TD1 Signaux, énergie et puissance, signaux aléatoires

Save this PDF as:

Dimension: px
Commencer à balayer dès la page:

Download "TD1 Signaux, énergie et puissance, signaux aléatoires"

Transcription

1 TD1 Signaux, énergie et puissance, signaux aléatoires I ) Ecrire l'expression analytique des signaux représentés sur les figures suivantes à l'aide de signaux particuliers. Dans le cas du signal y(t) trouver trois expressions analytiques différentes pour le représenter. II ) Les signaux suivants sont-ils à énergie finie? à puissance moyenne finie non nulle? 1) x(t) = A rect(t/t) T > 0. 2) x(t) = A sin(ωt) A,ω > 0. 3) x(t) = u(t) 4) x(t) = A u(t) exp(-at) A,a > 0. III ) Donner l'allure des réalisations correspondant aux signaux aléatoires suivants: a) x(t) = A sin( ω(ζ) t + φ ) t kt + φ( ζ ) b) x(t) = Ak ( ζ ) rect( ) k T c) x(t) = A sin( ωt) + K( ζ ) Pour ces signaux, ω(ζ), A k (ζ ), φ(ζ), K(ζ) sont des variables aléatoires continues. IV ) Un signal aléatoire z(t) possède la d.d.p: p(z) c z Calculer la probabilité pour que z(t) < 1.5

2 V ) Signal binaire aléatoire On considère un signal aléatoire stationnaire binaire y(t) à valeur dans l'ensemble { -2, 5} avec les probabilités 1/3 et 2/3. 1- Donner et tracer la fonction de répartition de y(t) notée F(y). 2- Calculer et représenter la densité de probabilité associée à y(t). 3- Calculer la moyenne statistique et la valeur quadratique moyenne statistique pour un tel signal. VI ) La figure suivante représente un registre à décalage à 5 bits bouclé par un ou exclusif qui part des bits 1 et 3. Quelle est la période principale du signal pseudo-aléatoire engendré par ce montage? Donner les valeurs prises par le signal x(t) en fonction du temps et sur une période. Le registre est préalablement initialisé comme ce qui est indiqué sur la figure.

3 TD2 Séries de Fourier I ) Développer en série de Fourier réelle le signal périodique suivant sur l'intervalle [0,T]: x( t) = u( t) rect( 2 t / T ). Représenter sur un diagramme amplitude-fréquence le spectre du signal, obtenu à partir des coefficients de la décomposition. II ) Redressement d un signal sinusoïdal simple et double-alternance. La fonction de redressement d un signal sinusoïdal a pour but l obtention d un signal dont la composante continue est non nulle afin de pouvoir l extraire pour réaliser une alimentation en tension ou courant continu. Cette fonction est réalisée en partie par un composant électronique (la diode) dont on ne cherche pas ici à expliquer la structure ni les propriétés. On appellera redresseur, le système électronique qui réalise la fonction décrite au début de ces lignes. e(t) Redresseur s(t) Le signal d entrée est une sinusoïde qui est délivrée par un générateur, e( t) = sin( 2π F 0t), le signal de sortie est périodique, et s exprime sur une période par, s( t) = sin( 2π F 0t) pour 0 t T 0/2 s( t) = 0 pour T /2 t T 0 0 1) Représenter les signaux d entrée et de sortie e(t) et s(t) sur deux courbes amplitude-temps. 2) Décomposer en série de Fourier e(t) et s(t) puis représenter le spectre des coefficients obtenus pour chacun d eux sur un diagramme amplitude-fréquence. 3) Interpréter les spectres des signaux en rapport avec la fonction du système électronique étudié ici. 4) On utilise maintenant un redresseur double-alternance, le signal d entrée étant toujours e(t), on observe en sortie un signal s(t) tel que, s( t) = sin( 2π F 0t) pour 0 t T 0/2 reprendre la question 2) pour s(t). Quelle amélioration est apportée par le redresseur double-alternance, du point de vue de la fonction à réaliser?

4 TD3 Systèmes linéaires invariants, convolution, réponse fréquentielle I ) Calculer et représenter sur une courbe amplitude-temps le produit de convolution suivant: y(t) = x(t) * x(t) avec x(t) = rect( t/t ) II ) Soit un système S.L.I de réponse impulsionnelle h(t) telle que: h( t) = u( t) exp( at), où a est une constante d'amortissement > 0. 1 ) Calculer et représenter le signal de sortie du système sur une courbe amplitude-temps à partir des deux cas suivants : t T / 2 x( t) = rect( ) T 2 ) Calculer la réponse fréquentielle du système, puis représenter la courbe de variation de son module en fonction de la fréquence. Quelle est la fonction de ce système? III ) Le signal de sortie d un redresseur double alternance est couplé avec un réseau RC dont la réponse impulsionnelle est : h( t) = u( t) 1 RC e t RC Entrée x(t) Redresseur Réseau RC Sortie y(t) L entrée est sinusoïdale, avec la fréquence Fo = 50 Hz. 1) Donner la condition nécessaire sur RC pour que l harmonique 2 du signal redressé subisse un affaiblissement de -3 db en sortie du réseau (reprendre au besoin les résultats du premier TD). 2) Quel est alors l écart en db entre la composante continue présente dans le signal et l harmonique de rang 2? 3) Sachant que la résistance est en fait constituée par la partie résistive globale du pont de diodes, on a R=10 Ohms, donner la valeur du condensateur C en microfarads.

5 TD4 Transformée de Fourier, corrélation I ) Montrer les diverses propriétés de parité et de symétrie de la TF: a) si x(t) réel alors X* ( f ) = X ( f ). (symétrie hermitienne ) b) si x(t) est réel alors X(f) est paire. c) si x(t) est réel pair alors X(f) est réel paire. d) si x(t) est réel impair alors X(f) est imaginaire impaire. II ) Calculer la transformée de Fourier X(f) et représenter sur une courbe amplitude-fréquence l'allure du spectre en module des signaux à énergie finie suivants: a) x(t) = A rect(t/t) b) x(t) = u(t) exp(-at) a > 0. c) x(t) = exp(-a t ) a > 0. d) x(t) = tri (t/t) III ) Utiliser la propriété de la TF du produit de convolution afin de calculer la T.F du signal x(t) = tri (t/t). IV ) Calculer la T.F du signal représenté sur la figure suivante en utilisant la relation qui donne la TF de la dérivée d'un signal. V ) Pour le signal x(t) = u(t) exp(-at ), a > 0. Vérifier l'égalité entre X(f) ² et la transformée de Fourier de la fonction d'autocorrélation du signal. A π VI ) Soient x( t) = Asin( 2π f 0 t) et y( t) = cos( 2 f0t + ), déterminer : La fonction d intercorrélation de x(t) et y(t), - La fonction d autocorrélation de x(t), - La densité spectrale de puissance de x(t), la puissance totale de x(t).

