Une comparaison de méthodes de discrimination des masses de véhicules automobiles

Save this PDF as:
Dimension: px
Commencer à balayer dès la page:

Download "Une comparaison de méthodes de discrimination des masses de véhicules automobiles"

Transcription

1 p.1/34 Une comparaison de méthodes de discrimination des masses de véhicules automobiles A. Rakotomamonjy, R. Le Riche et D. Gualandris INSA de Rouen / CNRS 1884 et SMS / PSA

2 Enquêtes en clientèle dans l automobile Dimensionnement fiabiliste des structures automobiles enquêtes en clientèle. Mesures d accélérations et de vitesse. La route est inconnue modélisation dynamique impossible. p.2/34

3 p.3/34 Identification de la classe de masse acceleration (m/s 2 ) m2 5% m2 = 331 kg m2 2% acceleration (m/s 2 ) m2 5% m2 = 331 kg m2 2% time (sec.) expl. de signaux time (sec.) (zoom) Un problème type : identification de la classe de masse d un véhicule à partir des signaux mesurés. Puis, identification des efforts transmis, calcul en fatigue des pièces,....

4 p.4/34 Données expérimentales 4 minutes d enregistrement sur un circuit routier pour trois masses, et. Mesures des accélérations verticales aux 4 pivots de roues accélérations longitudinales, transverses et verticales au centre de gravité mesures de vitesses longitudinales.

5 p.5/34 Identification de systèmes x méthode f(;w) expériences nouveau w f(x;w) optimiseur m distance et connus à travers une base d expériences de taille finie Avantages : Seules les entrées et sorties sont nécessaires (utilisable sans modèle physique). Offre un cadre probabiliste à la modélisation. Une fois identifié, la méthode (classeur ici) est d exécution rapide..

6 p.6/34 Identification de systèmes (2) Mais : Nécessité d une base expérimentale importante. Interprétation physique indirecte : choix des entrées et de la structure du modèle. L. Ljung, System identification: theory for the user, Prentice Hall, G. Saporta, Probabilités, analyse des données et statistique, Technip, 199. R. O. Duda, P. E. Hart et D. G. Stork, Pattern classification, John Wiley and Sons, 2.

7 p.7/34 Principe de la discrimination par masses Plus de 1 points de mesures à traiter pour estimer la masse trop de paramètres pour une identification directe. Les mesures sont traitées par intervalles de durée. signaux masses intervalle i-1 intervalle i intervalle i1 M i-1 choix des variables explicatives discrimination M i M i1 cumul (règle du plus grand nombre de votants) M^

8 p.8/34 Cumul des intervalles La masse finale associée aux mesures est celle la plus représentée dans les intervalles. Si la prob. de succès sur 1 intervalle succès cumulée croît rapidement avec., la prob. de 1 prob. de succès cumulée.8.6 p=.5 p=.6 p=.7 p= nb. d intervalles

9 F ;! 1H G $#" * : # p.9/34 Variables d entrées Les 4 premiers moments statistiques, (vit. uniquement) &(' % &()$ 2 1 / #,.-, La moyenne des minima et maxima des signaux, chaque extremum étant relatif à un horizon de L énergie du signal sur la plage de fréquence <=?> BC Les moments relatifs d ordre 1 à 4 de la DSP,,. BC / <=?> E D / 7 signaux d accélérations et 1 de vitesses, variables d entrées potentielles. 2 1, 81%'9., 763 # 543 et

10 p.1/34 Des optimisations à 4 niveaux On cherche le meilleur jeu [variables d entrées / classeur] pour identifier la masse. Il y a 4 niveaux d optimisation : 1. Choix des variables explicatives (définition de l espace de recherche). 2. Choix d un critère de discrimination (d une méthode ou classeur). 3. Choix d un niveau de complexité du classeur. 4. Choix des paramètres (autres que ceux qui contrôlent la complexité).

