Master Lumière et Mesures Extrêmes Signal et Bruit : travaux pratiques. Analyse spectrale Etude de bruit



Documents pareils
Manipulation N 6 : La Transposition de fréquence : Mélangeur micro-ondes

8563A. SPECTRUM ANALYZER 9 khz GHz ANALYSEUR DE SPECTRE

TP Modulation Démodulation BPSK

Mesures de temps de propagation de groupe sur convertisseurs de fréquence sans accès aux OL

INTRODUCTION A L ELECTRONIQUE NUMERIQUE ECHANTILLONNAGE ET QUANTIFICATION I. ARCHITECTURE DE L ELECRONIQUE NUMERIQUE

Systèmes de transmission

Didier Pietquin. Timbre et fréquence : fondamentale et harmoniques

Partie Agir : Défis du XXI ème siècle CHAP 20-ACT EXP Convertisseur Analogique Numérique (CAN)

PRODUIRE DES SIGNAUX 1 : LES ONDES ELECTROMAGNETIQUES, SUPPORT DE CHOIX POUR TRANSMETTRE DES INFORMATIONS

A. N(p) B + C p. + D p2

Equipement. électronique

M1107 : Initiation à la mesure du signal. T_MesSig

Mesures d antennes en TNT

TD1 Signaux, énergie et puissance, signaux aléatoires

Mode d emploi ALTO MONITOR PROCESSEUR D ÉCOUTE. Version 1.0 Juillet 2003 Français

TP: Représentation des signaux binaires. 1 Simulation d un message binaire - Codage en ligne

Analyse spectrale. jean-philippe muller. version juillet jean-philippe muller

Chapitre 2 Les ondes progressives périodiques

SNA Analyseur mobile de réseau 2 en 1 Guide Sommaire. Page 1

Expérience 3 Formats de signalisation binaire

EMETTEUR ULB. Architectures & circuits. Ecole ULB GDRO ESISAR - Valence 23-27/10/2006. David MARCHALAND STMicroelectronics 26/10/2006

Mini_guide_Isis_v6.doc le 10/02/2005 Page 1/15

LES CARACTERISTIQUES DES SUPPORTS DE TRANSMISSION

1 Démarrer L écran Isis La boite à outils Mode principal Mode gadget Mode graphique...

Mini_guide_Isis.pdf le 23/09/2001 Page 1/14

Intérêt du découpage en sous-bandes pour l analyse spectrale

Tutoriel PowerPoint. Fréquences, puissance et modulation. Benoît Volet 25/02/2010

ACOUSTIQUE 3 : ACOUSTIQUE MUSICALE ET PHYSIQUE DES SONS

CHAPITRE V. Théorie de l échantillonnage et de la quantification

Comment aborder en pédagogie l aspect «système» d une chaîne télécom?

Étude des Corrélations entre Paramètres Statiques et Dynamiques des Convertisseurs Analogique-Numérique en vue d optimiser leur Flot de Test

Fiche technique Analyseurs de spectre portables: 9102 Handheld Spectrum Analyzer 9103 Handheld Spectrum Analyzer

TABLE DES MATIÈRES 1. DÉMARRER ISIS 2 2. SAISIE D UN SCHÉMA 3 & ' " ( ) '*+ ", ##) # " -. /0 " 1 2 " 3. SIMULATION 7 " - 4.

Conditions d utilisation 5 Garantie 5 Maintenance 6 Sélecteur de tension d alimentation 6

La structure du mobile GSM

9102 and Handheld Spectrum Analyzers

Chapitre I La fonction transmission

Instruments de mesure

Anciens plug-ins d effets VST

Communication parlée L2F01 TD 7 Phonétique acoustique (1) Jiayin GAO <jiayin.gao@univ-paris3.fr> 20 mars 2014

Mesure de facteur de bruit sur analyseur de réseaux vectoriel corrigée en Paramètres-S. Frédéric Molina

Approche expérimentale du rayonnement électromagnétique émis par un téléphone portable

LABO PROJET : IMPLEMENTATION D UN MODEM ADSL SOUS MATLAB

- MANIP 2 - APPLICATION À LA MESURE DE LA VITESSE DE LA LUMIÈRE

Recherche De Coalescences Binaires Étalonnage Du Détecteur

TRAVAUX PRATIQUES SCIENTIFIQUES SUR SYSTÈME

Etudier l influence de différents paramètres sur un phénomène physique Communiquer et argumenter en utilisant un vocabulaire scientifique adapté

Résonance Magnétique Nucléaire : RMN

Projet audio. Analyse des Signaux ELE2700

Automatique Linéaire 1 Travaux Dirigés 1A ISMIN

TP_Codeur_Incrémental

CH IV) Courant alternatif Oscilloscope.

