Echantillonnage Non uniforme
|
|
|
- Jean-Louis Delisle
- il y a 10 ans
- Total affichages :
Transcription
1 Echantillonnage Non uniforme Marie CHABERT IRIT/INP-ENSEEIHT/ ENSEEIHT/TéSASA Patrice MICHEL et Bernard LACAZE TéSA 1
2 Plan Introduction Echantillonnage uniforme Echantillonnage irrégulier Comparaison Cas de l él échantillonnage entrelacé Discussion 2
3 Introduction Cadre généralg Conversion Analogique Numérique Algorithmes Entrée Echantillonnage Processus aléatoire stationnaire au sens large de densité spectrale de puissance Z(t Z(t n n )) Quantification Traitement Numérique Sortie ^ Z(t)? 3
4 ECHANTILLONNAGE uniforme Introduction Schémas d éd échantillonnage et type de reconstruction SIGNAL Passe-bas CONDITION Shannon RECONSTRUCTION exacte irrégulier Passe-bas Shannon - instants mesurés en - exacte - modèle probabiliste des instants périodique non uniforme par exemple entrelacé Passe-bande ou multibande moyenne Landau en moyenne - optimale (minimum de l erreur quadratique) exacte 4
5 Reconstruction exacte en théorie orie Et dans la pratique? EN THEORIE : RECONSTRUCTION EXACTE sous forme d une somme infinie. EN PRATIQUE : RECONSTRUCTION APPROCHEE à partir d une fenêtre d observation. CRITERE DE COMPARAISON DES METHODES EN PRATIQUE : rapidité de convergence de la série. 5
6 Plan Introduction Echantillonnage uniforme Echantillonnage irrégulier Comparaison des schémas d éd échantillonnage uniforme et irrégulier Cas de l él échantillonnage entrelacé Discussion 6
7 Echantillonnage uniforme d un d signal passe-bas Reconstruction exacte CONDITION de Shannon 0 7
8 Echantillonnage uniforme d un d signal passe-bas avec repliement «Sous- échantillonnage» Repliement et reconstruction exacte impossible 0 Estimateur linéaire du minimum de l erreur quadratique qui minimise 8
9 Echantillonnage uniforme d un d signal passe-bas Reconstruction exacte «Echantillonnage à Shannon» RECONSTRUCTION exacte par interpolation linéaire EN PRATIQUE par troncature de la série précédente Fonction d interpolation de Shannon Faible taux de convergence après échantillonnage 0 9
10 Echantillonnage uniforme d un d signal passe-bas Formule de Shannon «Sur-échantillonnage» RECONSTRUCTION exacte par interpolation linéaire. RECONSTRUCTION APPROCHEE par troncature de la série. Convergence plus rapide pour transmittance du filtre plus régulière : cosinus surélevé par ex. après échantillonnage 0 10
11 Plan Introduction Echantillonnage uniforme Echantillonnage irrégulier Comparaison des schémas d éd échantillonnage uniforme et irrégulier Cas de l él échantillonnage entrelacé Discussion 11
12 Echantillonnage irrégulier - instants mesurés Schéma d éd échantillonnage Echantillons manquants : séquence incomplète d échantillons relevés à intervalles réguliers Echantillonnage dit «pseudoaléatoire» gigue modèle additif 12
13 Echantillonnage irrégulier - instants mesurés Méthodes de reconstruction 1. Méthode matricielle : résolution d un système d équations. 2. Splines cubiques : interpolation polynomiale de degré Algorithmes itératifs : filtrage successif de l erreur de reconstruction. 4. Formule de Lagrange modifiée. 1. Méthode matricielle 2. Splines cubiques n polynômes de degré 3 observations Calculées par inversion matricielle Réinjectées dans Shannon 13
14 Echantillonnage irrégulier - instants mesurés Méthodes de reconstruction 3. Algorithmes itératifs (Sauer-Allebach, Marvasti, Gershberg, ) Itérations Connaissance de la bande spectrale Erreur de reconstruction calculée aux instants d échantillonnage connus 14
15 Echantillonnage irrégulier - instants mesurés Méthodes de reconstruction 4. Formule de Lagrange modifiée CONDITION Shannon en moyenne CONDITION sur les instants d échantillonnage fréquence moyenne d échantillonnage sur-échantillonnage en moyenne 15
16 Echantillonnage irrégulier - instants mesurés Méthodes de reconstruction Formule de Lagrange modifiée (suite) RECONSTRUCTION EXACTE dépend des instants mesurés M : nombre d échantillons observés Mise en œuvre pratique : approximation du signal par troncature de la série. 16
17 Comparaison échantillonnage régulier r et irrégulier Problème : reconstruction d un processus à spectre borné après un échantillonnage périodique ou irrégulier. Méthodes comparées : Formule de Shannon. Interpolation par splines, Algorithmes itératifs, Méthode matricielle, Formule de Lagrange modifiée. Critères d évaluations : Quantitatif : Performances en reconstruction (EQM) Qualitatif : Nature du repliement spectral hors condition de Shannon 17