11 p.11/34 Complexité et variance d un classeur complexité : taille de l espace des. f* f* f* f* x g faible complexité forte complexité x g régularisation : stabilisation de l espace des solutions par introduction d a priori. variance : mesure quadratique de la dépendance de à la base expérimentale. x o x o fonction génératrice g faible variance forte variance I x o

12 O L M N p.12/34 Contrôle de complexité Contrôle de la structure de polynôme.. Expl. : choix du degré d un Régularisation : ajouter un terme idépendant de l identification du système, dans distance KJ Utilisation d une erreur de validation : les données sont séparées en un ensemble d apprentissage qui sert à règler et un ensemble de validation qui sert à calculer l erreur. But : s affranchir du biais introduit par la taille finie des données, ne pas apprendre le bruit. Validation croisée.,

13 p.13/34 Contrôle de complexité (2) Exemple d utilisation d erreur de validation : arrêt prématuré dans les réseaux de neurones Réseau de Neurones 2 Erreur d Apprentissage Erreur de Validation Erreur Quadratique Moyenne Nb d itérations le réseau de la troisième itération est utilisé.

14 p.14/34 Choix de l espace de recherche 1. Analyse discriminante. 2. Sélection de variables. 3. (Choix de l intervalle de traitement ).

15 G P & W V/ /U Y Y W Z Z # W # # # Y D \ # \ # Analyse discriminante (Choix de l espace de recherche) Recherche de,, nouvelles variables, combinaisons linéaires des, qui séparent en projection les classes observées. Soient, et 4 la mat. de cov. intraclasses, R 7S /U T > la mat. de cov. interclasses, la mat. de cov. totale,. YJ V/ X W V VU V VU 4> Q.- 4 V/ /U V/ /U 4 /- 4 Trouver interclasse, axes WY[# qui maximisent, après projection, l inertie et minimisent l inertie intraclasse,. D# # 6 D# DZ où M est une métrique ( ). Z^] p.15/34

16 # _ p.16/34 Analyse discriminante (2) (Choix de l espace de recherche) Les axes discriminants sont les vecteurs propres associés aux plus grandes valeurs propres de _# # YZ] Représentation des données dans R 3 Classe 1 Classe 2 Classe Représentation des données dans l espaces des axes discriminants Classe 1 Classe 2 Classe z V y x V 1

17 a baaz a ` ` ` ` Sélection de variables (Choix de l espace de recherche) Pour connaître les variables les plus pertinentes et réduire la complexité des classeurs. L évaluation d une sélection par apprentissage est trop coûteuse. On minimise le de Wilks,. 2 méthodes sont comparées. Heuristique d énumération : 1. Sélectionner la variable parmi les dont la suppression induit la plus grande diminution de. 2. La supprimer des, recommencer si seuil. solution peut être sous-optimale, méthode peu coûteuse. Algorithme évolutionnaire : sous-ensembles de7 ` optimisation globale coûteuse. p.17/34

18 c p.18/34 Méthodes de discrimination Elles sont caractérisées par le critère qu elles utilisent pour apprendre à classer les exemples. Maximisation de marges entre classes : machines à supports vectoriels (MSV). Minimisation d erreur de classement : classeurs Bayésiens. Discrimination par fenêtres de Parzen. Discrimination par régression et seuillage : régression par moindres carrés (linéaire ou neuronale) et -SV régression.

19 Classement par Marge maximale : Machines à Supports Vectoriels t z jk k { g g p.19/34 x Learning Data and Margin Les MSV créent une frontière de décision qui maximise les distances entre la frontière et les points les plus proches de chaque classe. Frontière de décision linéaire : f ej d x1 Maximisation de la marge h h Apprentissage : oqpn i l m r rs k uv wyx g i, zcard

20 t } p.2/34 MSV, cas non séparable Lorsque les classes ne sont pas séparables, on introduit des variables d écart et un paramètre de régularisation. Apprentissage : x Learning Data and Margin ξ oqpn i l ~~ ~~ m ˆ k uv wyx r rs ƒ > x card x1 Un problème quadratique, résolu sous sa forme duale (de Wolfe) par un algorithme QP avec stratégie de contraintes actives.

21 Œ d Œ Œ Š U p.21/34 Extensions aux MSV non-linéaires Transformation de l espace des données,, puis on applique l algorithme linéaire aux données transformées. Grace à la forme duale, les données apparaissent que sous la forme de produits scalaires, noyau (condition d existence par Mercer). noyau Gaussien de largeur noyau polynômial de degré Contrôle de complexité : C, noyau (,, Œ \e \ Ž Ž5 ]' \ 1 \ej d \ ou ).

