DES BATTERIES DES VEHICULES ELECTRIQUES ET HYBRIDES RECHARGEABLES

Mise en Forme des Matériaux Polymères Polymer Processing. Philippe Cassagnau

IR Temp 210. Thermomètre infrarouge. Des techniques sur mesure

LES BRIC: AU DELÀ DES TURBULENCES. Françoise Lemoine, Deniz Ünal Conférence-débat CEPII, L économie mondiale 2014, Paris, 11 septembre 2013

L ENERGIE CORRECTION

I. Introduction: L énergie consommée par les appareils de nos foyers est sous forme d énergie électrique, facilement transportable.

Le gaz de schiste «pertubateur» du marché de l électricité? Jacques PERCEBOIS Directeur du CREDEN Professeur à l Université de Montpellier I

Des limites de l économie circulaire : la question des métaux

Épreuve collaborative

2 nd vie des produits technologiques. Ecocitoyenneté et nouveaux modèles économiques dans la téléphonie mobile

CONSOMMATION ET PRODUCTION D ELECTRICITE EN ALLEMAGNE. Bernard Laponche 2 juin 2014 * Table des matières

FAITES AFFAIRE AVEC L ALLEMAGNE, PREMIÈRE ÉCONOMIE DE L UNION EUROPÉENNE

Une stratégie Bas Carbone

2. L offre et la demande d énergie: tendances et perspectives

L énergie en France et en Allemagne : comparaisons

Quand les métaux arrivent en ville. Enjeux et stratégies pour les matières premières critiques.

Décrets, arrêtés, circulaires

Unité fonctionnelle de référence, à laquelle sont rapportés les impacts environnementaux du Chapitre 2

Potentiel de valorisation d un déchet en filière métallurgique

REVUE DU 3 ÈME TRIMESTRE 2013

Jean-Yves RICHARD ADEME

Nucléaire : l électricité ou la bombe? Les liens entre nucléaire civil et nucléaire militaire

Quel avenir pour l énergie énergie nucléaire?

C3. Produire de l électricité

L éco-responsabilité appliquée à l informatique

Euro-Supergrid avec connexion EU-MENA : Schéma d une infrastructure possible pour un approvisionnement électrique durable en EU-MENA.

ADEME Analyse comparée des impacts environnementaux de la communication par voie électronique

Quand les métaux arrivent en ville. Enjeux et stratégies pour les matières premières critiques.

LA CONSOMMATION D ENERGIE EN ALLEMAGNE ET EN FRANCE : UNE COMPARAISON INSTRUCTIVE

solutions sun2live TM

GUIDE DE BONNES PRATIQUES POUR LA COLLECTE DE PILES ET ACCUMULATEURS AU LUXEMBOURG

L ENERGIE NUCLEAIRE A T ELLE UN AVENIR? Une réponse dans l espace?

Principe de fonctionnement des batteries au lithium

Enjeux et Perspectives de la composante «Environnement Santé» du Plan d Action de l Initiative Environnement du NEPAD

L offre d énergie: une comparaison France, Allemagne et Japon. Par Pierre Lasserre, Sciences économiques Université du Québec à Montréal

2.0 MegaWattBlock pour parcs solaires

Les batteries électriques pour les camions et bus électriques Etat de l'art, perspectives et interrogations

Région du lac de Gras

«Résoudre les problèmes de l'énergie, une clé pour la survie de l'humanité»

Bien vivre, dans les limites de notre planète

Les tendances du marché de. la production d électricité. dans le monde. participation d entreprises privées locales ou internationales

Notes. Schéma général PRODUCTION ÉLECTROLYTIQUE Composés inorganiques, nonmétaux

Une révolution dans les domaines de l énergie et de l emploi

Une entreprise innovante

NOTIONS FONDAMENTALES SUR LES ENERGIES

Les plastiques en débat 2014

1. La production d électricité dans le monde : perspectives générales

La place du charbon dans le mix électrique

UNE REFLEXION PREALBLE

Dr Berdj Haroutunian, 5, Chemin Gottret ch-1255 VEYRIER tél (0) berdj@haroutunian.ch

Que sont les sources d énergie renouvelable?