LA COUCHE PHYSIQUE EST LA COUCHE par laquelle l information est effectivemnt transmise.

Exemple d acquisition automatique de mesures sur une maquette de contrôle actif de vibrations

Telecommunication modulation numérique

Transmission d informations sur le réseau électrique

Chapitre 2 : communications numériques.

La modulation d amplitude

DIPLÔME INTERUNIVERSITAIRE D ECHOGRAPHIE. Examen du Tronc Commun sous forme de QCM. Janvier h à 16 h

- I - Fonctionnement d'un détecteur γ de scintillation

ANALYSE SPECTRALE. monochromateur

Willtek. Handheld Spectrum Analyzer

Traitement du signal avec Scilab : transmission numérique en bande de base

Sensibilité (bas niveaux de lumière, hauts niveaux de lumière) Spectre de sensibilité : visible ( nm) mais aussi IR, UV, RX

INTERPRÉTATION ET ANOMALIES DE LA PROSPECTION À RÉSONANCE MAGNÉTIQUE (MRS)

Communications numériques

Electron S.R.L. - MERLINO - MILAN ITALIE Tel ( ) Fax Web electron@electron.it

Telecommunication modulation numérique

TP Hyperfréquences - Manipulations pratiques. - Applications de l analyseur de réseau

MESURES D UN ENVIRONNEMENT RADIOELECTRIQUE AVEC UN RECEPTEUR CONVENTIONNEL ETALONNE

Filtres passe-bas. On utilise les filtres passe-bas pour réduire l amplitude des composantes de fréquences supérieures à la celle de la coupure.

Son et Mathématiques

LABO 5 ET 6 TRAITEMENT DE SIGNAL SOUS SIMULINK

1 Savoirs fondamentaux

Le signal GPS. Les horloges atomiques à bord des satellites GPS produisent une fréquence fondamentale f o = Mhz

Traitement du signal avec Scilab : la transformée de Fourier discrète

AMELIORATION DE LA FIABILITE D UN MOTEUR GRÂCE AU TEST STATIQUE ET DYNAMIQUE

DYNTEST AML (Alarme/Moniteur/Logger) Surveillance du filtre à particules

Ecole Centrale d Electronique VA «Réseaux haut débit et multimédia» Novembre 2009

Transmission de données. A) Principaux éléments intervenant dans la transmission

Chapitre 02. La lumière des étoiles. Exercices :

Projet de Traitement du Signal Segmentation d images SAR

Chapitre 2 : Systèmes radio mobiles et concepts cellulaires

PROTOCOLE DE MESURE DOCUMENTATION DE REFERENCE : ANFR/DR

Oscilloscope actif de précision CONCEPT 4000M

J AUVRAY Systèmes Electroniques TRANSMISSION DES SIGNAUX NUMERIQUES : SIGNAUX EN BANDE DE BASE

LE COSMODETECTEUR : UN EXEMPLE DE CHAÎNE DE MESURE

M HAMED EL GADDAB & MONGI SLIM

Spectrophotomètre double faisceau modèle 6800

1. PRESENTATION DU PROJET

DI-1. Mode d'emploi. Direct Box

Oscillations libres des systèmes à deux degrés de liberté

TP MESURES AUDIO - BANC DE MESURE AUDIOPRECISION ATS-2. Clément Follet et Romain Matuszak - Professeur : Dominique Santens

TP 03 B : Mesure d une vitesse par effet Doppler

- Instrumentation numérique -

Notions d asservissements et de Régulations

Bac Pro SEN Epreuve E2 Session Baccalauréat Professionnel SYSTÈMES ÉLECTRONIQUES NUMÉRIQUES. Champ professionnel : Audiovisuel Multimédia

Antenne amplifiée d intérieure SRT ANT 10 ECO

Transcription:

1 Master Lumière et Mesures Extrêmes Signal et Bruit : travaux pratiques 1 Introduction Analyse spectrale Etude de bruit L objectif de ce TP est d apprendre à se servir d un analyseur de spectre et de comprendre toutes ses fonctionnalités. Un analyseur de spectre restitue à partir d un signal d entrée e(t) une information permettant de connaître le spectre de fréquence de ce signal. Il existe principalement deux types d analyseurs de spectres : les analyseurs à transformées de Fourrier (FFT) qui convertissent le signal numérisé dans le domaine fréquentiel à l aide d une transformée de Fourier rapide discrète et les analyseurs à balayage (Swept-tuned spectrum analyzer) qui mesurent la répartition en fréquence d un signal en analysant chacune des fréquences séparément. L analyseur de spectre utilisé dans ce TP, a la possibilité de travailler dans les deux modes. Cependant nous nous focaliserons sur le mode balayage dont le schéma de principe est décrit sur la figure 1. Le signal d entrée (signal que l on souhaite analyser) est multiplié avec un signal délivré par l oscillateur local. Cette opération est réalisée à l aide d un mélangeur (Mixer). L oscillateur local délivre un signal sinusoidal de fréquence f 0. Il est asservi en fréquence sur un quartz de référence ce qui lui confère une très bonne stabilité spectrale. En sortie du mélangeur, le signal est amplifié et traverse un filtre passe bande (centré en f I ) qui permet de sélectionner la fenêtre d analyse. La bande passante de ce filtre s appelle bande passante de résolution R (RWB pour resolution bandwidth). Le balayage en fréquence est assuré par le générateur qui permet d appliquer une rampe en fréquence autour de la fréquence centrale de l oscillateur. Le filtre vidéo est un filtre passe bas, il sert à "moyenner" le signal affiché sur l écran de l analyseur, pour éliminer les hautes fréquences. 2 Travail experimental La première partie du TP porte sur la manipulation de l analyseur de spectre. L étudiant est amené à analyser différents types de signaux. L objectif à chaque fois est de régler les paramètres de l analyseur de spectre tels que la plage de balayage, la bande passante de résolution ou le niveau de référence pour extraire les informations utiles et pertinentes sur le signal. La seconde partie est consacrée à la détermination de la bande passante d un filtre et à la mesure de la densité spectrale du bruit à la sortie d une photodiode éclairée par la lumière.

2 Figure 1 Principe de fonctionnement d un analyseur de spectre 2.1 Étude des caractéristiques de l analyseur 2.1.1 Étude d un signal périodique de période connue Synthétiser un signal sinusoïdal de fréquence 15 MHz, d amplitude 1 V. Visualiser le signal sur l analyseur de spectre. On essaiera diverses fonctions de l analyseur (RBW, SPAN, Central Frequency, average...) et on évaluera la correspondance entre les différentes échelles proposées en ordonnées. Pour démarrer les mesures : Appuyer sur (<Input/OutPut>), (<RF Coupling>),(<DC>. ATTENTION : DANS CE MODE VERIFIER QUE LE NIVEAU DC DE VOTRE SI- GNAL EST BIEN ÉGAL A ZERO (OFFSET = 0). 2.1.2 Étude de la résolution 2.1.3 Résolution d un faible signal occulté par un signal important Sur la voie 1 du Synthétiseur de fréquence RIGOL synthétiser un signal sinusoïdal de fréquence 15 MHz et une amplitude de 10 dbm. Sur la voie 2 un signal sinusoïdal de fréquence 15.05 MHz et une amplitude de -48 dbm. Brancher les deux signaux respectivement sur les entrées 1 et 2 du "Splitter RF", puis la sortie s du "splitter" à l entrée de l oscilloscope. Décrire le signal observé. Envoyer ce même signal à l entrée de l analyseur de spectre. Appuyer sur (<Input/OutPut>), (<RF Coupling>),(<DC>. Appuyer sur (<FREQUENCY CHANNEL>), (<Center Freq>),(<15, MHZ>. Appuyer sur (<BW/Avg>), (<Res BW>),(<30, khz>. Appuyer sur (<SPAN, X SCALE>), (<SPAN>),(<500, kh>. Appuyer sur (<Marker, Mkr Ref Lvl>). Appuyer sur (<BW/Avg>), (<Res BW>),(<1, khz>. Appuyer sur (<Marker, Delta, 50 khz>) et déduire le rapport entre les deux pics en db