22 Minimisation d erreur de classement : méthodes Bayésiennes C / / p.22/34 si a / C a ce qui est implique, si C a C a La discrimination par fenêtres de Parzen et le seuillage après régression sont des méthodes Bayésiennes.

23 Q w uš Q Q p.23/34 Discrimination par fenêtres de Parzen Une méthode d histogrammes 2 x 1 3 Densité de Probabilité a posteriori des classes Classe 1 Classe 2 Classe 3 lissés dont les barres sont centrées sur les données V V = la fréquence d apparition de la classe dans. U 1 ŸT?ž 1 Q a fenêtre Gaussienne, paramètre d étalement.

24 Discrimination par régression et seuillage ] N c ] p.24/34 La masse du véhicule est une variable fonction de continue, et physiquement pertinente!, scalaire, régression 6 classe de masse. Les seuils sont ajustés par minimisation du taux d erreur sur la base d apprentissage (énumération de seuils sur une grille). Différentes méthodes en fonction de la construction de : moindres carrés régularisés ou -SV régression.

25 Régressions par moindres carrés régularisés L ²Q I p.25/34 est un réseau de neurones ou une fonction linéaire. L estimation de la masse est où est solution de 5± ± ª ««card I J ± ³ U ²Q ³ Puisque peut être non linéaire (réseau de neurones), on effectue la minimisation avec l algorithme de Levenberg-Marquardt. Contrôle de complexité :, contrôle de la structure de (linéaire ou neuronale, combien de neurones dans la couche cachée), arrêt prématuré.

26 Régressions par Machines à Supports Vectoriels Ð c ÑÌ c ã Ë p.26/34 Les données doivent au plus être à de la fonction, qui doit être la plus plate possible. f ej d y Support Vector Machine Regression Espace des caractéristiques Æ Ê ÌÎÍ É ÈÇ h h Æ Å Â ÂÄÃÀ à À Á ¼¾½ KÀ» ÑÌ Ò ] ÑÌ ÒÚÖÇ Ó Ô Õ µ µ µ µ µ µ µ µ µ µ ¹ µ µ µ µ µ µ µ µ µ µ º sous les contraintes, Ó Ô Õ ÛÜ ƒ ƒì Ï Ì card ÇÙ Ø ÒyÖ ] ÇÙ ÑÌ ÒØ Ð ] àâá ß Ý.Þ card ƒ Ì ƒï Ì ³ ƒï Ì ²ƒ ÇÌ x Le problème est équivalent aux MSV en classement (même techniques pour le passage au non-linéaire, mêmes algorithmes). Contrôle de complexité : C, noyau ( ou ),.

27 ø î Ý æ é ä p.27/34 Expériences numériques : contrôle de complexité et calcul des erreurs - Les signaux temporels possèdent une certaine corrélation mesure réaliste de l erreur par validation croisée : plusieurs bases et, qui respectent la chronologie. - La plupart des paramètres exerçant un contrôle sur la complexité des méthodes sont ajustés par minimisation de l erreur de validation croisée. Expl. du des fenêtres de Parzen : åçæ è æ Pour tous les, choisir. 1.1 Pour tous les, apprentissage sur, calcul de l erreur sur. 1.2 Erreur est la moyenne des Apprentissage sur. 4. Calcul de l erreur sur,. ïì îì ñ ðêì ôõ òó êþ î ¼¾½Ì êì ñ ðêì ï ëö û úïþ ùëö ëíì îì Nb d erreur en validation σ