Batteries Lithium-ion et stockage des énergies renouvelables

Groupe Areva Usine de La Hague Métier CNP

Les questions liées à la transition énergétique constituent l une

Evolution du mix électrique en France - Qui paiera?

Dii Le réseau d entreprises pour l électricité des deserts Faciliter la création de marchés du solaire et de l éolien en Europe, en Afrique du Nord

LOG 8869 Residential Brochure_FR:Layout 1 6/4/08 11:53 AM Page 1. Construire vert ne devrait pas être un casse-tête

République Algérienne Démocratique et Populaire. Ministère de l énergie et des Mines. Résultat du Secteur de l Energie et des Mines pour l'année 2005

La citadine 100% électrique 250 KM D AUTONOMIE

L énergie sous toutes ses formes : définitions

GUIDE de L ÉCO CITOYEN. au BUREAU

Canada-Inde Profil et perspective

La transition énergétique L Energiewende allemande. 7 Conclusions clés. Une initiative de la Fondation Heinrich Böll Publié le 28 novembre 2012

Épreuve collaborative

matériaux métalliques

Tarif des clés USB et POWER BANKS semaines 37 / 38

Les grands chantiers du Smart Grid français. vers une feuille de route technologique

Capture et stockage du CO2 (CCS)

DELTA. Technologie XRF portable pour les applications PMI

Production mondiale d énergie

Pour l environnement. Strength. Performance. Passion.

«La sécurité d investissement comme préalable à un approvisionnement fiable» Le 5 octobre 2011 Foire du Valais, Journée de l énergie

L ÉLECTRONIQUE IDÉALE POUR L ENVIRONNEMENT

GIRAFE ENERGIES RENOUVELABLES MATERIAUX RENOUVELABLES LA SYNERGIE PARFAITE

La Fusion Nucléaire (Tokamak) Nicolas Carrard Jonathan Carrier Guillomet 12 novembre 2009

Production électrique : la place de l énergie éolienne

Le stockage de l'énergie : des nouvelles perspectives de performance énergétique pour les industriels?

Prix Pierre Potier L innovation en chimie au bénéfice de l environnement

LE CETIME votre partenaire pour le progrès et l innovation:

7 SOURCES DE RENDEMENT Où placer son argent aujourd hui?

Energie Nucléaire. Principes, Applications & Enjeux. 6 ème /2015

Transcription:

Conférence Evernity Les matériaux critiques dans les nouvelles technologies : enjeux et perspectives Eric Drezet EcoInfo CNRS Orléans - 01/2012 1

Plan EcoInfo et les matériaux critiques pour les TICs 1 Situation de la métallurgie Définitions et exemples Ressources et réserves Raréfactions La problématique énergétique Les conflits de l eau Le recyclage Conclusion (1) Technologies de l Information et de la Communication 2

EcoInfo et les matériaux critiques pour les TICs EcoInfo, groupe de travail du CNRS : Impacts environnementaux et sociaux générés par les TICs Dans ce cadre, entre autres, étude de l épuisement des ressources Articles publiés sur : les terres rares, le silicium, le lithium, le rapport de l UE sur les 41 matériaux d accès jugé critique (07/2010) Site web : http://www.ecoinfo.cnrs.fr 3

EcoInfo et les matériaux critiques pour les TICs La raréfaction de matériaux indispensables aux nouvelles technologies étude plus large des ressources naturelles : d autres matériaux (dépendances) énergies (extraction, transport, traitement ) l accès à l eau 4

Situation de la métallurgie En France : secteur stratégique d excellence mondiale Désindustrialisation : moins de formation, moins de R&D, moins de production 1 Pourtant, les métaux sont incontournables : 60 métaux dans un téléphone portable 2 Notre demande en métaux différents x 3 en 20 ou 30 ans pour les industries de haute technologie 3 (1) La Métallurgie science et ingénierie, A Pineau, Y. Quéré, Académie de Sciences, Académie des Technologies, EDP Sciences 2011 (2) UNEP 2011 (3) «Quel futur pour les métaux?» Bihouix et de Guillebon, 2010 5