6 TD5 TF des signaux à puissance moyenne finie non nulle, stationarité, ergodicité I ) Exprimer u(t) en fonction de la fonction signe sgn(t), puis en déduire sa transformée de Fourier U(f). II ) Calculer la transformée de Fourier et représenter sur une courbe amplitude-fréquence le spectre des signaux suivants: a) x(t) = u(t) cos(2πf 0 t) b) y(t) = cos²(2πf 0 t) c) On suppose que y(t) est le signal recueilli en sortie d un quadrateur, dont la relation entrée-sortie est donnée par, s(t) = e(t)². Dans le cas où e(t) = cos(2πf 0 t), représenter les signaux e(t) et s(t). En vous appuyant uniquement sur les spectres des signaux e(t) et s(t) indiquer la raison pour laquelle le quadrateur n est pas un système linéaire. III ) Déterminer parmi ces signaux lesquels sont stationnaires au sens large: a) x(t) = A sin( ω(ζ) t + φ ) b) x(t) = A sin( ωt) + b( t, ζ ) c) x(t) = A sin( ωt) + K( ζ ) IV ) Calculer la valeur moyenne et la puissance totale d'un signal aléatoire ternaire prenant les trois valeurs x1 = -2, x2 = 0.5 x3 = 3 avec les probabilités respectives 1/4, 5/8 et 1/8. V ) Soit un signal aléatoire analogique défini par : X ( t, ξ ) = Y ( ξ )cos( θ t) + Z( ζ )sin( θt) Y et Z sont des variables aléatoires réelles indépendantes centrées et de même variance σ² et θ est un réel. a) Calculer la moyenne statistique, la covariance statistique, l autocorrélation statistique et la puissance moyenne du signal. b) Déterminer et représenter le spectre de puissance du signal. c) Le signal est-il stationnaire? d) Le signal est-il ergodique?

7 TD6 Echantillonnage, signaux discrets I ) Soit x(t) un signal analogique tel que: On échantillonne ce signal à la fréquence 4f. x( t) = 3a cos( 3πft ) + acos( 7π ft) 1) Représenter la courbe en module de la transformée de Fourier du signal échantillonné. Interpréter cette courbe. 2) La condition de Shannon est-elle respectée? Quelles solutions proposez-vous pour qu'elle le soit le cas échéant. II ) Calculer la Transformée de Fourier du signal représenté sur la figure suivante: x(t) 1-5T0-3T0 -T0 0 T0 3T0 5T0 III ) Principe de l'échantillonnage périodique avec moyennage: C'est un échantillonneur avec maintien dans lequel le signal est moyenné en amont. Le schéma de principe est le suivant: x(t) g1(t) g2(t) x eµ (t) e(t) le filtre moyenneur g1(t) et le filtre de mise en forme g2(t) ont respectivement pour expression: g1(t) = 1/D rect( (t-d/2) / D ) g2(t) = rect( (t-d/2) / D ) la fonction d'échantillonnage e(t) est un peigne de période T o. Etablir l'expression du signal échantillonné xeµ ( t ) et sa transformée de Fourier Xeµ ( f ) en module carré.

8 IV ) Soit la fonction x(t) = tri(t/t) et X(f) son spectre. On échantillonne dans le domaine fréquentiel le spectre X(f), la période d échantillonnage choisie est Fe. On obtient ainsi un spectre échantillonné en fréquence Xe(f). Soit y(t) le signal ayant pour transformée de Fourier Xe(f), donner la condition sur Fe permettant d éviter le recouvrement des motifs du signal x(t). V ) Soit le système défini par l équation aux différences suivante : y( n) = x( n) + ay( n 1 ) avec a > 0 1) Calculer la réponse impulsionnelle causale du système 2) Préciser la condition de stabilité du système. 3) Calculer la réponse du système au signal suivant : jω n 0 x(n) = u(n)e sachant que la condition initiale est y(n) = 0, pour n < 0. 4) Montrer que y(n) peut se décomposer en deux termes, dont l un caractérise la réponse en régime transitoire (tendant vers zéro quand n tend vers l infini) et l autre caractérise la réponse en régime permanent (dont le module est indépendant de n).

BTS Groupement A. Mathématiques Session 2011. Spécialités CIRA, IRIS, Systèmes électroniques, TPIL

BTS Groupement A. Mathématiques Session 2011. Spécialités CIRA, IRIS, Systèmes électroniques, TPIL BTS Groupement A Mathématiques Session 11 Exercice 1 : 1 points Spécialités CIRA, IRIS, Systèmes électroniques, TPIL On considère un circuit composé d une résistance et d un condensateur représenté par

Plus en détail

Analyse spectrale du signal

Analyse spectrale du signal Analyse spectrale du signal Principe de l analyse spectrale (ou harmonique) La réponse en fréquence des circuits est un élément caractéristique du comportement dynamique des circuits R, L et C. L autre

Plus en détail

Oscillations libres des systèmes à deux degrés de liberté

Oscillations libres des systèmes à deux degrés de liberté Chapitre 4 Oscillations libres des systèmes à deux degrés de liberté 4.1 Introduction Les systèmes qui nécessitent deux coordonnées indépendantes pour spécifier leurs positions sont appelés systèmes à

Plus en détail

T.P. n 4. polytech-instrumentation.fr 0,15 TTC /min à partir d un poste fixe

T.P. n 4. polytech-instrumentation.fr 0,15 TTC /min à partir d un poste fixe T.P. n 4 polytech-instrumentation.fr 0 825 563 563 0,15 TTC /min à partir d un poste fixe Redressement d une tension I. Objectifs Redressement d une tension alternative par le moyen de diodes. Transformation

Plus en détail

1) Prise en main de l'oscilloscope numérique et de sa fonction FFT.

1) Prise en main de l'oscilloscope numérique et de sa fonction FFT. TP n 8 : obtention des spectres de signaux usuels. But du TP : ce huitième TP de BTS SE a pour but l'étude de la manière d'obtenir le spectre d'un signal sinusoïdal et carré avec un rapport cyclique variable.

