Evaluation des Performances dans une Architecture Réseau Optique Transparente avec Accès PON



Documents pareils
Réseaux grande distance

Evolution de l infrastructure transport

Architectures et Protocoles des Réseaux

Digital Subscriber Line

NOTIONS DE RESEAUX INFORMATIQUES

LECOCQ Marc & LOTH Ludovic. Réseaux Mobile et Haut Débit

Cours n 12. Technologies WAN 2nd partie

Déploiement FTTx. R&M France - Sept 2006

Les réseaux cellulaires

ADSL. Étude d une LiveBox. 1. Environnement de la LiveBox TMRIM 2 EME TRIMESTRE LP CHATEAU BLANC CHALETTE/LOING NIVEAU :

VLAN Virtual LAN. Introduction. II) Le VLAN. 2.1) Les VLAN de niveau 1 (Port-based VLAN)

Les Virtual LAN. F. Nolot. Master 1 STIC-Informatique 1

Présentation du modèle OSI(Open Systems Interconnection)

Ebauche Rapport finale

Développons ensemble la Dracénie

Expérimentation de service Triple Play sur un réseau optique passif

Technologies xdsl. 1 Introduction Une courte histoire d Internet La connexion à Internet L évolution... 3

ADSL. C est comme son nom l indique une liaison asymétrique fort bien adaptée à l Internet et au streaming radio et vidéo.

DU HAUT DÉBIT AU TRÈS HAUT DÉBIT : Et si l on commençait par un accès neutre par fibre optique au sous-répartiteur?

LES RESEAUX VIRTUELS VLAN

Transmission ADSL. Dominique PRESENT Dépt S.R.C. - I.U.T. de Marne la Vallée

2. DIFFÉRENTS TYPES DE RÉSEAUX

xdsl Digital Suscriber Line «Utiliser la totalité de la bande passante du cuivre»

Guide pour le Raccordement des Logements Neufs à la Fibre Optique. Novembre 2011

Réseau : Interconnexion de réseaux, routage et application de règles de filtrage.

Groupe Eyrolles, 2000, 2004, ISBN :

2. Couche physique (Couche 1 OSI et TCP/IP)

Les réseaux de campus. F. Nolot

CULTe Le samedi 9 février2008 à 15h. Conf 1 : WIFI, les bases

TABLE DES MATIERES. I. Objectifs page 2. II. Types de réseaux page 2. III. Transmission page 2. IV. Câbles page 3. V.

La Solution Crypto et les accès distants

Votre Réseau est-il prêt?

Administration des ressources informatiques

TP réseau Les réseaux virtuels (VLAN) Le but de se TP est de segmenter le réseau d'une petite entreprise dont le câblage est figé à l'aide de VLAN.

MICROSENS. Module Bridge Ethernet / Fast Ethernet. fiber optic solutions. Description. Construction

Les Réseaux Informatiques

Plan du Travail. 2014/2015 Cours TIC - 1ère année MI 30

NOUVELLES TECHNOLOGIES RESEAUX

Les Réseaux sans fils : IEEE F. Nolot

Introduction ADSL. ADSL signifie Asymetric Digital Suscriber Line. La palette des technologies en présence

DSCG : UE5 - Management des Systèmes d'information CARTE HEURISTIQUE...1 ARCHITECTURE PHYSIQUE...2

Réunion d information Accès Internet. 25 avril 2014

Firewall. Souvent les routeurs incluent une fonction firewall qui permet une première sécurité pour le réseau.

Chapitre 1: Introduction générale

Flächenhafter Ausbau von Glasfasernetzen aus der Sicht eines Telekommunikationsunternehmens Gaston BOHNENBERGER Chef de Département Infrastructures

Présentation Générale

Téléinformatique. Chapitre V : La couche liaison de données dans Internet. ESEN Université De La Manouba

Conception de réseaux de télécommunications : optimisation et expérimentations

EFFETS D UN CHIFFRAGE DES DONNEES SUR

LE RESEAU GLOBAL INTERNET

Le Multicast. A Guyancourt le

Les techniques de multiplexage

Réseaux Mobiles et Haut Débit

LA VIDÉOSURVEILLANCE SANS FIL

1 Définition et présentation. 2 Le réseau Numéris. 3 Les services. 3.1 Les services Support (Bearer service) SYNTHESE

Le rôle Serveur NPS et Protection d accès réseau

Cisco Certified Network Associate

«SESSION 2009» RESEAUX DE TELECOMMUNICATIONS ET EQUIPEMENTS ASSOCIES. Durée : 2 h 00 (Coef. 3)

STI 20 Édition 3 /Novembre 2002

STI 26 Édition 1 / Mai 2002

Chapitre 2 : Systèmes radio mobiles et concepts cellulaires

PROGRAMME DETAILLE. Parcours en première année en apprentissage. Travail personnel CC + ET réseaux

LE VDSL 2 EN FRANCE. Source :

Voix et Téléphonie sur IP : Architectures et plateformes

Le déploiement du Très Haut Débit

Câblage des réseaux WAN.