Situation de la métallurgie Les industries de hautes technologies tirent la demande en métaux rares : Métaux concernés Principales utilisations Écrans LCD Leds blanches (éclairage) Transistors SiGe ou portables (Wifi) Cellules solaires photovoltaïques Aimants permanents (éoliennes, moteurs hybrides) Batteries Superalliages 6

Définitions et exemples Ressources et réserves Les 3 types de raréfaction des ressources : Absolue Peu probable mais Temporaire ou «criticité» L Indium, le lithium, les terres rares Structurelle les sous-produits du Cu, Pb, Zn, Ni, Pt, Sn et Al 7

Ressources et réserves 1 Ressource : concentration naturelle de matériau solide, liquide ou gazeux dans une forme et une quantité telles que les conditions économiques de l extraction sont actuellement ou potentiellement faisables Réserve base : la part d une ressource identifiée qui respecte des critères physiques et chimiques minimaux liés à une extraction selon des pratiques de production courantes Réserve : la part de la réserve base qui pourrait être économiquement extraite ou produite au moment de la détermination (1) USGS (2009) 8

La raréfaction absolue déplétion des ressources de minerai économiquement extractibles la demande de ce métal excède la production minière : Tension sur les prix Extractions profondes, techniquement difficiles et de gisement à faible teneur Peu probable dans un futur prévisible 1 (1) «Sustainable Resource Management in the Production Chain of Precious and Special Metals», C. Hagelüken, (2011) 9

La raréfaction absolue Mais la concentration en métaux des minerais est en forte diminution : 1930 2010 55 t minerai 1 t de cuivre 125 t minerai 1 t de cuivre 1975 Afrique du Sud 2010 1 t minerai 10 g d or 1 t minerai 5 g d or (1) «Quel futur pour les métaux?» Bihouix et de Guillebon, 2010 10

La raréfaction absolue Mais plus la concentration diminue, plus les quantités d énergie et de matériel pour extraire augmentent 1 : En 1984, les mines d or sud africaines consommaient 18 milliards de kwh soit 20% de la production d électricité du pays Cette diminution de la concentration ne peut qu aggraver la situation : cercle vicieux 1 La grande majorité des éléments a des réserves comprises entre 30 et 60 ans 1 Imprécision due : au calcul (/conso. actuelle), à la production, au prix, au recyclage, à la demande, aux données confidentielles (1) «Quel futur pour les métaux?» Bihouix et de Guillebon, 2010 11

La raréfaction absolue Premiers métaux à échéance proche : Réserves 1 (années) Part TIC de la prod. mondiale Utilisation Recyclage Substitution 10-15 48% Leds <1% 2 Faible 10-15 15% Wifi <1% 2 Silicium 10-15 > 50% Ecrans LCD <1% 2 Graphène, mat. organ. Les industriels doivent s adapter : recyclage, substitution Note : In, Ga, Ge et Ta : recyclage > 25% durant la production des matériels électroniques (1) «Quel futur pour les métaux?» Bihouix et de Guillebon, 2010 (2) Metal stocks and recycling rates (UNEP, 2011) 12

La raréfaction temporaire 1 l offre en métal n est pas capable de faire face à la demande pendant une certaine période : nouveaux développements technologiques Exemple : l indium forte croissance du marché dans des applications existantes Cas du lithium achats spéculatifs d investisseurs développements politiques, conflits armés désastres naturels ou d autres contraintes (1) Cette notion est partiellement reprise sous le terme de criticité dans le rapport «Critical raw materials for the EU», 2010 13

Raréfaction temporaire passée : l indium Entre 2003 et 2006, l émergence de la technologie LCD forte demande en In (couche conductrice transparente ITO) Les prix ont été X 10 20% de l In finit dans la couche ITO recyclage A partir de 2006 la production primaire et le recyclage Chute des prix 14

Raréfaction temporaire passée : l indium Et dans le futur proche? L indium est un sous-produit d autres métaux (zinc, plomb, étain et cuivre dans une moindre mesure) faible élasticité de la production Il pourrait donc souffrir à nouveau d une demande en rapide augmentation tirée par l éclairage LED, le photovoltaïque De plus, la Chine détient 44% de la production mondiale et ses exportations sont limitées Des pays comme le Japon ont commencé à stocker l indium 1 (ainsi que d autres métaux critiques) (1) USGS, 2010 15