3 2.1.4 Résolution d un faible signal occulté par un bruit Sur la voie 1 du Synthétiseur de fréquence RIGOL synthétiser un signal sinusoïdal de fréquence 15 MHz et une amplitude de 10 mv. Sur la voie 2 un signal "Bruit" d amplitude égale à 2 V. Brancher les deux signaux respectivement sur les entrées 1 et 2 du "Splitter RF", puis la sortie s du "splitter" à l entrée de l oscilloscope. Décrire le signal observé. Envoyer ce même signal à l entrée de l analyseur de spectre. Trouver les paramètres de l analyseur de spectre qui permettent d observer le signal à 15 MHz. Mesurer alors le rapport signal à bruit en suivant le procedure suivante : Appuyer sur (<FREQUENCY CHANNEL>), (<Center Freq>),(<15, MHZ>. Appuyer sur (<SPAN, X SCALE>), (<SPAN>),(<Valeur optimale, kh>). Appuyer sur (<AMPLITUDE LEVEL Y SCALE>), (<Ref Level>),(<-10, dbm>). Appuyer sur (<AMPLITUDE LEVEL Y SCALE>), (<ATTENUATION>),(<Valeur optimale, dbm>). Appuyer sur (<BW/Avg>), (<Res BW>),(<Valeur optimale, khz>). Appuyer sur (<Marker, Delta, 4,kHz>) Appuyer sur (<Marker Fctn>), (<Marker Noise>). Relever la valeur du rapport signal sur bruit en db/hz, conclure. 2.2 Analyse spectrale d un signal modulé 2.2.1 Modulation en amplitude 1. Synthétiser un signal de fréquence 15 MHz, modulé en amplitude à 50%, puis à 100% par une fonction sinusoïdale de fréquence 20 khz. Étudier le spectre et comparer avec les résultats théoriques attendus. Donner les valeurs des paramètres optimaux pour visualiser le spectre. 2. Moduler en amplitude une porteuse en créneaux, expliquer l allure du spectre. 2.2.2 Modulation en fréquence Synthétiser un signal de fréquence 15 MHz. Moduler sa fréquence par une fonction sinusoïdale. Observer le spectre obtenu en faisant varier l amplitude de modulation. Expliquer l allure des spectres observés. Calculer l amplitude de modulation qui permet d annuler la porteuse. Rappel : V 0 cos[ωt + βsin(ωt)] = V 0 J 0 (β)cos(ωt) (1) + V 0 J 1 (β){cos[(ω + ω)t] cos[(ω ω)t]} (2) + V 0 J 2 (β){cos[(ω + 2ω)t] cos[(ω2ω)t]} (3) + V 0 J 3 (β){cos[(ω + 3ω)t] cos[(ω 3ω)t]} +... (4) où J i est la fonction de Bessel d ordre i et β est l indice de modulation, il représente le rapport entre l amplitude de modulation en fréquence et la fréquence de modulation. (5)

4 2.3 Étude de la pureté spectrale d une source 2.3.1 Rappel Pour une source sinusoïdale (fréquence f 0 = 1/T 0 ), le spectre présente un pic à la fréquence f 0. Une fonction périodique non sinusoïdale peut se décomposer en séries de Fourrier et on voit apparaître dans le spectre un pic fondamental à la fréquence f 0 et une série d harmoniques aux fréquences multiples x(t) = a 0 + (a n cos(2πnft) + b n sin(2πnft)) (6) n=1 On appelle distorsion harmonique totale (THD) le rapport entre la puissance dissipée dans les harmoniques d ordre supérieur à 1 et puissance dissipée dans le fondamental (ordre 1). T HD = n=1 (a2 n + b 2 n) a 2 1 + b 2 1 (7) La THD est un très bon indicateur de la pureté spectrale d un oscillateur. 2.3.2 Mesure de la pureté spectrale On étudiera successivement la source interne de l analyseur de spectre à la fréquence 10 MHz et une source en créneaux synthétisée par le RIGOL de fréquence égale à 5 MHz. A : Source interne : Brancher le signal reference "out" récupéré à l arrière de l analyseur de spectre à l entrée de celui-ci. Appuyer sur (<Sytem>), (<Reference>),(<10 MHz out>) (on). Appuyer sur (<AMPLITUDE LEVEL Y SCALE>), (<Ref Level>),(<10, dbm>. Appuyer sur (<FREQUENCY CHANNEL>), (<Center Freq>),(<10, MHZ>. Appuyer sur (<BW/Avg>), (<Res BW>),(<300, khz>. Pour une mesure manuelle, utiliser la fonction <MARKER> pour relever l amplitude de chaque pic. L analyseur de spectre HP permet un calcul direct de la THD, suivre les instructions suivantes : Appuyer sur (<Measure>), (<More>),(<Harmonic Distorsion>. Appuyer sur (<Measure Setup>), (<Average Number>) (on) 3 puis (<Enter>. Appuyer sur (<Measure Setup>), (<Average Mode>) (Exp). Appuyer sur (<Measure Setup>), (<Optimize Ref Level>). Appuyer sur (<Trace/View>), (<HARMONICS and THD>). pour sortir appuyer sur (<Measure>) puis (<Meas Off>). B : Signal externe : Refaire la même procédure pour le signal carré. Donner les taux de distorsions.