La couche réseau Le protocole X.25

La PSBT Optique : Un candidat sérieux pour augmenter le débit sur les installations existantes.

UE 503 L3 MIAGE. Initiation Réseau et Programmation Web La couche physique. A. Belaïd

Les Réseaux Privés Virtuels (VPN) Définition d'un VPN

LES RÉSEAUX À HAUTS DÉBITS

Petit guide à l'usage des futurs abonnés au réseau de télécommunications à TRES haut débit du département des Yvelines..

Arguments clés. (1) : disponible sur certaines offres

Computer Networking: A Top Down Approach Featuring the Internet, 2 nd edition. Jim Kurose, Keith Ross Addison-Wesley, July ENPC.

Caractéristiques et débits de votre ligne ADSL

Conception d un outil d aide au déploiement d un réseau EV-DO dans un concept IMS pour l opérateur CAMTEL

Réseaux Locaux. Objectif du module. Plan du Cours #3. Réseaux Informatiques. Acquérir un... Réseaux Informatiques. Savoir.

6. Liaisons à haute vitesse, haut débit, ADSL, ATM.

Chapitre VII : Principes des réseaux. Structure des réseaux Types de réseaux La communication Les protocoles de communication

MANCHE NUMERIQUE. Bilan de la couverture numérique du territoire et de la mise en concurrence

Le service IPv4 multicast pour les sites RAP

Analyse de la bande passante

10 choses à savoir sur le 10 Gigabit Ethernet

II/ Le modèle OSI II.1/ Présentation du modèle OSI(Open Systems Interconnection)

Principes de DHCP. Le mécanisme de délivrance d'une adresse IP à un client DHCP s'effectue en 4 étapes : COMMUTATEUR 1. DHCP DISCOVER 2.

Cours des réseaux Informatiques ( )

Master d'informatique 1ère année. Réseaux et protocoles. Architecture : les bases

Architecture Principes et recommandations

Internet et Multimédia Exercices: flux multimédia

Théorie sur les technologies LAN / WAN Procédure de test sur les réseaux LAN / WAN Prise en main des solutions de test

Spécifications Techniques d Interface

PROBLEMES D'ORDONNANCEMENT AVEC RESSOURCES

Réseaux : Wi-Fi Sommaire. 1. Introduction. 2. Modes de fonctionnement. 3. Le médium. 4. La loi. 5. Sécurité

Dr Rim Belhassine-Cherif Directeur de Développement de Produits et Services.

introduction de nouveaux services sur le réseau câblé d EVICOM e-reso Triple Play Partners

Internet - Outils. Nicolas Delestre. À partir des cours Outils réseaux de Paul Tavernier et Nicolas Prunier

La voix sur IP n'est pas un gadget, et présente de réels bénéfices pour l'entreprise.

Profitez de tous les avantages de votre réseau, comme vos clients Remédiez à la coupure du service

SYSTEME DE GESTION DES ENERGIES EWTS EMBEDDED WIRELESS TELEMETRY SYSTEM

Réseaux M2 CCI SIRR. Introduction / Généralités

Transcription:

Evaluation des Performances dans une Architecture Réseau Optique Transparente avec Accès PON Charlotte Roger, Julio Orozco, Philippe Niger France Telecom Recherche & Développement 2, av. Pierre Marzin 22307 Lannion E-mail : charlotte.roger@orange-ftgroup.com Résumé. Ce document présente une architecture réseau s'inscrivant dans le cadre des réseaux d'accès optiques et intégrant plusieurs accès PON. Elle permet d'obtenir des communications tout optique de bout en bout à très haut débit. Ce modèle utilise le principe de l'optical Burst Switching associé à des techniques de multiplexage temporel et en longueur d'onde. Son fonctionnement se déroule sur deux plans distincts : plan de contrôle et plan de transfert. Nous présentons les principales fonctions du modèle de simulation utilisé pour l'étude des performances du plan de transfert. Nos résultats montrent qu'un partage des ressources entre plusieurs entités a un effet majeur sur l'utilisation des ressources. 1 Introduction Aujourd'hui, l'adsl est la technologie haut débit la plus utilisée en France. Si le haut débit permet les usages actuels avec un bon niveau de confort, il risque de limiter les nouveaux usages. Depuis l'offre Triple Play (voix, TV, internet), les usagers demandent des débits toujours plus élevés avec une meilleure réactivité du réseau. L'accès au réseau évolue désormais vers le très haut débit. Cette montée croissante du très haut débit permet l'ouverture vers des nouvelles méthodes d'accès utilisant la fibre optique qui offre des débits de plusieurs centaines de Mbits/s. Déjà largement utilisée dans les réseaux longue distance, car moins limitée par la distance que le cuivre, l'optique entre désormais dans les réseaux de desserte grand public. On parle de FTTx (Fiber To The, «fibre jusqu'à») : la fibre est amenée au plus près de l'usager final. A ce jour, seulement quelques infrastructures commencent à être déployées en France, alors qu'à l'étranger (au Japon et en Corée du sud) cette technologie est massivement utilisée. Un PON (Passive Optical Network) est une technologie d'accès point-multipoint passive sur fibre optique, déployée pour une infrastructure à large bande de type Fiber-To-The-Home (FTTH). Dans un PON, une fibre unique part du central et se raccorde à un groupe de fibres au niveau d un point de partage afin de desservir plusieurs usagers (voir figure 1). Outre les câbles optiques, trois éléments principaux constituent un PON : un OLT (Optical Line Terminal), un coupleur (ou splitter) et plusieurs (Optical Network Termination). L'OLT, équipement actif, positionné au Nœud de Raccordement Optique (NRO) assure l'interconnexion du PON avec les autres réseaux. L', équipement actif placé chez l'usager, gère la connexion avec les terminaux de l'abonné ; il est l'interlocuteur direct de l'olt. Le coupleur est un élément passif, son fonctionnement est basé sur la seule propagation de la lumière à l intérieur des fibres. Dans le sens descendant, il divise le signal optique en provenance de l'olt ; dans le sens montant, il combine par addition les signaux optiques en provenance des abonnés. La technologie PON permet d'obtenir une forte capacité de transport tout en minimisant l'infrastructure fibre nécessaire. La génération actuelle du PON est le GPON (ITU G9.84) [1] et le EPON (IEEE 802.3ah) dont les caractéristiques sont résumées ci-dessous. Ces deux standards utilisent la technique de multiplexage temporel avec une longueur d'onde pour le sens montant et une pour le sens descendant. EPON GPON Débit max. total par port 1,25 Gbit/s symétrique 2,5 Gbit/s asymétrique Abonnés par port OLT Jusqu à 32 Jusqu à 64 Distance OLT- Jusqu à 20km Jusqu à 60km Encapsulation Ethernet ATM, Ethernet