Raréfaction temporaire future (?) : le lithium 5% 8% 4% 5% Utilisation mondiale du lithium céramique et verre 20% 17% 21% Source : CBestCeramic - 08/2009 20% batteries lubrifiants médecine polymères réfrigérant pour climatisation fusion d'aluminum agriculture et autres alliages Actuellement, 20% du lithium produit est utilisé dans la fabrication de batteries 1 Au rythme actuel de production, les réserves sont estimées à plus d un siècle et demi 1 Elles passent à plus du double avec les réserves base L eau de mer contient d énormes quantités de lithium mais à un coût environnemental et financier beaucoup trop élevés Des travaux sont en cours pour recycler le lithium des batteries à 50% (1) «Quel futur pour les métaux?» Bihouix et de Guillebon, 2010 16

Raréfaction temporaire future (?) : le lithium L exemple de la voiture électrique : Le parc automobile actuel mondial transformé en véhicules électriques consommerait toutes les réserves assez pures (80% des réserves) Il est en forte progression (pays émergents) Quid des autres secteurs? La production annuelle de lithium ne représente que 2% des réserves il faudrait 50 ans pour uniquement les besoins des batteries automobiles! (1) «Quel futur pour les métaux?» Bihouix et de Guillebon, 2010 17

La «criticité» Le rapport de l UE 1 sur les 41 matériaux d accès jugé critique d ici à 2030 pour les industries high-tech introduit la notion de «criticité» : La disponibilité géologique n est pas prise en compte Risque de baisse de l approvisionnement basé sur : La disponibilité : stabilité politico-économique des pays producteurs, niveau de concentration de la production, possibilités de substitution et taux de recyclage La protection de l environnement : évaluation des impacts sur l approvisionnement en matières premières causé par la mise en œuvre de mesures de protection de l environnement dans des pays de faible performance environnementale (1) «Critical raw materials for the EU», 2010 18

La «criticité» Les 14 matériaux (éléments et minerais) jugés particulièrement critiques dans le rapport de l UE 1 : Antimoine (Sb, 51) Béryllium (Be,4) Cobalt (Co, 27) Fluorite Gallium (Ga, 31) Germanium (Ge, 32) Graphite Indium (In, 49) Magnésium (Mg, 12) Métaux du groupe du Platine Niobium (Nb, 41) Tantale (Ta, 73) Terres rares Tungstène (W, 74) (1) Source : http://ec.europa.eu/enterprise/policies/raw-materials/files/docs/report-b_en.pdf 19

La «criticité» 20

La «criticité» Evolution de la demande 2006-2030 et principales technologies émergentes tirant la demande 1 : x 22,5 couches minces photovoltaïques x 8 couches minces photovolt.,écrans x 8 fibre optique, infrarouge x 7 aimants perman ts, laser x 4 désalinisation eau de mer, implants x 3,6 moteurs électriques efficaces, RFID x 3,5 catalyse, désalinisation eau de mer x 3 RFID, soudure sans plomb x 2,5 micro-condensateurs, médical x 2 batteries li-ion Note 2 pile à combustible, catalyse (1) «Critical raw materials for the EU», 2010 (2) La demande passe de «très faible» en 2006 à 345 t en 2030 21

La «criticité» Principales recommandations du rapport de l UE sur les matériaux critiques : Suivre ce dossier au niveau européen Promouvoir la recherche de gisements et augmenter l efficacité de l extraction Diminuer la consommation Chercher des substituts Augmenter le recyclage Le CNRS coordonne le projet européen ERA- MIN sur les métaux critiques (11/2011) 1 (1) Source CNRS : http://www2.cnrs.fr/presse/communique/2344.htm 22

La «criticité» : les terres rares Les terres rares sont incontournables dans les industries de haute technologie : Industries «vertes» : voitures hybrides, éoliennes Industrie électronique : DD, écrans LCD, écouteurs Applications militaires (guidage), nucléaire 23