5 2.4 Mesure de la bande passante d un filtre On se propose de déterminer la fonction de transfert H(f) d un filtre passe-bas modèle minicircuit BLP 10.7. Le signal à la sortie s(t) d un filtre est donné par le produit de convolution entre le signal d entrée e(t) et la réponse impulsionnelle du filtre h(t) : Dans le domaine spectral cette relation s écrit : s(t) = h(t) e(t) (8) S(f) = H(f)E(f) (9) où E(f) et S(f) représentent respectivement les transformées de Fourrier de e(t) et s(t). Prendre un signal d amplitude égale à 2 V. Faites varier sa fréquence entre 1 MHz et 20 MHz par pas de 1 MHz. Mesurer pour chaque fréquence est dans les mêmes conditions l amplitude du signal sans et avec le filtre. Tracer la fonction de transfert (atténuation (db) en fonction de la fréquence). Déduire les fréquences pour 3 db et 30 db d atténuation. 3 Etude de bruit 3.1 Bruit quantique de la lumière La théorie quantique permet de montrer qu un photodétecteur parfait 1 donne un photocourant proportionnel à la puissance lumineuse P incidente. Si e est la charge élémentaire, h la constante de Planck et ν la fréquence de la lumière, i ph = ep (10) hν Pour un faisceau décrit par un état cohérent, l arrivée aléatoire des photons est à l origine du bruit de grenaille dont la densité spectrale est donnée par S iph = 2ei ph 3.2 Mesure du bruit quantique de la lumière 1. Appuyer sur (<Preset>), 2. Appuyer sur (<Input/OutPut>), (<RF Coupling>),(<AC>.. 3. Régler le gain de la photodiode sur 10 db. 4. Connecter la sortie de la photodiode à l entrée de l oscilloscope d une part et d autre part à l entrée de l analyseur de spectre. 5. Mesurer la densité spectrale de bruit en isolant le photodiode de la lumière ambiante. 6. Illuminer la photodiode à l aide d une lampe à incandescence. 7. Mesurer la densité spectrale du bruit de "la lumière". 1. c est à dire d efficacité quantique égale à 1, ou encore "un photon donne un électron"

6 8. Mesurer la composante DC sur l oscilloscope, calculer la valeur attendue de la densité spectrale du bruit de grenaille en utilisant les données de la figure 2. 9. Conclure. Figure 2 Caractéristiques de la photodiode 3.2.1 Procédure de mesure de bruit Appuyer sur (<Start Frequency>), (<0, MHZ>. Appuyer sur (<Stop Frequency>), (<5, MHZ>. Appuyer sur (<Measure>), (<Channel Power>),(>. Appuyer sur (<TRACE/VIEW>), (<Combined>). Appuyer sur (<Meas Setup>), (<Avg Number>) (On). Appuyer sur (<Meas Setup>), (<Optimzie Ref Level>) (On). Relever la valeur de la densité spectrale de bruit en db/hz 3.3 Matériel disponible : Un oscilloscope numérique Un analyseur de spectre Agilent E4443A 3Hz-6.7 GHz Un synthétiseur de fréquences RIGOL DG1022, 12 MHz Un Filtre RF pass-bas mini-circuit BLP 10.7 Un splitter RF modèle miniciruit ZSC-2-1W. Une photodiode avec amplificateur intègre Modèle Thorlabs PDA 36 A-EC. Une sources de lumière.