Les prochaines générations de PON tendent à s'orienter autour de 3 axes : - accroître le nombre de longueur d'onde sur le PON (avec l'objectif d'attribuer une longueur d'onde par utilisateur ou de les partager entre les utilisateurs) en utilisant la technique du multiplexage en longueur d'onde (WDM) [2], dans l'optique d'augmenter le débit final afin d'atteindre une capacité de 10 Gbits/s. - étendre le nombre d' par PON à 128 ou plus - augmenter la portée entre et OLT en utilisant par exemple des amplificateurs optiques, permettant ainsi de relier plus d'abonnés. OLT situé au NRO Coupleur Fig. 1. FTTH ou point-multipoint passif La commutation par rafales optiques (ou Optical Burst Switching) est proposée pour réaliser des commutations transparentes de bout en bout appelées aussi commutation toute optique c'est-à-dire toutes les communications sont faites exclusivement dans le domaine optique, aucune conversion optoélectronique n'est faite dans les nœuds intermédiaires. L'OBS est une solution intermédiaire entre la commutation de paquets et la commutation de circuits optiques, elle est utilisée pour des modèles de réseaux tout optique. Elle permet de palier aux inconvénients des deux commutations : un besoin important de ressources pour une utilisation de la bande passante peu efficace pour la commutation de circuits et une nécessité de buffers optiques pour la commutation de paquets. OBS consiste en une séparation fonctionnelle du réseau en deux plans : le plan de contrôle (ou signalisation) et le plan de transfert (ou plan de données). Le plan de contrôle gère la réservation des chemins optiques. L'envoi des bursts (ou trame de données) se fait de manière tout optique sur le plan de transfert. L'entête et les données sont transmis en différés sur deux longueurs d'onde différentes. L'entête est envoyé en avance pour établir une réservation unidirectionnelle du chemin (Tell-and-go) [3]. Aucun acquittement n'est attendu. Les données suivent après un délai correspondant au traitement des informations de l'entête. Il existe une alternative à cette architecture connue sous le nom de Wavelength Routed OBS [4], utilisant un mécanisme de réservation de type bidirectionnelle (two-way). Une architecture optique interconnectant plusieurs PON dans un réseau de type métropolitain et utilisant la commutation par rafales optiques a été introduite dans [5]. Cette architecture n'est pas une évolution directe des solutions PON mais plutôt une évolution en rupture intégrant des PON WDM. Nous avons développé un modèle flexible de l'architecture sous OPNET. Des premiers résultats sur l'évaluation des performances du plan de contrôle ont été publiés dans [6]. Dans cette publication, nous allons décrire le modèle et présenter les performances de l'architecture en termes d'utilisation de ressources. La suite du document est organisée de la manière suivante : dans la section 2 nous présentons l'étude de l'architecture réseau ; dans la section 3 nous montrons l'évaluation des performances ; finalement les conclusions et perspectives seront exposées dans la section 4. 2 Architecture Réseau Une architecture réseau OBS a deux types de nœuds : les nœuds de bordure (Edge node) et les nœuds du cœur du réseau (Core node). Les nœuds de bordure agrègent les paquets en burst ; les nœuds du cœur allouent, en fonction des informations de l'entête, un chemin optique pour transmettre au nœud suivant le burst. L'architecture étudiée consiste en une interconnexion de PON WDM dont le but est d'obtenir des communications tout optique entre deux différents. Elle est adaptée à un réseau de type métropolitain avec quelques PON de longue portée (voir figure 2). Cette architecture permet d'établir des communications à très haut débit (>1 Gigabit/s) grâce à la technique de commutation par rafales optiques. Elle adapte le principe WR-OBS à un réseau intégrant des PON. L' joue dans ce

cas, le rôle de nœud de bordure et assemble les paquets en burst. Les nœuds de contrôle ne sont plus disséminés mais centralisés en une seule entité correspondant à l'ensemble Control Node et Optical Cross Connects (OXC). L'emploi de longueurs d'ondes partagées entre différents impose d'utiliser un processus d'allocation des ressources. Ce processus repose sur une solution de transmission hybride, le TDM/WDM (Time Division Multiplexing / Wavelength Division Multiplexing). Fig. 2. Architecture Par la suite, nous étudierons un réseau limité à quelques PON comprenant un seul commutateur. L'utilisation de plusieurs commutateurs pour le model n'apporte rien de plus du point de vue de la simulation et des résultats, étant donné que le délai de propagation n'est pas pris en compte et que le plan de transfert est transparent. La figure 3 représente trois PON (0,1 et 2) reliés à deux chacun et à un nœud central. Le système comprend l'utilisation de plusieurs longueurs d'onde, ici huit, dont deux sont réservées uniquement pour le plan de contrôle au niveau de chaque PON (une pour le sens montant : L1, et une pour le sens descendant : L0). Au niveau du plan de contrôle le procédé est le même que pour un PON classique : broadcast dans le sens descendant (entité centrale vers les ) et partage de la longueur d'onde entre les différents dans le sens montant (les vers l'entité centrale). Les six longueurs d'onde restantes (L2-L7) sont attribuées au plan de transfert. Elles permettent d'interconnecter, au niveau du switch optique, une paire de PON (une pour chaque sens). Par exemple, le PON 2 est relié au PON1 par l'intermédiaire des longueurs L4 et L5. Chaque utilise deux lasers : un à longueur fixe dédiée pour le plan de contrôle et un à longueur d'onde accordable pour le plan de transfert. C'est l' qui initie et termine la communication en accordant son laser. Fig. 3. Détail de l'architecture avec trois PON