La «criticité» : les terres rares La Chine a éliminé ses concurrents mondiaux : Par une politique de prix bas Au mépris des règles environnementales et sociales Voir notre article sur les terres rares : http://www.ecoinfo.cnrs.fr/spip.php?rubrique57 24

Tonnes La «criticité» : les terres rares Profitant de sa situation de leader mondial, la Chine limite ses exportations depuis 2006 Evolution du quota d'exportation du minerai de terres rares chinois et de la demande hors de Chine 70 000 65 000 60 000 55 000 50 000 45 000 40 000 35 000 30 000 25 000 2005 2006 2007 2008 2009 2010 Quota exporté 65 609 61 821 50 643 56 959 50 142 30 250 Demande estimée hors Chine 46 000 53 000 55 000 54 200 35 000 52 500 Elle veut la valeur ajoutée : implanter les usines sur son sol en échange de l accès aux terres rares (Apple) 25

La «criticité» : les terres rares La réplique s organise : Constitution de stocks de métaux Réouverture de mine en Australie (Mount Weld) en 2007, aux USA (Mountain Pass) fin 2012 et un projet à Kvanefjeld au Groenland pour 2015 Recherche de nouveaux gisements 1 Unités de recyclage (Umicore, Rhodia) 2 à partir de : Ampoules basse consommation (yttrium, terbium, europium) Aimants des éoliennes, des véhicules électriques ou des disques durs (néodyme, praséodyme, dysprosium, terbium) Batteries rechargeables NiMh (cérium, lanthane, néodyme et praséodyme) 3 (1) Cas du Japon dans l océan Pacifique (AFP, 07/2011) (2) Rhodia (10/2011) (3) Rhodia (06/2011) 26

La raréfaction structurelle Certains métaux ne sont pas extraits pour euxmêmes, mais sont des sous-produits de l extraction d autres métaux 1 Une demande en augmentation une hausse des prix des métaux sous-produits Mais cela n influera pas sur la production du métal principal tant que sa propre demande n augmentera pas Quelques exemples de grands métaux et leurs sous-produits : Cu, Pb, Zn, Ni, Pt, Sn et Al (1) Wellmer, 2008 27

La raréfaction structurelle : les sous-produits du Cuivre 1 Production mondiale 2010: 16,2 Mt 3 1 er producteur : Chili (34%) 3 Réserves : 40 ans 4 Recyclage : 15% 5 Pic de production : 1 à 2 décennies 5 Te et Se principalement issus de l extraction du Cu (et Ni) 3 Utilisation : semi-conducteurs, couches minces photovoltaïques Prod. mondiale Pt: 183 t 1 er prod : Af. Sud (75%) 3 Substitution et recyclage : limités MGP 2 (1) Hagelüken et Meskers, 2010 (2) Métaux du Groupe du Platine (3) USGS 2011 (4) «Critical raw materials for the EU», 2010 (5) «Quel futur pour les métaux?» Bihouix et de Guillebon, 2010 28

La raréfaction structurelle : les sous-produits du Plomb 1 Production mondiale 2010 : 4,1 Mt 2 1 er producteur : Chine (43%) 2 Recyclage : > 50% 3 70% de l Ag extrait est un sousproduit d autres métaux (Pb, Zn, Cu, Au) 4 Utilisation : contacts, soudure (1) Hagelüken et Meskers, 2010 (2) USGS 2011 (3) «Metals Recycling Report», UNEP 2011 (4) «Quel futur pour les métaux?» Bihouix et de Guillebon, 2010 29

La raréfaction structurelle : les sous-produits du Zinc 1 Production mondiale 2010: 12 Mt 2 1 er producteur : Chine (29%) 2 Recyclage : > 50% 3 Ge (comme In) est principalement un sous-produit du Zn 4 Réserve : 10 à 15 ans 4 Utilisation : infrarouge, optique Recyclage : 30% 5 (1) Hagelüken et Meskers, 2010 (2) USGS 2011 (3) «Metals Recycling Report», UNEP 2011 (4) «Quel futur pour les métaux?» Bihouix et de Guillebon, 2010 (5) «Critical raw materials for the EU», 2010 30