18 Paramètres des simulations Signal : Bruit blanc gaussien filtré. Fréquence de Shannon définie pour une atténuation de 25dB ou de 50dB. Gigue : Uniforme sur Fenêtre d observation : N=64 échantillons pris en compte de part et d autre de l origine. Fenêtre de reconstruction : Signal reconstruit sur 0 18
19 Comparaison des performances Respect du Théor orème de Shannon à 25 db Faible écart entre Shannon et Lagrange modifiée Fréquence de Shannon définie à 25 db 19
20 Comparaison des performances Respect du Théor orème de Shannon à 50dB Performances de Lagrange modifiée encore meilleures Fréquence de Shannon définie à 50 db 20
21 Comparaison des performances Non respect du Théor orème de Shannon QUANTITATIVEMENT Baisse de performances pour toutes les méthodes 21
22 Comparaison des performances Non respect du Théor orème de Shannon Echantillonnage régulier r + reconstruction par Shannon QUALITATIVEMENT Raie repliée Raie hors bande sur le signal initial F max F shan = 2F max 22
23 Comparaison des performances Non respect du Théor orème de Shannon Echantillonnage régulier r + reconstruction matricielle QUALITATIVEMENT Repliement étalé F max F shan = 2F max 23
24 Comparaison des performances : Bilan Echantillonnage régulier + Formule de Shannon Critère Quantitatif Critère Qualitatif (repliement) hors condition de Shannon Echantillonnage irrégulier + Formule de Lagrange modifiée 24
25 Application en traitement d images d biomédicales Echantillonnage aléatoire atoire Image Originale 128x128 50% des échantillons prélevés aléatoirement Algorithme de reconstruction itératif 25
26 Application en traitement d images d Echantillonnage aléatoire atoire Formules de reconstruction 1D Image Originale Image ré-échantillonnée aléatoirement puis reconstruite ligne par ligne avec la Formule de Lagrange modifiée 26
27 Application en traitement d images d Echantillonnage aléatoire atoire Reconstruction 1D (ligne par ligne) Cubic Spline 27
28 Echantillonnage non uniforme adapté au contenu Méthode 1 An Adaptive Irregular Sampling Method for Progressive Transmission Ramponi & Carrato 2001 Grille grossière re + échantillons en fonction d estimations d locales du moment centré d ordre 3 - points de contours 28
29 Echantillonnage non uniforme adapté au contenu Méthode 2 «Content Adaptive Mesh Representation of Images Using Binary Space Partitions», Sarkis & Lorscheider & Diepold 29
30 Echantillonnage non uniforme adapté au contenu Performances de la reconstruction A partir de échantillons réguliers 25% A partir de échantillons irréguliers 25% Reconstruction 2D par la méthode m des 4 plus proches voisins 30
31 Echantillonnage non uniforme adapté au contenu Performances de la reconstruction régulier irrégulier A partir de échantillons réguliers A partir de échantillons irréguliers 31
32 Bilan Reconstruction exacte d un signal aléatoire à partir de ses échantillons prélevés à des instants non uniformes ou dans le cas de perte d échantillons. Approximation à très fort taux de convergence dans le cas d une fenêtre d observation limitée Intérêt de l échantillonnage non uniforme en terme d interprétation (anti-repliement) Intérêt potentiel d un échantillonnage non uniforme en terme de compression (adapté au contenu) 32
33 Elèments de bibliographie A.J. Jerri, The Shannon sampling theorem, its various extensions and applications: A tutorial review, Proc IEEE, Bilinskis, I., Mikelsons, A., Application of randomized or irregular sampling as an antialiasing technique, EUSIPCO J.R. Higgins, Sampling theory in Fourier and signal analysis, Oxford Sc Pub., Marvasti and al, Non uniform sampling theory and Practice, Ed B.Lacaze, A theoretical exposition of stationary process sampling, STSIP Journal, B.Lacaze, Reconstruction formula for irregular sampling, STSIP Journal, B. Lacaze, C. Mailhes, Reconstruction of sampled complex processes with timing jitter, STSIP B. Lacaze, C. Mailhes, Can timing jitter improve random process reconstruction in the presence of aliasing? ICASSP04. B. Lacaze, M. Chabert, New reconstruction formulas for oversampled processes and functions, Signal Processing, M. Chabert, B. Lacaze, A New Formula for Lost Sample Restoration, EUSIPCO W. Chauvet, M. Chabert, B. Lacaze, Influence d un échantillonnage irrégulier sur les performances de la reconstruction, GRETSI B. Lacaze, M. Chabert, Une formule de reconstruction exacte pour l'échantillonnage 33 aléatoire, GRETSI 2007.