Plus en détail

Communications numériques

Communications numériques Communications numériques 1. Modulation numérique (a) message numérique/signal numérique (b) transmission binaire/m-aire en bande de base (c) modulation sur fréquence porteuse (d) paramètres, limite fondamentale

Plus en détail

5 Analyse de Fourier. 5.1 Aspects théoriques. 5.1.1 Analyse de Fourier

5 Analyse de Fourier. 5.1 Aspects théoriques. 5.1.1 Analyse de Fourier Responsable : J.Roussel Objectif Ce TP est une initiation à l analyse de Fourier. Nous verrons notamment comment une analyse spectrale permet de remonter à la courbe de réponse d un filtre électrique.

Plus en détail

SYSTEMES LINEAIRES DU PREMIER ORDRE

SYSTEMES LINEAIRES DU PREMIER ORDRE SYSTEMES LINEIRES DU PREMIER ORDRE 1. DEFINITION e(t) SYSTEME s(t) Un système est dit linéaire invariant du premier ordre si la réponse s(t) est liée à l excitation e(t) par une équation différentielle

Plus en détail

5 Analyse de Fourier. 5.1 Aspects théoriques. 5.1.1 Analyse de Fourier

5 Analyse de Fourier. 5.1 Aspects théoriques. 5.1.1 Analyse de Fourier Responsable : J.Roussel Objectif Ce TP est une initiation à l analyse de Fourier. Nous verrons notamment comment une analyse spectrale permet de remonter à la courbe de réponse d un filtre électrique.

Plus en détail

Chapitre 3: Analyse des signaux non périodiques

Chapitre 3: Analyse des signaux non périodiques Chapitre 3: Analyse des signaux non périodiques Mahjoub DRIDI Contents 1 Transformation de Fourier 1.1 PassagedelasérieàlatransformationdeFourier..................... 1. DéfinitiondelatransforméedeFourier...........................

Plus en détail

Les fonctions sinus et cosinus

Les fonctions sinus et cosinus DERNIÈRE IMPRESSION LE 6 juin 03 à 5:06 Les fonctions sinus et cosinus Table des matières Rappels. Mesure principale.............................. Résolution d équations...........................3 Signe

Plus en détail

Les régimes périodiques (Chap 2)

Les régimes périodiques (Chap 2) Les régimes périodiques (Chap 2)! Révisé et compris! Chapitre à retravaillé! Chapitre incompris 1. Propriétés des grandeurs physiques : La période T, est le plus petit intervalle de temps, au bout duquel

Plus en détail

T.P. n 8: MULTIPLIEUR

T.P. n 8: MULTIPLIEUR T.P. n 8: MULTIPLIEUR 1) MODULATION D AMPLITUDE On veut transmettre sur de grandes distances des informations, par exemple sonores, de fréquences comprises entre 0 Hz et 0 khz. La transmission ne peut

Plus en détail

Systèmes de transmission

Systèmes de transmission Systèmes de transmission Conception d une transmission série FABRE Maxime 2012 Introduction La transmission de données désigne le transport de quelque sorte d'information que ce soit, d'un endroit à un

Plus en détail

FONCTIONS TRIGONOMÉTRIQUES

FONCTIONS TRIGONOMÉTRIQUES FONCTIONS TRIGONOMÉTRIQUES Définition ( voir animation ) On dit qu'un repère orthonormé (O; i, j) est direct lorsque ( i ; j ) = + []. Dans le plan rapporté à un repère orthonormé direct, si M est le point

Plus en détail

Union générale des étudiants de Tunisie Bureau de l institut Préparatoire Aux Etudes D'ingénieurs De Tunis. Modèle de compte-rendu de TP.

Union générale des étudiants de Tunisie Bureau de l institut Préparatoire Aux Etudes D'ingénieurs De Tunis. Modèle de compte-rendu de TP. Union générale des étudiants de Tunisie Modèle de compte-rendu de TP Dipôle RC Ce document a été publié pour l unique but d aider les étudiants, il est donc strictement interdit de l utiliser intégralement

Plus en détail

M1/UE CSy - module P8 1

M1/UE CSy - module P8 1 M1/UE CSy - module P8 1 PROJET DE SIMULATION AVEC MATLAB RÉGULATION DU NIVEAU ET DE LA TEMPÉRATURE DANS UN BAC En vue de disposer d un volume constant de fluide à une température désirée, un processus

Plus en détail

1 Acquisition d un signal avec l oscilloscope numérique LeCroy 9310 : Théorème de Shannon :

1 Acquisition d un signal avec l oscilloscope numérique LeCroy 9310 : Théorème de Shannon : Jeanniard Sébastien Lemaître Guillaume TP n 1 : Théorème de Shannon Modulation de fréquence 1 Acquisition d un signal avec l oscilloscope numérique LeCroy 9310 : Théorème de Shannon : 1.3 Etude de la fréquence

Plus en détail

Ch. 2 : Emetteur en Bande de Base

Ch. 2 : Emetteur en Bande de Base Ch. 2 : Emetteur en Bande de Base 1 1) Les codes en ligne 1-1) Principe des codes en ligne Codes en ligne binaire On suppose que le message numérique est constitué d une suite d éléments binaires α k,

Plus en détail

ÉVALUATION FORMATIVE. On considère le circuit électrique RC représenté ci-dessous où R et C sont des constantes strictement positives.

ÉVALUATION FORMATIVE. On considère le circuit électrique RC représenté ci-dessous où R et C sont des constantes strictement positives. L G L G Prof. Éric J.M.DELHEZ ANALYSE MATHÉMATIQUE ÉALUATION FORMATIE Novembre 211 Ce test vous est proposé pour vous permettre de faire le point sur votre compréhension du cours d Analyse Mathématique.