2.1 Plan de Contrôle L'architecture étant basée sur le Wavelength-Routed OBS, le plan de contrôle a deux fonctions principales : gérer la signalisation des paquets et allouer dynamiquement des ressources aux pour qu'ils puissent émettre leurs bursts. Le schéma de fonctionnement de la signalisation est de type twoway : chaque demande de ressources doit recevoir un acquittement positif. La figure 4 montre les différents échanges effectués cycliquement sur le plan de contrôle. L' source envoie l'entête du burst ou requête. L'entité centrale exécute le processus d'allocation des ressources et envoie un accusé positif ou grant à l' source, ainsi qu'une commande de configuration à l' destination. Ce type d'opérations (requête suivie d'un accusé) correspond au schéma utilisé dans les dialogues /OLT de la norme GPON actuelle pour une réservation de ressources. src req Control dest grant ressource allocation config data Fig. 4. Dialogue / Entité centrale Nous considérons un plan de transfert cyclique : le temps d'émission est divisé en trames de 1 ms qui elles-mêmes sont divisées en y slots de durée 1/y ms. Une trame contient plusieurs bursts de provenances différentes. Le délai entre l'envoi de la requête et l'envoi du burst est fonction de la vitesse du processus signalisation/allocation. Ce délai est égal ou supérieur à la durée d'une trame. Sur la figure 3 les 01 et 02 (PON 0) ont besoin d'envoyer des informations aux 11 (PON 1) et 21 (PON 2). Chaque a assemblé un burst par destination et envoie une requête pour chacun de ces bursts. Le tableau 1 résume ces informations, ainsi que le nombre de slots requis pour l'envoi de chaque burst. Table 1. Information nécessaire à l'allocation Id Source Destination Size (# timeslots) B0 01 11 2 B1 01 21 3 B2 02 11 5 B3 02 21 2 Comme une seule longueur d'onde est attribuée par destination (exemple : L2 pour envoyer du PON 0 vers le PON 1), deux d'un même PON ne peuvent émettre en même temps sur une même destination, ceci afin d'éviter tout risque de collision. Le processus d'allocation tient compte de cet élément dans sa réservation des ressources. Dans la même perspective, un ne peut recevoir sur deux longueurs différentes au même instant. Le résultat de l'allocation sur une trame est schématisé dans la figure 5. Les grants sont envoyés une fois le processus d'allocation terminé. Ils spécifient une longueur d'onde, une date d'émission ainsi que la taille de la fenêtre allouée correspondant au nombre de slots requis pour envoyer le burst. La solution présentée ci-dessus illustre le mécanisme de base. D'autres informations peuvent être ajoutées à la signalisation et à l'algorithme d'allocation.

L2 L7 T0 T1 T2 T3 T4 T5 T6 T7 B0 B2 B3 B1 Fig. 5. Résultat de l'allocation par longueur d'onde 2.2 Plan de Transfert Le plan de transfert est la partie la plus simple de l'architecture, aucun traitement n'est fait sur les paquets. Au niveau de l'entité centrale, le switch optique commute les longueurs d'onde en fonction d'une table de routage. Cette table met en correspondance une longueur avec un port destination et un port source. La figure 6 présente un exemple de table de routage. Les 01 et 02 du PON 0 utilisent deux longueurs d'onde différentes, L2 et L7, pour envoyer des données vers les 11 et 21. Au niveau du switch optique, les longueurs sont redirigées en fonction de leur port d'arrivée vers le port de sortie correspondant. Ici, la longueur L2 arrivant sur le port P1 est redirigée, d'après la table, vers le port P2. Au niveau de l', les paquets sont stockés dans une file d'attente jusqu'à l'envoi. Les paquets d'un même burst sont transmis en rafales dans la fenêtre qui a été allouée pour ce burst. Au niveau du récepteur, les paquets sont directement transmis aux couches supérieures. 01 02 PON 0 Switch Optique P2? λ2 2 L2?1 P1?3?3 λ3 L3?2? 7 λ7 L7 P3 PON 1 PON 2 11 12 21 22 Port Src λ Src Port Dest Port Dest Lambda λ Dest P1 L2 P2 L2 P1 L7 P3 L7 P2 L3 P3 L3 Fig. 6. Commutation des longueurs d'ondes 3 Evaluation de l'utilisation des Ressources 3.1 Modèle de Simulation Nous avons développé l'architecture sous OPNET Modeler (logiciel de simulation réseau) afin d'avoir un prototype permettant de simuler et d'évaluer les différents éléments la constituant. Ce modèle a été implémenté avec trois PON reliés chacun à huit. Le but de cette configuration est d'avoir un trafic relativement important sans pour autant alourdir le système, permettant ainsi d'évaluer ses performances. Comme une seule longueur d'onde est dédiée sur chaque PON pour le sens montant du plan de contrôle, un protocole d'accès (MAC) est nécessaire pour assurer le partage des ressources. Nous avons implémenté trois schémas classiques de protocole d'accès : Aloha, Slotted-Aloha et TDMA (Time Division Multiple Access). L'idée, derrière cette étude, est que le trafic de signalisation est beaucoup moins volumineux que celui des données. De plus, grâce à la séparation des deux plans, un plan de contrôle avec un débit faible peut gérer un plan de transfert avec un haut débit. L'objectif est d'optimiser les ressources tout en réduisant la capacité du plan de contrôle.