34 Merci de votre attention! 34
35 Formule de Lagrange modifiée Espace de Hilbert engendré par Isométrie Espace de Hilbert engendré par 35
36 Formule de Lagrange modifiée Intégration de sur un contour fermé. Théorème des résidus 36
Intérêt du découpage en sous-bandes pour l analyse spectrale
Intérêt du découpage en sous-bandes pour l analyse spectrale David BONACCI Institut National Polytechnique de Toulouse (INP) École Nationale Supérieure d Électrotechnique, d Électronique, d Informatique,
INTRODUCTION A L ELECTRONIQUE NUMERIQUE ECHANTILLONNAGE ET QUANTIFICATION I. ARCHITECTURE DE L ELECRONIQUE NUMERIQUE
INTRODUCTION A L ELECTRONIQUE NUMERIQUE ECHANTILLONNAGE ET QUANTIFICATION I. ARCHITECTURE DE L ELECRONIQUE NUMERIQUE Le schéma synoptique ci-dessous décrit les différentes étapes du traitement numérique
Quantification Scalaire et Prédictive
Quantification Scalaire et Prédictive Marco Cagnazzo Département Traitement du Signal et des Images TELECOM ParisTech 7 Décembre 2012 M. Cagnazzo Quantification Scalaire et Prédictive 1/64 Plan Introduction
Numérisation du signal
Chapitre 12 Sciences Physiques - BTS Numérisation du signal 1 Analogique - Numérique. 1.1 Définitions. Signal analogique : un signal analogique s a (t)est un signal continu dont la valeur varie en fonction
Chaine de transmission
Chaine de transmission Chaine de transmission 1. analogiques à l origine 2. convertis en signaux binaires Échantillonnage + quantification + codage 3. brassage des signaux binaires Multiplexage 4. séparation
La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1
La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1 La licence Mathématiques et Economie-MASS de l Université des Sciences Sociales de Toulouse propose sur les trois
TD1 Signaux, énergie et puissance, signaux aléatoires
TD1 Signaux, énergie et puissance, signaux aléatoires I ) Ecrire l'expression analytique des signaux représentés sur les figures suivantes à l'aide de signaux particuliers. Dans le cas du signal y(t) trouver
10ème Congrès Français d'acoustique Lyon, 12-16 Avril 2010
10ème Congrès Français d'acoustique Lyon, 12-16 Avril 2010 Le compressed sensing pour l holographie acoustique de champ proche II: Mise en œuvre expérimentale. Antoine Peillot 1, Gilles Chardon 2, François
Expérience 3 Formats de signalisation binaire
Expérience 3 Formats de signalisation binaire Introduction Procédures Effectuez les commandes suivantes: >> xhost nat >> rlogin nat >> setenv DISPLAY machine:0 >> setenv MATLABPATH /gel/usr/telecom/comm_tbx
LES CARACTERISTIQUES DES SUPPORTS DE TRANSMISSION
LES CARACTERISTIQUES DES SUPPORTS DE TRANSMISSION LES CARACTERISTIQUES DES SUPPORTS DE TRANSMISSION ) Caractéristiques techniques des supports. L infrastructure d un réseau, la qualité de service offerte,
Systèmes de transmission
Systèmes de transmission Conception d une transmission série FABRE Maxime 2012 Introduction La transmission de données désigne le transport de quelque sorte d'information que ce soit, d'un endroit à un
Transmission de données. A) Principaux éléments intervenant dans la transmission
Page 1 / 7 A) Principaux éléments intervenant dans la transmission A.1 Equipement voisins Ordinateur ou terminal Ordinateur ou terminal Canal de transmission ETTD ETTD ETTD : Equipement Terminal de Traitement
LÕenregistrement. 10.1 Enregistrement analogique et enregistrement numžrique
10 LÕenregistrement numžrique 10.1 Enregistrement analogique et enregistrement numžrique Tout processus d enregistrement, comme nous l avons vu dans les chapitres précédents, débute par la conversion des
Compression et Transmission des Signaux. Samson LASAULCE Laboratoire des Signaux et Systèmes, Gif/Yvette
Compression et Transmission des Signaux Samson LASAULCE Laboratoire des Signaux et Systèmes, Gif/Yvette 1 De Shannon à Mac Donalds Mac Donalds 1955 Claude Elwood Shannon 1916 2001 Monsieur X 1951 2 Où
Projet de Traitement du Signal Segmentation d images SAR
Projet de Traitement du Signal Segmentation d images SAR Introduction En analyse d images, la segmentation est une étape essentielle, préliminaire à des traitements de haut niveau tels que la classification,
LES DIFFÉRENTS FORMATS AUDIO NUMÉRIQUES
LES DIFFÉRENTS FORMATS AUDIO NUMÉRIQUES Compétences mises en jeu durant l'activité : Compétences générales : S'impliquer, être autonome. Compétence(s) spécifique(s) : Reconnaître des signaux de nature
Communications numériques
Communications numériques 1. Modulation numérique (a) message numérique/signal numérique (b) transmission binaire/m-aire en bande de base (c) modulation sur fréquence porteuse (d) paramètres, limite fondamentale
Le concept cellulaire
Le concept cellulaire X. Lagrange Télécom Bretagne 21 Mars 2014 X. Lagrange (Télécom Bretagne) Le concept cellulaire 21/03/14 1 / 57 Introduction : Objectif du cours Soit un opérateur qui dispose d une
Transmission des signaux numériques
Transmission des signaux numériques par Hikmet SARI Chef de Département d Études à la Société Anonyme de Télécommunications (SAT) Professeur Associé à Télécom Paris. Transmission en bande de base... E
Soutenance de stage Laboratoire des Signaux et Systèmes
Soutenance de stage Laboratoire des Signaux et Systèmes Bornes inférieures bayésiennes de l'erreur quadratique moyenne. Application à la localisation de points de rupture. M2R ATSI Université Paris-Sud
Technique de codage des formes d'ondes
Technique de codage des formes d'ondes Contenu Introduction Conditions préalables Conditions requises Composants utilisés Conventions Modulation par impulsions et codage Filtrage Échantillon Numérisez
Chapitre 2 : communications numériques.