Plus en détail

t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre :

t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre : Terminale STSS 2 012 2 013 Pourcentages Synthèse 1) Définition : Calculer t % d'un nombre, c'est multiplier ce nombre par t 100. 2) Exemples de calcul : a) Calcul d un pourcentage : Un article coûtant

Plus en détail

Section : ELECTROTECHNIQUE ET ELECTRONIQUE MARITIMES EPREUVE N 1 CULTURE DISCIPLINAIRE. (Durée : 5 heures ; Coefficient : 2)

Section : ELECTROTECHNIQUE ET ELECTRONIQUE MARITIMES EPREUVE N 1 CULTURE DISCIPLINAIRE. (Durée : 5 heures ; Coefficient : 2) CONCOURS DE RECRUTEMENT DE PROFESSEURS DE LYCEE PROFESSIONNEL AGRICOLE Enseignement Maritime SESSION 2015 Concours : EXTERNE Section : ELECTROTECHNIQUE ET ELECTRONIQUE MARITIMES EPREUVE N 1 CULTURE DISCIPLINAIRE

Plus en détail

La Modulation d Amplitude (AM)

La Modulation d Amplitude (AM) La Modulation d Amplitude (AM) Le Signal AM (1) La porteuse sinusoïdale e 0 (t) = Ê.cos(2π t) est modulée en amplitude par une information BF s(t). Le signal AM qui en résulte peut s écrire u AM (t) =

Plus en détail

Chapitre 3. Les distributions à deux variables

Chapitre 3. Les distributions à deux variables Chapitre 3. Les distributions à deux variables Jean-François Coeurjolly http://www-ljk.imag.fr/membres/jean-francois.coeurjolly/ Laboratoire Jean Kuntzmann (LJK), Grenoble University 1 Distributions conditionnelles

Plus en détail

Etude d'un monte-charge

Etude d'un monte-charge BTS ELECTROTECHNIQUE Session 1998 3+

Plus en détail

Chapitre IV : Couples de variables aléatoires discrètes

Chapitre IV : Couples de variables aléatoires discrètes UNIVERSITÉ DE CERG Année 0-03 UFR Économie & Gestion Licence d Économie et Gestion MATH0 : Probabilités Chapitre IV : Couples de variables aléatoires discrètes Généralités Définition Soit (Ω, P(Ω), P)

Plus en détail

G.P. DNS Décembre 2008

G.P. DNS Décembre 2008 DNS Sujet Électronique...1 A.Principe de la détection synchrone...1 1)Étude du filtre RC...1 2)Étude du multiplieur...2 3)Conclusion...2 B.Un filtre universel à amplificateurs opérationnels...2 A. Principe

Plus en détail

Transformée en Z de signaux discrets

Transformée en Z de signaux discrets !"#%$& ')(*')&+,-$'/.0')2$&' Transformée en Z de signaux discrets. Soit un signal discret x n 3 4 de convergence. n, 05 4 5,4768. Calculer sa transformée en z dans sa région 2. Soit X(z) la transformée

Plus en détail

COMMENT OBTENIR UN SPECTRE SATISFAISANT D UN SIGNAL ENREGISTRE PAR ORDINATEUR?

COMMENT OBTENIR UN SPECTRE SATISFAISANT D UN SIGNAL ENREGISTRE PAR ORDINATEUR? NOM: Coéquipier : COMMENT OBTENIR UN SPECTRE SATISFAISANT D UN SIGNAL ENREGISTRE PAR ORDINATEUR? Soit une fonction G(t) périodique, de fréquence f. D'après Fourier, cette fonction peut se décomposer en

Plus en détail

1 Systèmes triphasés symétriques

1 Systèmes triphasés symétriques 1 Systèmes triphasés symétriques 1.1 Introduction Un système triphasé est un ensemble de grandeurs (tensions ou courants) sinusoïdales de même fréquence, déphasées les unes par rapport aux autres. Le système

Plus en détail

Analyse des diagrammes de Bode d'un filtre passe-bande:

Analyse des diagrammes de Bode d'un filtre passe-bande: TD N 3: Filtrage, fonction de transfert et diagrammes de Bode. M1107 : Initiation à la mesure du signal Le but de ce TD est de vous permettre d'appréhender les notions indispensables à la compréhension

Plus en détail

INTRODUCTION A L ELECTRONIQUE NUMERIQUE ECHANTILLONNAGE ET QUANTIFICATION I. ARCHITECTURE DE L ELECRONIQUE NUMERIQUE

INTRODUCTION A L ELECTRONIQUE NUMERIQUE ECHANTILLONNAGE ET QUANTIFICATION I. ARCHITECTURE DE L ELECRONIQUE NUMERIQUE INTRODUCTION A L ELECTRONIQUE NUMERIQUE ECHANTILLONNAGE ET QUANTIFICATION I. ARCHITECTURE DE L ELECRONIQUE NUMERIQUE Le schéma synoptique ci-dessous décrit les différentes étapes du traitement numérique

Plus en détail

CONCOURS POUR LE RECRUTEMENT DE :

CONCOURS POUR LE RECRUTEMENT DE : CONCOURS POUR LE RECRUTEMENT DE : Techniciens supérieurs de la météorologie de première classe, spécialité «instruments et installations» (concours interne et externe). ***************** SESSION 205 *****************

Plus en détail

SCIENCES PHYSIQUES ET PHYSIQUE APPLIQUEE

SCIENCES PHYSIQUES ET PHYSIQUE APPLIQUEE BACCALAUREAT TECHNOLOGIQUE SCIENCES ET TECHNOLOGIES INDUSTRIEllES GENIE MECANIQUE SESSION 2007 SCIENCES PHYSIQUES ET PHYSIQUE APPLIQUEE Durée: 2 heures Coefficient : 5 L'emploi de toutes les calculatrices

Plus en détail

TP PSI MODULATION-DÉMODULATION

TP PSI MODULATION-DÉMODULATION I-Objectifs du T.P I-Objectifs du T.P On se propose de réaliser une modulation d amplitude puis sa démodulation pour récupérer le message initial. Dans chaque cas, on observera la représentation temporelle

Plus en détail

FONCTIONS. I Généralités sur les fonctions. Définitions. Remarque. Exercice 01. Remarque

FONCTIONS. I Généralités sur les fonctions. Définitions. Remarque. Exercice 01. Remarque FNCTINS I Généralités sur les fonctions Définitions Soit D une partie de l'ensemble IR. n définit une fonction f de D dans IR, en associant à chaque réel de D, un réel et un seul noté f() et que l'on appelle

Plus en détail

TP 0: Initiation à l utilisation d un oscilloscope numérique

TP 0: Initiation à l utilisation d un oscilloscope numérique FOUGERAY P. ANNE J.F. TP 0: Initiation à l utilisation d un oscilloscope numérique Objectifs : - Le but de cette manipulation est de connaître les fonctionnalités d un oscilloscope numérique bi courbe,

Plus en détail

Propriétés fréquentielles du signal

Propriétés fréquentielles du signal Fiche de référence Thème II : ANALYSE DU SIGNAL Propriétés fréquentielles du signal 1- Insuffisance de la représentation temporelle du signal Reprenons l exemple utilisé précédemment : Enregistrement du