La raréfaction structurelle : les sous-produits du Nickel 1 Production mondiale 2010: 1,55 Mt 2 1 ers producteurs : Russie (17%), Indonésie (15%) 2 Nouvelle Calédonie : 6 e place (9%) 2 Réserves : 35 ans 3 La majorité du Co vient de l extraction du Ni et Ni-Cu 3 Utilisation : batteries, aimants Substitution : limitée 4 MGP (1) Hagelüken et Meskers, 2010 (2) USGS 2011 (3) «Quel futur pour les métaux?» Bihouix et de Guillebon, 2010 (4) «Critical raw materials for the EU», 2010 31

La raréfaction structurelle : les sous-produits du Platine 1 Production mondiale 2010: 183 t 2 1 er producteur : Afr. du Sud (75%) 2 La majorité de l Au vient de l extraction du Pt 3 Utilisation : DD, piles à combustible, catalyse (1) Hagelüken et Meskers, 2010 (2) USGS 2011 (3) «Quel futur pour les métaux?» Bihouix et de Guillebon, 2010 32

La raréfaction structurelle : les sous-produits de l Etain 1 Production mondiale 2010: 0,26 Mt 2 1 er producteur : Chine (44%) 2 Réserves : une vingtaine d années 3 L In est principalement un sousproduit du Zn, du Pb, Sn et Cu dans une moindre mesure 3 Réserve : 10 à 15 ans 3 Prod. Mond. Raffineries : 574 t 2 Utilisation : ITO (écrans LCD) Exportation : limitée Un écran LCD de 15" nécessite 1g d'indium (1) Hagelüken et Meskers, 2010 (2) USGS 2011 (3) «Quel futur pour les métaux?» Bihouix et de Guillebon, 2010 33

La raréfaction structurelle : les sous-produits de l Aluminium 1 Production mondiale 2010 : 41,4 Mt 2 1 er producteur : Chine (41%) 2 Réserves : plusieurs dizaines d années 3 1 kg de bauxite 50 mg de Ga 2 Réserves : 10 à 15 ans 3 Production mond. 2010 : 106 t 2 Utilisation : Electronique, CD, refroidissement CPU et transistors Exportation : limitée 4 (1) Hagelüken et Meskers, 2010 (2) USGS 2011 (3) «Quel futur pour les métaux?» Bihouix et de Guillebon, 2010 (4) «Critical raw materials for the EU», 2010 34

La problématique énergétique Au 20 e siècle, l extraction de combustibles fossiles x 12 1 Le pétrole conventionnel a passé son pic de production en 2006 2, la production mondiale plafonnera d ici à 2015 3 Comme les autres matières premières, en se raréfiant, le pétrole devient plus difficile à extraire (6000 m de prof. en Guyane, sable bitumineux, pétrole de schiste, ) Le taux de retour énergétique est passé de 100/1 (1930) à 35/1 (fin années 90) puis 20/1 (milieu des années 2000) 4 Risque d une crise pétrolière très sérieuse dans la prochaine décennie prix extrêmement élevés 3 (1) «Decoupling Natural Resource Use and Environmental Impacts from Economic Growth, PNUE, 2011 (2) World Energy Outlook 2010 (3) «C est maintenant!» JM. Jancovici, A. Grandjean, 2010 (4) Hall et al. (2009) 35

La problématique énergétique En 2008 l UE importait près de 70% de sa consommation de pétrole brut 1 Il faut s attendre à un accroissement de la baisse des exportations des pays producteurs qui a déjà commencé 1 8 à 10% de l énergie primaire mondiale extraire ou raffiner des métaux 2 La dépense énergétique et matérielle alors que la concentration des minerais ce qui entrainera une hausse du coût des matières premières En2008, crise énergétique en Afrique du sud mines fermées (1) B. Durand, ancien directeur de la division Géologie-Géochimie de l'ifp (2) «Quel futur pour les métaux?» Bihouix et de Guillebon, 2010 36