Chapitre 2 : communications numériques. 1) généralités sur les communications numériques. A) production d'un signal numérique : transformation d'un signal analogique en une suite d'éléments binaires notés
Exercices Alternatifs. Quelqu un aurait-il vu passer un polynôme?
Exercices Alternatifs Quelqu un aurait-il vu passer un polynôme? c 2004 Frédéric Le Roux, François Béguin (copyleft LDL : Licence pour Documents Libres). Sources et figures: polynome-lagrange/. Version
Exercices Alternatifs. Quelqu un aurait-il vu passer un polynôme?
Exercices Alternatifs Quelqu un aurait-il vu passer un polynôme? c 2004 Frédéric Le Roux, François Béguin (copyleft LDL : Licence pour Documents Libres). Sources et figures: polynome-lagrange/. Version
J AUVRAY Systèmes Electroniques TRANSMISSION DES SIGNAUX NUMERIQUES : SIGNAUX EN BANDE DE BASE
RANSMISSION DES SIGNAUX NUMERIQUES : SIGNAUX EN BANDE DE BASE Un message numérique est une suite de nombres que l on considérera dans un premier temps comme indépendants.ils sont codés le plus souvent
8563A. SPECTRUM ANALYZER 9 khz - 26.5 GHz ANALYSEUR DE SPECTRE
8563A SPECTRUM ANALYZER 9 khz - 26.5 GHz ANALYSEUR DE SPECTRE Agenda Vue d ensemble: Qu est ce que l analyse spectrale? Que fait-on comme mesures? Theorie de l Operation: Le hardware de l analyseur de
Filtrage stochastique non linéaire par la théorie de représentation des martingales
Filtrage stochastique non linéaire par la théorie de représentation des martingales Adriana Climescu-Haulica Laboratoire de Modélisation et Calcul Institut d Informatique et Mathématiques Appliquées de
Systèmes de communications numériques 2
Systèmes de Communications Numériques Philippe Ciuciu, Christophe Vignat Laboratoire des Signaux et Systèmes CNRS SUPÉLEC UPS SUPÉLEC, Plateau de Moulon, 91192 Gif-sur-Yvette [email protected] Université
CHAPITRE V. Théorie de l échantillonnage et de la quantification
CHAPITRE V Théorie de l échantillonnage et de la quantification Olivier FRANÇAIS, SOMMAIRE I INTRODUCTION... 3 II THÉORIE DE L ÉCHANTILLONNAGE... 3 II. ACQUISITION DES SIGNAUX... 3 II. MODÉLISATION DE
Table des matières. I Mise à niveau 11. Préface
Table des matières Préface v I Mise à niveau 11 1 Bases du calcul commercial 13 1.1 Alphabet grec...................................... 13 1.2 Symboles mathématiques............................... 14 1.3
Les simulations dans l enseignement des sondages Avec le logiciel GENESIS sous SAS et la bibliothèque Sondages sous R
Les simulations dans l enseignement des sondages Avec le logiciel GENESIS sous SAS et la bibliothèque Sondages sous R Yves Aragon, David Haziza & Anne Ruiz-Gazen GREMAQ, UMR CNRS 5604, Université des Sciences
L analyse d images regroupe plusieurs disciplines que l on classe en deux catégories :
La vision nous permet de percevoir et d interpreter le monde qui nous entoure. La vision artificielle a pour but de reproduire certaines fonctionnalités de la vision humaine au travers de l analyse d images.