Plus en détail

Traitement numérique du signal

Traitement numérique du signal Nº 754 BULLETIN DE L UNION DES PHYSICIENS 707 Traitement numérique du signal par J. ESQUIEU Lycée de Brive 1. TRAITEMENT Le traitement numérique du signal consiste à agir sur le signal à partir d échantillons

Plus en détail

Expérience 3 Formats de signalisation binaire

Expérience 3 Formats de signalisation binaire Expérience 3 Formats de signalisation binaire Introduction Procédures Effectuez les commandes suivantes: >> xhost nat >> rlogin nat >> setenv DISPLAY machine:0 >> setenv MATLABPATH /gel/usr/telecom/comm_tbx

Plus en détail

Cours Traitement de Signal TRAVAUX DIRIGES. Sondes Abdelmouleh 54

Cours Traitement de Signal TRAVAUX DIRIGES. Sondes Abdelmouleh 54 TRAVAUX DIRIGES Sondes Abdelmouleh 54 avaux dirigés avec éléments de corrigé Filière : 1 ère Année Génie Electrique Année universitaire 2010-2011 Semestre 2 Travaux Dirigés : Signaux et Systèmes Linéaires

Plus en détail

Les codes Pseudo-Aléatoires et leurs applications

Les codes Pseudo-Aléatoires et leurs applications Les codes Pseudo-Aléatoires et leurs applications A) Les codes Pseudo-Aléaoires B) Les Applications : I. Etalement de spectre, II. Cryptage et chiffrement III. Brouillage numérique A) Les codes Pseudo-aléatoires

Plus en détail

1.1. Remplacer le début des phrases suivantes par : «La tension aux bornes d un(e)» ou «L intensité du courant dans un(e)».

1.1. Remplacer le début des phrases suivantes par : «La tension aux bornes d un(e)» ou «L intensité du courant dans un(e)». BTS 2003 Le problème porte sur l impression de tickets de caisse du système de distribution de cartes d entrée de piscine. Dans la première partie, on étudiera l impression thermique de tickets de caisse,

Plus en détail

Travaux Dirigés Traitement Numérique du Signal Digital Signal Processing

Travaux Dirigés Traitement Numérique du Signal Digital Signal Processing 1ère Année Informatique 2011-2012 Travaux Dirigés Traitement Numérique du Signal Digital Signal Processing M. Frikel - J. Fadili GREYC, UMR 6072 CNRS, 6, Boulevard Maréchal Juin, 14050 Caen Cedex Table

Plus en détail

Rédigé par un élève de Terminale S à l'aide de ses livres de maths (Indice, Bordas), ses cours, toute sa peine, et son stress pour le bac! J.

Rédigé par un élève de Terminale S à l'aide de ses livres de maths (Indice, Bordas), ses cours, toute sa peine, et son stress pour le bac! J. Rédigé par un élève de Terminale S à l'aide de ses livres de maths (Indice, Bordas), ses cours, toute sa peine, et son stress pour le bac! J. FAIVRE s de cours exigibles au bac S en mathématiques Enseignement

Plus en détail

Université Joseph Fourier MAT231 2008-2009

Université Joseph Fourier MAT231 2008-2009 Université Joseph Fourier MAT231 2008-2009 mat231-exo-03.tex (29 septembre 2008) Feuille d exercices n o 3 Exercice 3.1 Soit K un corps commutatif et soit {P 0, P 1,... P n } une famille de polynômes de

Plus en détail

Première partie. Deuxième partie

Première partie. Deuxième partie PC 96-97 correction épreuve X97 Première partie. f étant convexe sur l intervalle [t, t 2 ], sa courbe représentative est en dessous la corde joignant les points (t, f(t )) et (t 2, f(t 2 )). Comme f(t

Plus en détail

Projet CLANU en 3GE: Compléments d algèbre linéaire numérique

Projet CLANU en 3GE: Compléments d algèbre linéaire numérique Projet CLANU en 3GE: Compléments d algèbre linéaire numérique Année 2008/2009 1 Décomposition QR On rappelle que la multiplication avec une matrice unitaire Q C n n (c est-à-dire Q 1 = Q = Q T ) ne change

Plus en détail

Systèmes de communications numériques 2

Systèmes de communications numériques 2 Systèmes de Communications Numériques Philippe Ciuciu, Christophe Vignat Laboratoire des Signaux et Systèmes cnrs supélec ups supélec, Plateau de Moulon, 9119 Gif-sur-Yvette ciuciu@lss.supelec.fr Université

Plus en détail

ANALYSE SPECTRALE D UN SIGNAL PERIODIQUE

ANALYSE SPECTRALE D UN SIGNAL PERIODIQUE Approche expérimentale ANALYSE SPECTRALE D UN SIGNAL PERIODIQUE Objectifs : - S initier au traitement FFT du logiciel LatisPro - Etudier le spectre d amplitude d un signal carré - Etudier les limites de

Plus en détail

BACCALAURÉAT TECHNOLOGIQUE TECHNIQUES DE LA MUSIQUE ET DE LA DANSE SESSION 2011 SCIENCES PHYSIQUES

BACCALAURÉAT TECHNOLOGIQUE TECHNIQUES DE LA MUSIQUE ET DE LA DANSE SESSION 2011 SCIENCES PHYSIQUES BACCALAURÉAT TECHNOLOGIQUE TECHNIQUES DE LA MUSIQUE ET DE LA DANSE SESSION 2011 SCIENCES PHYSIQUES L usage des instruments de calcul et de dessin est autorisé selon les termes de la circulaire 99-186 du

Plus en détail

Loi binomiale Lois normales

Loi binomiale Lois normales Loi binomiale Lois normales Christophe ROSSIGNOL Année scolaire 204/205 Table des matières Rappels sur la loi binomiale 2. Loi de Bernoulli............................................ 2.2 Schéma de Bernoulli

Plus en détail

Concours d entrée en Ingénierie, 2012

Concours d entrée en Ingénierie, 2012 Concours d entrée en Ingénierie, 2012 Nom : Prénom : Test des connaissances professionnelles en électricité-électronique TCP-E Durée : 3 heures 1. Cocher la réponse exacte 1 En continu, une capacité se

Plus en détail

Version default Titre : Opérateur GENE_ACCE_SEISME Date : 20/08/2012 Page : 1/5 Responsable : Irmela ZENTNER Clé : U4.36.