Les conflits de l eau En 2005, l industrie minière US a consommé près de 9 millions de m 3 d eau 1 Au Mali, la mine d or de Sadiola : 5,6 millions de m 3 d eau en 1an = conso.mmation de 800.000 maliens 2 En 2007, Intel et Texas Instruments ont consommé près de 50 millions de m 3 d eau dans la production de leur puces électroniques 3 industrie 1998 : 28 pays en stress ou pénurie hydrique 4 2025 : ils seront 56 4 (x2) dont l Inde qui sera alors le pays le plus peuplé 1,1 milliard d humains n ont pas accès à l eau 3 1/3 de l humanité vit en état de stress hydrique 5 humanité (1) USGS - (2) «Quel futur pour les métaux?» Bihouix et de Guillebon, 2010 (3) «Watching water», JP Morgan, 2008 - (4) «La guerre de l eau», V. Shiva, 2003 (5) «L eau douce, une ressource précieuse», dossier en ligne du CNRS 37

Les conflits de l eau Quelques définitions : Crise hydrique grave 1 : la réserve d'eau disponible par habitant et par année est inférieure à 1000 m 3 En dessous de ce seuil, le développement économique et la santé de la population du pays sont fortement perturbés Quand la réserve annuelle tombe en dessous des 500 m 3 par personne, la survie de la population gravement menacée 1 Quelles conséquences? Des conflits populations locales Risques d arrêt de production (1) «La guerre de l eau», V. Shiva, 2003 38

Les conflits de l eau Quelles solutions? L exemple d Intel 1 : Le recyclage de l eau Si l objectif de faire passer la consommation d eau/puce produite sous le niveau de 2007 est en bonne voie On voit par contre que la consommation globale continue de progresser Note : attention aux chiffres à corréler avec le volume de production! (1) 2010 Corporate Responsibility Report, Intel, 2011 39

Le recyclage Alors que l estimation du recyclage en fin de vie du fer et de l acier se situe entre 70 et 90%, celui des métaux spéciaux 1 est < 1% 2 en fin de vie des équipements Le recyclage est plus efficace dans les pays développés Le recyclage revêt un intérêt multiple : On réduit la pression sur les ressources Pas de dépendance : on recycle nos déchets (mine urbaine) Moins d énergie pour obtenir le métal nécessaire 3 (Acier 25-40%, Al 4-5%, Cu 13-16%, Ni > 5-10%, Pb 35-38%, Zn 25-37%) (1) Lithium, béryllium, bore, scandium, vanadium, gallium, germanium, arsenic, sélénium, strontium, yttrium, zirconium, indium, tellure, baryum, hafnium, tantale, osmium, thallium, bismuth, lanthane, cérium, praseodymium, néodyme, samarium, europium, gadolinium, terbium, thulium, ytterbium, lutétium (2) «Metals Recycling Report» UNEP, 2011 (3) «Quel futur pour les métaux?» Bihouix et de Guillebon, 2010 40

Le recyclage Mais le recyclage a ses limites 1 : Techniques et physiques : perte au feu (1-2% par cycle pour l aluminium), dispersion dans l environnement Liées à l usage : de plus en plus d alliages employés dans des produits de plus en plus complexes (> 30 métaux dans un ordinateur portable, 10 types d acier dans une voiture), des usages dispersifs (colorants, engrais, catalyse, pesticides, alimentation) Les industries «high-tech» exigent un haut degré de pureté disqualification des métaux recyclés dégradation d usage Le recyclage doit être rentable car nécessite des investissement lourds pour les métaux rares employés en petites quantités et mélangés leur raréfaction et donc leur prix sera le déclencheur (1) «Quel futur pour les métaux?» Bihouix et de Guillebon, 2010 41

Conclusion La disponibilité des métaux est tributaire de nombreux facteurs complexes qu il convient de prendre en compte 1 : (1) «Critical raw materials for the EU», 2010 42

Conclusion Il faut anticiper la disponibilité des métaux rares à court, moyen et long terme Pour les plus critiques (raréfaction absolue, temporaire ou structurelle) il faut chercher des substituts, réduire leur emploi et augmenter significativement leur recyclage Dans le cadre de la mise en place d un processus industriel, il faut également prendre en compte les contraintes énergétiques (risques d arrêt de production) et d accès à l eau (conflits avec les populations locales) Au niveau de la conception des produits, il faut repense la conception (éco-conception) et augmenter la durée de vie (bannir l obsolescence programmée) (1) «Critical raw materials for the EU», 2010 43