UE 503 L3 MIAGE. Initiation Réseau et Programmation Web La couche physique. A. Belaïd
UE 503 L3 MIAGE Initiation Réseau et Programmation Web La couche physique A. Belaïd [email protected] http://www.loria.fr/~abelaid/ Année Universitaire 2011/2012 2 Le Modèle OSI La couche physique ou le
Modèle de troncature gauche : Comparaison par simulation sur données indépendantes et dépendantes
de troncature gauche : Comparaison par simulation sur données indépendantes et dépendantes Zohra Guessoum 1 & Farida Hamrani 2 1 Lab. MSTD, Faculté de mathématique, USTHB, BP n 32, El Alia, Alger, Algérie,[email protected]
Chapitre I La fonction transmission
Chapitre I La fonction transmission 1. Terminologies 1.1 Mode guidé / non guidé Le signal est le vecteur de l information à transmettre. La transmission s effectue entre un émetteur et un récepteur reliés
- Instrumentation numérique -
- Instrumentation numérique - I.Présentation du signal numérique. I.1. Définition des différents types de signaux. Signal analogique: Un signal analogique a son amplitude qui varie de façon continue au
Chapitre 2 : Systèmes radio mobiles et concepts cellulaires
Chapitre 2 : Systèmes radio mobiles et concepts cellulaires Systèmes cellulaires Réseaux cellulaires analogiques de 1ère génération : AMPS (USA), NMT(Scandinavie), TACS (RU)... Réseaux numériques de 2ème
Traitement numérique du signal. Première partie : Bases mathématiques
1 Traitement numérique du signal. Première partie : Bases mathématiques J.Idier H. Piet-Lahanier G. Le Besnerais F. Champagnat Première version du document : 1993 Date de la dernière remise à jour : mars
Dan Istrate. Directeur de thèse : Eric Castelli Co-Directeur : Laurent Besacier
Détection et reconnaissance des sons pour la surveillance médicale Dan Istrate le 16 décembre 2003 Directeur de thèse : Eric Castelli Co-Directeur : Laurent Besacier Thèse mené dans le cadre d une collaboration
Méthodes de quadrature. Polytech Paris-UPMC. - p. 1/48
Méthodes de Polytech Paris-UPMC - p. 1/48 Polynôme d interpolation de Preuve et polynôme de Calcul de l erreur d interpolation Étude de la formule d erreur Autres méthodes - p. 2/48 Polynôme d interpolation
TABLE DES MATIÈRES. PRINCIPES D EXPÉRIMENTATION Planification des expériences et analyse de leurs résultats. Pierre Dagnelie
PRINCIPES D EXPÉRIMENTATION Planification des expériences et analyse de leurs résultats Pierre Dagnelie TABLE DES MATIÈRES 2012 Presses agronomiques de Gembloux [email protected] www.pressesagro.be
Les algorithmes de base du graphisme
Les algorithmes de base du graphisme Table des matières 1 Traçage 2 1.1 Segments de droites......................... 2 1.1.1 Algorithmes simples.................... 3 1.1.2 Algorithmes de Bresenham (1965).............
http://www.u-bourgogne.fr/monge/e.busvelle/teaching.php
TP1 Traitement numérique du son 1 Introduction Le but de ce TP est de mettre en pratique les notions de traitement numérique vues en cours, TDs et dans le précédent TP. On se focalisera sur le traitement
Chp. 4. Minimisation d une fonction d une variable
Chp. 4. Minimisation d une fonction d une variable Avertissement! Dans tout ce chapître, I désigne un intervalle de IR. 4.1 Fonctions convexes d une variable Définition 9 Une fonction ϕ, partout définie
Projet de traitement d'image - SI 381 reconstitution 3D d'intérieur à partir de photographies
Projet de traitement d'image - SI 381 reconstitution 3D d'intérieur à partir de photographies Régis Boulet Charlie Demené Alexis Guyot Balthazar Neveu Guillaume Tartavel Sommaire Sommaire... 1 Structure
Interception des signaux issus de communications MIMO
Interception des signaux issus de communications MIMO par Vincent Choqueuse Laboratoire E 3 I 2, EA 3876, ENSIETA Laboratoire LabSTICC, UMR CNRS 3192, UBO 26 novembre 2008 Interception des signaux issus
La nouvelle planification de l échantillonnage
La nouvelle planification de l échantillonnage Pierre-Arnaud Pendoli Division Sondages Plan de la présentation Rappel sur le Recensement de la population (RP) en continu Description de la base de sondage
Mesure agnostique de la qualité des images.