Version default Titre : Opérateur GENE_ACCE_SEISME Date : 20/08/2012 Page : 1/5 Responsable : Irmela ZENTNER Clé : U4.36. Titre : Opérateur GENE_ACCE_SEISME Date : 20/08/2012 Page : 1/5 Opérateur GENE_ACCE_SEISME 1 But Cet opérateur permet de générer des accélérogrammes sismiques artificiels pour des calculs dynamiques transitoires.

Plus en détail

CHAPITRE V SYSTEMES DIFFERENTIELS LINEAIRES A COEFFICIENTS CONSTANTS DU PREMIER ORDRE. EQUATIONS DIFFERENTIELLES.

CHAPITRE V SYSTEMES DIFFERENTIELS LINEAIRES A COEFFICIENTS CONSTANTS DU PREMIER ORDRE. EQUATIONS DIFFERENTIELLES. CHAPITRE V SYSTEMES DIFFERENTIELS LINEAIRES A COEFFICIENTS CONSTANTS DU PREMIER ORDRE EQUATIONS DIFFERENTIELLES Le but de ce chapitre est la résolution des deux types de systèmes différentiels linéaires

Plus en détail

Probabilité conditionnelle et indépendance. Couples de variables aléatoires. Exemples

Probabilité conditionnelle et indépendance. Couples de variables aléatoires. Exemples 36 Probabilité conditionnelle et indépendance. Couples de variables aléatoires. Exemples (Ω, B, P est un espace probabilisé. 36.1 Définition et propriétés des probabilités conditionnelles Définition 36.1

Plus en détail

Filtrage - Intégration - Redressement - Lissage

Filtrage - Intégration - Redressement - Lissage PCSI - Stanislas - Electrocinétique - TP N 3 - Filtrage - Intégration - Redressement - Lissage Filtrage - Intégration - Redressement - Lissage Prenez en note tout élément pouvant figurer dans un compte-rendu

Plus en détail

Contrôle final de Thermique,

Contrôle final de Thermique, Contrôle final de Thermique, GM3C mars 08 2heures, tous documents autorisés Calculatrices autorisées Problèmes de refroidissement d un ordinateur On se donne un ordinateur qui dissipe une certaine puissance,

Plus en détail

Contrôle de session 2 et/ou de rattrapage UF1 Physique Electricité et électrostatique, 9 mars 2011

Contrôle de session 2 et/ou de rattrapage UF1 Physique Electricité et électrostatique, 9 mars 2011 Nom : Prénom : Groupe : Session 2 Rattrapage Cocher SVP Contrôle de session 2 et/ou de rattrapage UF1 Physique Electricité et électrostatique, 9 mars 2011 Durée 3h00. Tous les documents sont interdits.

Plus en détail

Travaux Pratiques d'hyperfréquence

Travaux Pratiques d'hyperfréquence Travaux Pratiques d'hyperfréquence GLEE604 Sommaire : 1 Ligne en régime impulsionnel 2 Ligne en régime harmonique : étude en fonction de la fréquence 3 Ligne en régime harmonique : étude en fonction de

Plus en détail

CHAPITRE 7 Fonction carré et fonction inverse

CHAPITRE 7 Fonction carré et fonction inverse CHAPITRE 7 Fonction carré et fonction inverse A) La fonction "carré" : f() = ² ) Domaine de définition Elle est définie sur ℝ complet (on peut toujours multiplier deu nombres entre eu). 2) Sens de variation

Plus en détail

CARACTERISTIQUE D UNE DIODE ET POINT DE FONCTIONNEMENT

CARACTERISTIQUE D UNE DIODE ET POINT DE FONCTIONNEMENT TP CIRCUITS ELECTRIQUES R.DUPERRAY Lycée F.BUISSON PTSI CARACTERISTIQUE D UNE DIODE ET POINT DE FONCTIONNEMENT OBJECTIFS Savoir utiliser le multimètre pour mesurer des grandeurs électriques Obtenir expérimentalement

Plus en détail

CONCOURS GÉNÉRAL DES LYCÉES SESSION DE 2009 COMPOSITION DE MATHÉMATIQUES. (Classe terminale S)

CONCOURS GÉNÉRAL DES LYCÉES SESSION DE 2009 COMPOSITION DE MATHÉMATIQUES. (Classe terminale S) MA 09 CONCOURS GÉNÉRAL DES LYCÉES SESSION DE 009 COMPOSITION DE MATHÉMATIQUES (Classe terminale S) DURÉE : 5 heures La calculatrice de poche est autorisée, conformément à la réglementation. La clarté et

Plus en détail

Soutien illimité 7j/7 en maths: Coach, profs, exercices & annales, cours. Sujet de Bac 2013 Maths S Obligatoire & Spécialité - Liban

Soutien illimité 7j/7 en maths: Coach, profs, exercices & annales, cours. Sujet de Bac 2013 Maths S Obligatoire & Spécialité - Liban Sujet de Bac 2013 Maths S Obligatoire & Spécialité - Liban EXERCICE 1 : 4 Points Cet exercice est un questionnaire à choix multiples. Aucune justification n est demandée. Pour chacune des questions, une

Plus en détail

Chapitre 5 La puissance en régime sinusoïdal

Chapitre 5 La puissance en régime sinusoïdal Chapitre 5 La puissance en régime sinusoïdal forcé 61 5.1. Les grandeurs instantanée, moyenne et e cace Les signaux étudiés dans ce chapitre sont des courants ou des tensions sinusoïdaux i(t) et u(t).

Plus en détail

Fonctions de référence Variation des fonctions associées

Fonctions de référence Variation des fonctions associées DERNIÈRE IMPRESSION LE 9 juin 05 à 8:33 Fonctions de référence Variation des fonctions associées Table des matières Fonction numérique. Définition.................................. Ensemble de définition...........................3

Plus en détail

Baccalauréat STL biotechnologies Métropole La Réunion 18 juin 2015

Baccalauréat STL biotechnologies Métropole La Réunion 18 juin 2015 Baccalauréat STL biotechnologies Métropole La Réunion 18 juin 2015 Calculatrice autorisée conformément à la circulaire n o 99-186 du 16 novembre 1999. Le candidat doit traiter les quatre exercices. Il

Plus en détail

Série 7 : circuits en R.S.F.