Nous avons fixé la capacité des longueurs d'ondes à 1 Gbits/s. Chaque envoie des données vers 16 destinations différentes réparties sur deux PON. Ils émettent de manière uniforme vers leurs seize destinations. Le trafic circulant dans le modèle approxime un flux de type internet : la taille des paquets est modélisée à l'aide de la loi trimodale (trois tailles de paquets 48, 576 et 1500 octets avec, respectivement, une probabilité de 0.559, 0.2 et 0.241) [7] et, le temps inter-arrivée des paquets avec la loi Pareto. L'assemblage des bursts est fonction d'une temporisation fixée au début de chaque simulation. La taille d'un burst ne peut excéder quatre slots sur la trame de données. L'allocation se déroule sur deux cycles (1 cycle = 1 trame = 1 ms). Durant le premier cycle (cycle n) l'entité centrale reçoit les requêtes. A la fin du cycle elle lance le processus d'allocation. Enfin pendant le deuxième cycle (cycle n+1) elle envoie les grants, indiquant aux, les ressources qui leur sont allouées pour le prochain cycle (cycle n+2). Deux paramètres influent sur le trafic de signalisation : la temporisation utilisée pour l'agrégation des bursts et le nombre de slots par trame de données. En effet pour une charge nominale donnée au niveau de l', une temporisation plus longue génère moins de requêtes et par conséquent moins de trafic sur le plan de contrôle. A l'inverse une temporisation plus courte engendre plus de trafic. Le même principe s'applique pour le nombre de slots, plus il augmente plus il y a de bursts, puisqu'un burst ne peut excéder 4 slots sur la trame de données, donc le trafic augmente. Des premiers résultats sur l'évaluation des performances du plan de contrôle ont été publiés dans [6]. Le premier test montre que parmi les trois protocoles de couche MAC (Medium Access Control) implémentés TDMA reste le protocole le plus efficace au niveau des pertes de données (aucune perte) et pour l'optimisation des ressources. Pour les protocoles Aloha et S-Aloha les pertes correspondent à des collisions entre les requêtes des différents d'un même PON. Pour le protocole TDMA, on considère qu'une requête est perdue si le temps d'attente du burst avant émission dépasse un délai fixé à 1ms, 100µs ou 10 µs. En effet pour une même utilisation des ressources et un même nombre de pertes, Aloha nécessite, pour le plan de contrôle, une capacité de 311 Mbits/s alors que TDMA n'a besoin que 8,3 Mbits. Le deuxième test concerne la temporisation. Après plusieurs simulations avec des temporisations allant de 125 µs à 1 ms, il s'est avéré qu'une temporisation de 750µs est un bon compromis entre une utilisation efficace des ressources et un temps d'attente court avant envoi de l'entête à l'entité centrale. Les paramètres choisis pour évaluer les performances du plan transfert prennent en compte les résultats obtenus au niveau du plan de contrôle. Ainsi sur toutes les simulations effectuées, la temporisation est fixée à 750 µs et la couche MAC utilisée est TDMA. Le tableau 2 récapitule les paramètres inchangés lors des simulations Table 2. Paramètres de simulation Paramètres Valeurs Durée d'une trame 1ms Nombre maximal de slots alloués pour un burst 4 slots Temporisation 750µs Durée de la simulation 15 s Nombre de simulation / scénario 10 Source de trafic Pareto / trimodale Allocation des burst Premier arrivé / Premier alloué 3.2 Résultats Capacité du plan de contrôle. Un bref rappel sur les protocoles de couche MAC utilisés, avec Aloha les envoient les requêtes sitôt celles-ci prêtes. Avec Slotted-Aloha, les se synchronisent sur un timeslot pour envoyer leurs requêtes. Avec TDMA, chaque a plusieurs intervalles de temps qui lui sont dédiés pour envoyer ses requêtes. La taille des timeslots pour TDMA et S-Aloha est égale à la taille d'une requête sur le plan de contrôle.