Mesure agnostique de la qualité des images. Application en biométrie Christophe Charrier Université de Caen Basse-Normandie GREYC, UMR CNRS 6072 Caen, France 8 avril, 2013 C. Charrier NR-IQA 1 / 34 Sommaire
Tests d indépendance en analyse multivariée et tests de normalité dans les modèles ARMA
Tests d indépendance en analyse multivariée et tests de normalité dans les modèles ARMA Soutenance de doctorat, sous la direction de Pr. Bilodeau, M. et Pr. Ducharme, G. Université de Montréal et Université
Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications
Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications A. Optimisation sans contrainte.... Généralités.... Condition nécessaire et condition suffisante
TABLE DES MATIÈRES CHAPITRE I. Les quanta s invitent
TABLE DES MATIÈRES AVANT-PROPOS III CHAPITRE I Les quanta s invitent I-1. L Univers est en constante évolution 2 I-2. L âge de l Univers 4 I-2.1. Le rayonnement fossile témoigne 4 I-2.2. Les amas globulaires
Principe de symétrisation pour la construction d un test adaptatif
Principe de symétrisation pour la construction d un test adaptatif Cécile Durot 1 & Yves Rozenholc 2 1 UFR SEGMI, Université Paris Ouest Nanterre La Défense, France, [email protected] 2 Université
ECTS INFORMATIQUE ET RESEAUX POUR L INDUSTRIE ET LES SERVICES TECHNIQUES
ECTS INFORMATIQUE ET RESEAUX POUR L INDUSTRIE ET LES SERVICES TECHNIQUES CHAPITRES PAGES I DEFINITION 3 II CONTEXTE PROFESSIONNEL 3 HORAIRE HEBDOMADAIRE 1 er ET 2 ème ANNEE 4 FRANÇAIS 4 ANGLAIS 5 MATHEMATIQUES
P1PY7204 Acquisition de données Cours
ANNEE 2012-2013 Semestre d Automne 2012 Master de Sciences, Technologies, Santé Mention Physique- Spécialité Instrumentation P1PY7204 Acquisition de données Cours Denis Dumora [email protected]
IV - Programme détaillé par matière (1 fiche détaillée par matière)
IV - Programme détaillé par matière (1 fiche détaillée par matière) Matière : Asservissement numérique Introduction aux systèmes échantillonnés (signal échantillonné, échantillonnage idéal, transformation
Recherche De Coalescences Binaires Étalonnage Du Détecteur
Recherche De Coalescences Binaires Étalonnage Du Détecteur Fabrice Beauville Journées Jeunes Chercheurs 18/12/2003 Les Coalescences Binaires & VIRGO Système binaire d objets compacts (étoiles à neutrons,
Etude comparative de différents motifs utilisés pour le lancé de rayon
Etude comparative de différents motifs utilisés pour le lancé de rayon Alexandre Bonhomme Université de Montréal 1 Introduction Au cours des dernières années les processeurs ont vu leurs capacités de calcul
Une comparaison de méthodes de discrimination des masses de véhicules automobiles
p.1/34 Une comparaison de méthodes de discrimination des masses de véhicules automobiles A. Rakotomamonjy, R. Le Riche et D. Gualandris INSA de Rouen / CNRS 1884 et SMS / PSA Enquêtes en clientèle dans
Optimisation et programmation mathématique. Professeur Michel de Mathelin. Cours intégré : 20 h
Télécom Physique Strasbourg Master IRIV Optimisation et programmation mathématique Professeur Michel de Mathelin Cours intégré : 20 h Programme du cours d optimisation Introduction Chapitre I: Rappels
SIGNAUX NUMERIQUES ET MODULATIONS NUMERIQUES
SIGNAUX NUMERIQUES ET MODULATIONS NUMERIQUES ----------------------------------------------------------------------------------------------------------------- LES SIGNAUX NUMERIQUES Un signal numérique
TP: Représentation des signaux binaires. 1 Simulation d un message binaire - Codage en ligne
Objectifs : Ce TP est relatif aux différentes méthodes de codage d une information binaire, et à la transmission en bande de base de cette information. Les grandes lignes de ce TP sont l étude des méthodes
Telecommunication modulation numérique
Telecommunication modulation numérique Travaux Pratiques (MatLab & Simulink) EOAA Salon de Provence Stéphane BRASSET, Françoise BRIOLLE Édition 2012 Table des matières 1 Modulation/démodulation en bande
Géométrie discrète Chapitre V
Géométrie discrète Chapitre V Introduction au traitement d'images Géométrie euclidienne : espace continu Géométrie discrète (GD) : espace discrétisé notamment en grille de pixels GD définition des objets
NOTE SUR LA MODELISATION DU RISQUE D INFLATION
NOTE SUR LA MODELISATION DU RISQUE D INFLATION 1/ RESUME DE L ANALYSE Cette étude a pour objectif de modéliser l écart entre deux indices d inflation afin d appréhender le risque à très long terme qui
TP Modulation Démodulation BPSK
I- INTRODUCTION : TP Modulation Démodulation BPSK La modulation BPSK est une modulation de phase (Phase Shift Keying = saut discret de phase) par signal numérique binaire (Binary). La phase d une porteuse
CAPTEURS - CHAINES DE MESURES
CAPTEURS - CHAINES DE MESURES Pierre BONNET Pierre Bonnet Master GSI - Capteurs Chaînes de Mesures 1 Plan du Cours Propriétés générales des capteurs Notion de mesure Notion de capteur: principes, classes,
Etudier l influence de différents paramètres sur un phénomène physique Communiquer et argumenter en utilisant un vocabulaire scientifique adapté
Compétences travaillées : Mettre en œuvre un protocole expérimental Etudier l influence de différents paramètres sur un phénomène physique Communiquer et argumenter en utilisant un vocabulaire scientifique
Cours d Électronique du Tronc Commun S3. Le filtrage optimisé du signal numérique en bande de base. Notion de BRUIT en télécommunication.