Série 7 : circuits en R.S.F. Série 7 : circuits en R.S.F. 1 Documents du chapitre Action d un circuit du 1er ordre sur un échelon de tension et sur une entrée sinusoïdale : Déphasage de grandeurs sinusoïdales et représentation de

Plus en détail

Donner les limites de validité de la relation obtenue.

Donner les limites de validité de la relation obtenue. olutions! ours! - Multiplicateur 0 e s alculer en fonction de. Donner les limites de validité de la relation obtenue. Quelle est la valeur supérieure de? Quel est le rôle de 0? - Multiplicateur e 0 s alculer

Plus en détail

Cours Mathématiques PACES UHP-Nancy

Cours Mathématiques PACES UHP-Nancy Cours Mathématiques PACES UHP-Nancy V. Latocha PACES UHP septembre 2010 remerciements à D. Schmitt et V. Ries V. Latocha (PACES UHP) Cours mathématiques Paces septembre 2010 1 / 48 1 Fonctions d une variable

Plus en détail

BREVET DE TECHNICIEN SUPÉRIEUR COMPTABILITÉ ET GESTION DES ORGANISATIONS Session 2013 ÉPREUVE DE MATHÉMATIQUES. Durée : 2 heures Coefficient : 2

BREVET DE TECHNICIEN SUPÉRIEUR COMPTABILITÉ ET GESTION DES ORGANISATIONS Session 2013 ÉPREUVE DE MATHÉMATIQUES. Durée : 2 heures Coefficient : 2 BREVET DE TECHNICIEN SUPÉRIEUR COMPTABILITÉ ET GESTION DES ORGANISATIONS Session 2013 ÉPREUVE DE MATHÉMATIQUES Durée : 2 heures Coefficient : 2 SUJET Dès que le sujet vous est remis, assurez-vous qu il

Plus en détail

Fascicule d exercices

Fascicule d exercices UE4 : Evaluation des méthodes d analyses appliquées aux sciences de la vie et de la santé Analyse Fascicule d exercices Christelle MELODELIMA Année universitaire 2011/2012 Université Joseph Fourier de

Plus en détail

9. Distributions d échantillonnage

9. Distributions d échantillonnage 9. Distributions d échantillonnage MTH2302D S. Le Digabel, École Polytechnique de Montréal H2015 (v3) MTH2302D: distributions d échantillonnage 1/46 Plan 1. Échantillons aléatoires 2. Statistiques et distributions

Plus en détail

XIII. ANALYSE DES FONCTIONS DE TRANSFERT EN REGIME HARMONIQUE LE DIAGRAMMME DE BODE

XIII. ANALYSE DES FONCTIONS DE TRANSFERT EN REGIME HARMONIQUE LE DIAGRAMMME DE BODE XIII. ANALYSE DES FONCTIONS DE TRANSFERT EN REGIME HARMONIQUE LE DIAGRAMMME DE BODE A. ANALYSE D'UNE FONCTION DE TRANSFERT Forme canonique ; Exemple ; Limites ; Fréquence de Coupure ; Bande Passante ;

Plus en détail

Université Hassan II Année universitaire : Faculté des sciences Ben M sik Département de Physique Master Traitement de l Information

Université Hassan II Année universitaire : Faculté des sciences Ben M sik Département de Physique Master Traitement de l Information Université Hassan II Année universitaire : 2017-2018 Faculté des sciences Ben M sik Département de Physique Master Traitement de l Information 1 / Considérons le signal réel suivant : Série n 2 +0.5 si

Plus en détail

A. N(p) B + C p. + D p2

A. N(p) B + C p. + D p2 Polytech Nice ELEC3 T.P. d'electronique TP N 7 S ACTIFS DU SECOND ORDRE 1 - INTRODUCTION Un quadripôle est dit avoir une fonction de transfert en tension, du second ordre, lorsque le rapport tension de

Plus en détail

Epreuve d électronique de puissance F. Costa, G. Coquery (Durée 3h, calculatrice et documents autorisés 1 )

Epreuve d électronique de puissance F. Costa, G. Coquery (Durée 3h, calculatrice et documents autorisés 1 ) Epreuve d électronique de puissance F. Costa, G. Coquery (Durée 3h, calculatrice et documents autorisés 1 ) Présentation du sujet La recherche de miniaturisation est actuellement un domaine important dans

Plus en détail

Systèmes linéaires, Signaux aléatoires, bruits, statistique et probabilités

Systèmes linéaires, Signaux aléatoires, bruits, statistique et probabilités Signaux et graphes : terminologie Systèmes linéaires, Signaux aléatoires, bruits, statistique et probabilités Cours signaux et systèmes M1 physique Un signal décrit la relation entre un paramètre et un

Plus en détail

Exercice 1 Métropole juin 2014 5 points

Exercice 1 Métropole juin 2014 5 points Le sujet comporte 6 pages. Seule l annexe est à rendre avec la copie. BAC BLANC MATHÉMATIQUES TERMINALE STMG Durée de l épreuve : 3 heures Les calculs doivent être détaillés. Les calculatrices sont autorisées,

Plus en détail

Session 2011. Enseignement de Spécialité. Durée de l épreuve : 3 heures. Coefficient : 7. Ce sujet comporte 7 pages numérotées de 1 à 7.

Session 2011. Enseignement de Spécialité. Durée de l épreuve : 3 heures. Coefficient : 7. Ce sujet comporte 7 pages numérotées de 1 à 7. BACCALAURÉAT GENÉRAL Session 2011 MATHÉMATIQUES Série ES Enseignement de Spécialité Durée de l épreuve : 3 heures Coefficient : 7 Ce sujet comporte 7 pages numérotées de 1 à 7. L utilisation d une calculatrice

Plus en détail

Table des matières. Avant propos. Chapitre I NOTIONS SUR LES SYSTEMES

Table des matières. Avant propos. Chapitre I NOTIONS SUR LES SYSTEMES Table des matières Avant propos Chapitre I NOTIONS SUR LES SYSTEMES 1. Systèmes linéaires 1 2. Systèmes stationnaires 1 3. Systèmes continus 2 4. Systèmes linéaires invariants dans le temps (LIT) 2 4.1

Plus en détail

ELEC2753 Electrotechnique examen du 11/06/2012

ELEC2753 Electrotechnique examen du 11/06/2012 ELEC2753 Electrotechnique examen du 11/06/2012 Pour faciliter la correction et la surveillance, merci de répondre aux 3 questions sur des feuilles différentes et d'écrire immédiatement votre nom sur toutes

Plus en détail

( ) = ax. On dit que f est une fonction linéaire. ( ) = b. On dit que f est une fonction constante.