Dans [6], l'utilisation d'une capacité de 8,3 Mbits/s permet d'avoir une très bonne utilisation des ressources avec une couche MAC de type TDMA. Seulement il s'est avéré que ce débit engendre des pertes au niveau du plan de transfert. Ces pertes sont dues à un retard des grants. Les ne reçoivent pas "à temps" les grants et, les fenêtres qui leur ont été allouées pour l'envoi des bursts, sont perdues. Tout burst qui n'a pu être envoyé à l'instant prévu est considéré comme perte. Deux solutions sont possibles pour résoudre ce problème : soit augmenter le délai entre envoi de la requête et envoi du burst correspondant (allouer sur le cycle n+3 plutôt que sur le cycle n+2), soit augmenter la bande passante du plan de contrôle. La première solution entraine un temps d'attente des paquets dans les files d'attente plus important (environ 3 ms au lieu de 2 ms) et, donc diminue les performances du modèle. La deuxième solution affecte un peu l'efficacité du plan de contrôle au niveau de l'utilisation des ressources mais n'influe pas sur les performances du plan de transfert. C'est donc la deuxième solution qui est choisie. La figure 7 présente les capacités minimales que peut avoir le plan de contrôle avec une telle architecture (3 PON, 8, charge nominale à 80%) sans engendrer des pertes sur le plan de contrôle. Le critère pour ce test est 5% de pertes. Même avec l'élargissement de la bande passante, le protocole TDMA reste le plus efficace en termes d'utilisation des ressources, avec un débit minimal de 15,50 Mbits/s pour temps maximum de 1ms. 350,00 300,00 311,00 Control Bandwidth (Mbits/s) 250,00 200,00 150,00 100,00 160,50 98,20 50,00 15,50 21,50 0,00 Aloha S-Aloha TDMA 1ms TDMA 100µs TDMA 10µs MAC type Fig. 7. Débit du plan de contrôle par type de couche MAC (5% de requêtes perdues) Utilisation et pertes. Nous allons maintenant présenter les résultats obtenus concernant l'utilisation des ressources et les pertes engendrées par un manque de ressources. Le processus d'allocation fait à chaque fin de cycle prend en compte, dans son algorithme d'attribution des slots, toutes les requêtes reçues durant le cycle écoulé. Toute requête qui n'a pas reçu de grant dû à une insuffisance de ressources est supprimée. Le burst correspondant est considéré comme perdu. L'utilisation correspond au débit utile effectif sur le plan de transfert. Le graphique de la figure 8 présente les résultats obtenus avec les paramètres fixés au départ, soit 64 slots par trame. Un slot est égal à 1953 octets et correspond à une durée de 15,62 µs. L'utilisation et les pertes ont été mesurées sur deux longueurs d'onde : L2 et L1. Nous obtenons pour une charge nominale de 60%, soit un débit nominal de 600 Mbits/s, 51,62% d'utilisation et 9,45% de pertes sur L2. Pour un débit nominal de 900 Mbits/s, la longueur L1 est utilisée à 61,11% et les pertes sont de l'ordre de 30,50%. Ce taux élevé de pertes est dû au choix de l'algorithme d'allocation des ressources, en effet un slot est alloué dans sa globalité à un burst même si celui-ci n'utilise que la moitié des ressources qui lui ont été attribuées. Dans le [6], le taux de remplissage des times slots a été analysé, pour une charge de 90% et une temporisation de 750 µs, la taille moyenne d'un burst équivaut à 3175 octets, donc nécessite l'allocation de deux slots sur une trame de données de 64 slots, soit 19% de perte (correspond à 731 octets). De plus les 64 slots sur trame de données ne permettent pas de couvrir toutes les demandes d'allocation, la pénurie des ressources survient relativement vite. La solution pour diminuer les pertes et accroître l'utilisation est de mieux calibrer la taille des slots en fonction de ce taux de remplissage, donc de modifier le nombre de slots sur la trame de données.