IUT MARSEILLE DEPARTEMENT DE GENIE ELECTRIQUE ET INFORMATIQUE INDUSTRIELLE Diplôme Universitaire de Technologie. Cours d Électronique du Tronc Commun S3. Chapitre 8 : Le filtrage optimisé du signal numérique
Modélisation et simulation
Modélisation et simulation p. 1/36 Modélisation et simulation INFO-F-305 Gianluca Bontempi Département d Informatique Boulevard de Triomphe - CP 212 http://www.ulb.ac.be/di Modélisation et simulation p.
Transmission d informations sur le réseau électrique
Transmission d informations sur le réseau électrique Introduction Remarques Toutes les questions en italique devront être préparées par écrit avant la séance du TP. Les préparations seront ramassées en
Élue Correspondant le 25 avril 1994, puis Membre le 30 novembre 2004 dans la section Sciences mécaniques et informatiques
Odile Macchi Élue Correspondant le 25 avril 1994, puis Membre le 30 novembre 2004 dans la section Sciences mécaniques et informatiques Odile Macchi est directeur de recherche émérite au CNRS. Formation
SUJET ZÉRO Epreuve d'informatique et modélisation de systèmes physiques
SUJET ZÉRO Epreuve d'informatique et modélisation de systèmes physiques Durée 4 h Si, au cours de l épreuve, un candidat repère ce qui lui semble être une erreur d énoncé, d une part il le signale au chef
Théorie des probabilités
Théorie des probabilités LAVOISIER, 2008 LAVOISIER 11, rue Lavoisier 75008 Paris www.hermes-science.com www.lavoisier.fr ISBN 978-2-7462-1720-1 ISSN 1952 2401 Le Code de la propriété intellectuelle n'autorisant,
PROBABILITES ET STATISTIQUE I&II
PROBABILITES ET STATISTIQUE I&II TABLE DES MATIERES CHAPITRE I - COMBINATOIRE ELEMENTAIRE I.1. Rappel des notations de la théorie des ensemble I.1.a. Ensembles et sous-ensembles I.1.b. Diagrammes (dits
Résolution d équations non linéaires
Analyse Numérique Résolution d équations non linéaires Said EL HAJJI et Touria GHEMIRES Université Mohammed V - Agdal. Faculté des Sciences Département de Mathématiques. Laboratoire de Mathématiques, Informatique
Enregistrement et transformation du son. S. Natkin Novembre 2001
Enregistrement et transformation du son S. Natkin Novembre 2001 1 Éléments d acoustique 2 Dynamique de la puissance sonore 3 Acoustique géométrique: effets de diffusion et de diffraction des ondes sonores
NON-LINEARITE ET RESEAUX NEURONAUX
NON-LINEARITE ET RESEAUX NEURONAUX Vêlayoudom MARIMOUTOU Laboratoire d Analyse et de Recherche Economiques Université de Bordeaux IV Avenue. Leon Duguit, 33608 PESSAC, France tel. 05 56 84 85 77 e-mail
LABO 5 ET 6 TRAITEMENT DE SIGNAL SOUS SIMULINK
LABO 5 ET 6 TRAITEMENT DE SIGNAL SOUS SIMULINK 5.1 Introduction Simulink est l'extension graphique de MATLAB permettant, d une part de représenter les fonctions mathématiques et les systèmes sous forme
MCMC et approximations en champ moyen pour les modèles de Markov
MCMC et approximations en champ moyen pour les modèles de Markov Gersende FORT LTCI CNRS - TELECOM ParisTech En collaboration avec Florence FORBES (Projet MISTIS, INRIA Rhône-Alpes). Basé sur l article:
I Stabilité, Commandabilité et Observabilité 11. 1 Introduction 13 1.1 Un exemple emprunté à la robotique... 13 1.2 Le plan... 18 1.3 Problème...
TABLE DES MATIÈRES 5 Table des matières I Stabilité, Commandabilité et Observabilité 11 1 Introduction 13 1.1 Un exemple emprunté à la robotique................... 13 1.2 Le plan...................................