( ) = ax. On dit que f est une fonction linéaire. ( ) = b. On dit que f est une fonction constante. Chapitre : Fonctions de référence I Fonctions affines Définition d'une fonction affine f est une fonction affine si, et seulement si, il existe deux réels a et b tels que pour tout x, f x ( ) = ax + b

Plus en détail

Travaux pratiques d électronique, première séance. Circuits passifs. S. Orsi, A. Miucci 22 septembre 2014

Travaux pratiques d électronique, première séance. Circuits passifs. S. Orsi, A. Miucci 22 septembre 2014 Travaux pratiques d électronique, première séance Circuits passifs S. Orsi, A. Miucci 22 septembre 2014 1 Révision 1. Explorez le protoboard avec le voltmètre. Faites un schéma des connexions. 2. Calibrez

Plus en détail

SYSTEMES D EQUATIONS

SYSTEMES D EQUATIONS SYSTEMES D EQUATIONS I Définition: Un système de deux équations du premier degré à deux inconnues x et y est de la forme : a x + b y = c a' x + b' y = c' où a, b, c, et a', b', c' sont des nombres donnés.

Plus en détail

Intérêt du découpage en sous-bandes pour l analyse spectrale

Intérêt du découpage en sous-bandes pour l analyse spectrale Intérêt du découpage en sous-bandes pour l analyse spectrale David BONACCI Institut National Polytechnique de Toulouse (INP) École Nationale Supérieure d Électrotechnique, d Électronique, d Informatique,

Plus en détail

Baccalauréat S Asie 18 juin 2013

Baccalauréat S Asie 18 juin 2013 Baccalauréat S Asie 18 juin 2013 Dans l ensemble du sujet, et pour chaque question, toute trace de recherche même incomplète, ou d initiative même non fructueuse, sera prise en compte dans l évaluation

Plus en détail

Fonction inverse Fonctions homographiques

Fonction inverse Fonctions homographiques Fonction inverse Fonctions homographiques Année scolaire 203/204 Table des matières Fonction inverse 2. Définition Parité............................................ 2.2 Variations Courbe représentative...................................

Plus en détail

Circuits RL et RC. Chapitre 5. 5.1 Inductance

Circuits RL et RC. Chapitre 5. 5.1 Inductance Chapitre 5 Circuits RL et RC Ce chapitre présente les deux autres éléments linéaires des circuits électriques : l inductance et la capacitance. On verra le comportement de ces deux éléments, et ensuite

Plus en détail

TD 11. Les trois montages fondamentaux E.C, B.C, C.C ; comparaisons et propriétés. Association d étages. *** :exercice traité en classe.

TD 11. Les trois montages fondamentaux E.C, B.C, C.C ; comparaisons et propriétés. Association d étages. *** :exercice traité en classe. TD 11 Les trois montages fondamentaux.,.,. ; comparaisons et propriétés. Association d étages. *** :exercice traité en classe ***exercice 11.1 On considère le montage ci-dessous : V = 10 V R 1 R s v e

Plus en détail

Extrait de cours maths 3e. Multiples et diviseurs

Extrait de cours maths 3e. Multiples et diviseurs Extrait de cours maths 3e I) Multiples et diviseurs Multiples et diviseurs Un multiple d'un nombre est un produit dont un des facteurs est ce nombre. Un diviseur du produit est un facteur de ce produit.

Plus en détail

1 Introduction. CIRCUITS RLC À COURANT ALTERNATIF

1 Introduction. CIRCUITS RLC À COURANT ALTERNATIF PHYSQ 126: Circuits RLC 1 CIRCUITS RLC À COURANT ALTERNATIF 1 Introduction. Le but de cette expérience est d introduire le concept de courant alternatif (en anglais, Alternating Current ou AC) et d étudier

Plus en détail

Démonstrations exigibles au bac

Démonstrations exigibles au bac Démonstrations exigibles au bac On donne ici les 11 démonstrations de cours répertoriées comme exigibles dans le programme officiel. Toutes ces démonstrations peuvent donner lieu à une «restitution organisée

Plus en détail

Equations Différentielles

Equations Différentielles Cours optionnel S4 - Maths Renforcées 1 Equations Différentielles I- Définitions élémentaires. On appelle Equation Différentielle Ordinaire (EDO) toute équation (E) du type (E) : y (n) (t) = F (t; y(t);

Plus en détail

G.P. DNS05 Octobre 2012

G.P. DNS05 Octobre 2012 DNS Sujet Impédance d'une ligne électrique...1 I.Préliminaires...1 II.Champ électromagnétique dans une ligne électrique à rubans...2 III.Modélisation par une ligne à constantes réparties...3 IV.Réalisation

Plus en détail

Statistiques à une variable

Statistiques à une variable Statistiques à une variable Objectif : connaissances des termes et formules statistiques Acquis : Programme de seconde professionnelle. 1/ Généralités : Exploitation d une base de données. Vie économique

Plus en détail

T ES DEVOIR SURVEILLE 2 28 NOVEMBRE 2014

T ES DEVOIR SURVEILLE 2 28 NOVEMBRE 2014 T ES DEVOIR SURVEILLE 2 28 NOVEMBRE 2014 Durée : 3h Calculatrice autorisée NOM : Prénom : Sauf mention du contraire, tous les résultats doivent être soigneusement justifiés. La précision et la clarté de

Plus en détail

Cours de Mathématiques Seconde. Généralités sur les fonctions

Cours de Mathématiques Seconde. Généralités sur les fonctions Cours de Mathématiques Seconde Frédéric Demoulin 1 Dernière révision : 16 avril 007 Document diffusé via le site www.bacamaths.net de Gilles Costantini 1 frederic.demoulin (chez) voila.fr gilles.costantini

Plus en détail

1 ) Métropole STLB 2015

1 ) Métropole STLB 2015 1 ) Métropole STLB 2015 Partie A : détermination de la vitesse du véhicule Procès-verbal des enquêteurs : L accident s est produit sur une portion de route départementale goudronnée dont la vitesse est

Plus en détail

Sujets HEC B/L 2013-36-

Sujets HEC B/L 2013-36- -36- -37- Sujet HEC 2012 B/L Exercice principal B/L1 1. Question de cours : Définition et propriétés de la fonction de répartition d une variable aléatoire à densité. Soit f la fonction définie par : f(x)

Plus en détail