Notre objectif est de maximiser l'utilisation des longueurs d'onde tout en minimisant les pertes. Pour cela, nous avons refait ces mesures avec différentes valeurs de timeslots, afin de trouver la taille de slots la mieux adaptée pour ce type de flux. Le graphique de la figure 9 montre les résultats obtenus pour l'utilisation et les pertes sur une longueur d'onde avec un nombre différent de slots par trame (32, 64, 96, 128). Ce modèle étant idéal, 128 slots par trame est la meilleure configuration, elle permet d'avoir une utilisation de 70,80% et des pertes n'excédant pas les 20,81% avec une charge nominale de 90%. Avec cette configuration, la taille d'un slot est de 977 octets, soit une fenêtre de 7,8 µs sur le plan de transfert. Pour un environnement sans contrainte cette durée reste raisonnable. De plus avec un nombre plus important de slot, les bursts seraient beaucoup trop petit, ce qui rendrait l'utilisation de l'obs moins intéressante pour cette architecture. Bien que les résultats obtenus pour une trame de 128 slots soient appréciables, il n'en demeure pas moins que les pertes restent importantes. Une modification du principe d'allocation des ressources semble la meilleure solution pour diminuer ce taux de pertes. Un algorithme se rapprochant plus du principe de RSVP avec une allocation en fonction de l'état des files d'attente serait à envisager et à implémenter. 80,00% 70,00% 60,00% Utilisation et Pertes 50,00% 40,00% 30,00% 20,00% 10,00% 0,00% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 110% 120% Charge / Longueur d'onde Utilisation Lambda 1 Utilisation Lambda 2 Perte Lambda 1 Perte Lambda 2 Fig. 8. Utilisation et pertes pour Lambda 1 (L1) et Lambda 2 (L2) avec 64 slots par trame Utilisation et pertes 80,00% 70,00% 60,00% 50,00% 40,00% 30,00% 20,00% 10,00% 0,00% 32 64 96 128 Nombre de slots / trame Perte (charge 60%) Perte (charge 90%) Utilisation (charge 60%) Utilisation (charge 90%) Fig. 9. Utilisation et Pertes pour L1

4 Conclusion et Travail Futur Nous avons présenté une architecture réseau tout optique intégrant plusieurs PON et adaptant le principe Wavelength-Routed OBS. Nous avons développé un modèle permettant de simuler le fonctionnement de cette architecture pour étudier les performances du plan de transfert : utilisation et pertes. Nos résultats ont montré qu'une capacité de l'ordre de 18 Mbits sur le plan de contrôle permet une bonne utilisation des ressources sans pour autant engendrer des pertes sur le plan de transfert ; et qu'une allocation des bursts sur des trames de 128 slots permet d'avoir une utilisation de 70,8% des longueurs d'onde avec seulement 20,81% de pertes mesurées. Beaucoup d'éléments peuvent être ajoutés à l'architecture présentée dans ce document. En effet différents algorithmes d'allocation peuvent être implémentés sur ce modèle afin de diminuer le taux de pertes et de prendre en compte différentes classes de service. Pour le moment l'architecture est étudiée dans un environnement idéal, par la suite elle prendra en compte les différentes contraintes que l'on peut trouver aujourd'hui dans des réseaux déjà déployés. Références 1. D. Nowak and J. Murphy, FTTH: The overview of existing technologies, in Proc. of SPIE Opto-Ireland 2005: Optoelectronics, Photonic Devices, and Optical Networks, Dublin, 2005. 2. A. Banerjee, Y. Park, F. Clarke, H. Song, S. Yang, G. Kramer, K. Kim, and B. Mukherjee, Wavelengthdivision-multiplexed passive optical network (WDM-PON) technologies for broadband access: a review. Journal of Optical Networking. 4, 737-758 (2005) 3. M. Yoo and C. Qiao, A new optical burst switching protocol for supporting quality of service, in SPIE Proc. of Conf. All-optical Networking, vol. 3531, 1998, pp. 396 405. 4. M. Duser and P. Bayvel, Analysis of a dynamically wavelength-routed optical burst switched network architecture, Journal of Lightwave Technology, vol. 20, no. 4, pp. 574 585, April 2002 5. A. Cauvin, P. Niger, J. Orozco, G. Bertrand, An Optical Burst Switched network architecture with passive access, in Proc. of IARIA International Conference in Networks and Services (ICNS'07), June 19-25, 2007, Athens, Greece. 6. J. Orozco, P. Niger, C. Roger, Performance evaluation of a control plane architecture for a burst switching based all-optical metro network with PON access, in Proc. of OPNETWORK, August 27-31, 2007, Washington DC, USA 7. C. Fraleigh et al., Packet-level traffic measurements from the Sprint IP backbone, IEEE Network, vol. 17, no. 6, pp. 6-16, 2003.