Apprentissage non paramétrique en régression
1 Apprentissage non paramétrique en régression Apprentissage non paramétrique en régression Résumé Différentes méthodes d estimation non paramétriques en régression sont présentées. Tout d abord les plus
TABLE DES MATIERES. C Exercices complémentaires 42
TABLE DES MATIERES Chapitre I : Echantillonnage A - Rappels de cours 1. Lois de probabilités de base rencontrées en statistique 1 1.1 Définitions et caractérisations 1 1.2 Les propriétés de convergence
ISO/CEI 11172-3 NORME INTERNATIONALE
NORME INTERNATIONALE ISO/CEI 11172-3 Première édition 1993-08-01 Technologies de l information - Codage de l image animée et du son associé pour les supports de stockage numérique jusqu à environ Ii5 Mbit/s
Méthodes de Simulation
Méthodes de Simulation JEAN-YVES TOURNERET Institut de recherche en informatique de Toulouse (IRIT) ENSEEIHT, Toulouse, France Peyresq06 p. 1/41 Remerciements Christian Robert : pour ses excellents transparents
K. Ammar, F. Bachoc, JM. Martinez. Séminaire ARISTOTE - 23 octobre 2014 - Palaiseau
Apport des modèles de krigeage à la simulation numérique K Ammar, F Bachoc, JM Martinez CEA-Saclay, DEN, DM2S, F-91191 Gif-sur-Yvette, France Séminaire ARISTOTE - 23 octobre 2014 - Palaiseau Apport des
Programmation linéaire
1 Programmation linéaire 1. Le problème, un exemple. 2. Le cas b = 0 3. Théorème de dualité 4. L algorithme du simplexe 5. Problèmes équivalents 6. Complexité de l Algorithme 2 Position du problème Soit
Baccalauréat ES Pondichéry 7 avril 2014 Corrigé
Baccalauréat ES Pondichéry 7 avril 204 Corrigé EXERCICE 4 points Commun à tous les candidats. Proposition fausse. La tangente T, passant par les points A et B d abscisses distinctes, a pour coefficient
Souad EL Bernoussi. Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/
Recherche opérationnelle Les démonstrations et les exemples seront traités en cours Souad EL Bernoussi Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/ Table des matières 1 Programmation
TELEVISION NUMERIQUE
REPUBLIQUE DU CAMEROUN Paix - Travail Patrie --------------------- UNIVERSITE DE YAOUNDE I ---------------------- ECOLE NATIONALE SUPERIEURE POLYTECHNIQUE ---------------------- REPUBLIC OF CAMEROUN Peace
Introduction à MATLAB R
Introduction à MATLAB R Romain Tavenard 10 septembre 2009 MATLAB R est un environnement de calcul numérique propriétaire orienté vers le calcul matriciel. Il se compose d un langage de programmation, d
I. TRANSMISSION DE DONNEES
TD I. TRANSMISSION DE DONNEES 1. QU'EST-CE QU'UN CANAL DE TRANSMISSION? 1.1 Rappels Une ligne de transmission est une liaison entre les deux machines. On désigne généralement par le terme émetteur la machine
Telecommunication modulation numérique
Telecommunication modulation numérique Travaux Pratiques (MatLab & Simulink) EOAA Salon de Provence Françoise BRIOLLE c Édition 2013 Table des matières 1 Modulation/démodulation en bande de base 6 1.1
Big Data et Graphes : Quelques pistes de recherche
Big Data et Graphes : Quelques pistes de recherche Hamamache Kheddouci http://liris.cnrs.fr/hamamache.kheddouci Laboratoire d'informatique en Image et Systèmes d'information LIRIS UMR 5205 CNRS/INSA de
Approche par marquage pour l évaluation de la qualité d image dans les applications multimédias
UNIVERSITÉ DU QUÉBEC EN OUTAOUAIS Département d informatique et d ingénierie Approche par marquage pour l évaluation de la qualité d image dans les applications multimédias MÉMOIRE (INF6021) pour l obtention
Filtres passe-bas. On utilise les filtres passe-bas pour réduire l amplitude des composantes de fréquences supérieures à la celle de la coupure.
Filtres passe-bas Ce court document expose les principes des filtres passe-bas, leurs caractéristiques en fréquence et leurs principales topologies. Les éléments de contenu sont : Définition du filtre
Traitement du signal avec Scilab : transmission numérique en bande de base
Traitement du signal avec Scilab : transmission numérique en bande de base La transmission d informations numériques en bande de base, même si elle peut paraître simple au premier abord, nécessite un certain
Compatibilité Électromagnétique
Compatibilité Électromagnétique notions générales et applications à l électronique de puissance Ir. Stéphane COETS 18 mai 2005 Journée d étude en Électronique de Puissance 1 Plan de l exposé La Compatibilité
EMETTEUR ULB. Architectures & circuits. Ecole ULB GDRO ESISAR - Valence 23-27/10/2006. David MARCHALAND STMicroelectronics 26/10/2006
EMETTEUR ULB Architectures & circuits David MARCHALAND STMicroelectronics 26/10/2006 Ecole ULB GDRO ESISAR - Valence 23-27/10/2006 Introduction Emergence des applications de type LR-WPAN : Dispositif communicant