28 ü ü Ð æ æ ü ü î î î î î ü æ ü ü æ ü î ü Ì Variables explicatives pertinentes Unité Dizaine CdgV Vitesse Vitesse Vitesse CdgV Vitesse PivArg PivArg CdgV üþ æ Ô ü ÿ ü ÿ üý ü þ ü ý Ì 1 PivAvg Vitesse CdgV CdgV PivAvd PivAvd PivArd PivArd CdgL CdgL ü ý üþ üþ ü ý üþ ü ý üÿ æ Ô 2 CdgL PivAvg PivArg CdgT CdgT Vitesse PivAvd PivArd PivArd PivArg üþ ü ÿ æ Ô æ Ô 3 PivAvd Vitesse CdgT CdgT CdgT PivArd Vitesse PivAvg PivAvg CdgV ü ý Ì Ì 4 Vitesse CdgV PivArg PivAvd PivArd PivAvg PivAvg PivAvg PivArg PivArg üþ üý æ Ô æ Ô Ì 5 PivAvd CdgL CdgL CdgT CdgT CdgV CdgT CdgL Vitesse... ü ÿ ü þ ü ÿ Ì Sélection par heuristique énumérative, 55 variables pour le seuil de [CdgV et Vitesse] / sont les variables prépondérantes. L algorithme évolutionnaire trouve une solution avec 49 variables. choisit, p.28/34

29 p.29/34 Comparaisons de méthodes 5 méthodes sont comparées : Analyse discriminante fenêtres de Parzen. Analyse discriminante MSV classement (noyau Gaussien). MSV en classement (noyau Gaussien). Régression neuronale seuillage. S1 = 1 neurone linéaire, S2 = 7 neurones sigmoïdaux 1 neurone linéaire, S3 = 8 neurones sigmoïdaux. MSV en régression (noyau polynomial) seuillage.

30 p.3/34 Exemples de frontières de décisions Régression neuronale (S2) seuillage. 81 variables d entrées. Taux de classification correcte 51.3% 2 Réseau de Neurones 2 : Apprentissage Masse réelle Masse estimée 2 Réseau de Neurones 2 : Test Masse réelle Masse estimée Masse Normalisée 1.5 Masse Normalisée Données apprentissage Données test

31 p.31/34 Exemples de frontières de décisions (2) 2 Régression MSV (noyau polynomial) seuillage. 81 variables d entrées. Taux de classification correcte 68.6%. Regression MSV : Apprentissage Masse réelle Masse Estimée 2 Regression MSV : Test Masse réelle Masse Estimée Masse Normalisée 1.5 Masse Normalisée Données apprentissage Données test

32 p.32/34 Exemples de frontières de décisions (3) 4 3 Classification par Analyse Discriminante Noyau de Parzen: Test Classe 1 Classe 2 Classe 3 Frontières de décision 4 3 Classification par Analyse Discriminante et MSV: Test Classe 1 Classe 2 Classe 3 Frontières de décision 2 2 Axe de Projection Axe de Projection Axe de Projection 1 Analyse discriminante fenêtres de Parzen, 81 variables d entrées, taux de classification correcte 74.7% Axe de Projection 1 Analyse discriminante SVM Gaussien, 81 variables d entrées, taux de classification correcte 74.6%.

33 p.33/34 Comparaison de méthodes (2) Méthodes B. inf. moy. B. sup. Analyse Discriminante et Parzen Analyse Discriminante et MSV MSV à noyau gaussien Réseaux de neurones Réseaux de neurones Réseaux de neurones MSV à noyau polynomial Pourcentage de succès de classement pour différentes stratégies en utilisant les 49 variables selectionnées par l algorithme évolutionnaire. Les bornes sont l intervalle de confiance à 8%.

34 p.34/34 Conclusions La meilleure méthode : analyse discriminante MSV à noyau Gaussien en classement, avec plus de 8% de succès en classement. Importance du pré-traitement des variables par analyse discriminante. Cet effet ne s explique pas seulement par la réduction de dimension des variables d entrées (car AD fait mieux que la sélection de variables), mais par la prise en compte conjointe des dispersions des données. Parmi la régression seuillage, la régression par MSV donne de bons résultats (71.8% de succès), meilleurs que la régression linéaire ou neuronale. Les signaux les plus importants sont l accélération verticale au cdg et la vitesse. Les traitements les plus importants sont les moments spectraux relatifs.

Séance 12: Algorithmes de Support Vector Machines

Séance 12: Algorithmes de Support Vector Machines Séance 12: Algorithmes de Support Vector Machines Laboratoire de Statistique et Probabilités UMR 5583 CNRS-UPS www.lsp.ups-tlse.fr/gadat Douzième partie XII Algorithmes de Support Vector Machines Principe

Plus en détail

DATA MINING 2 Réseaux de Neurones, Mélanges de classifieurs, SVM avancé

DATA MINING 2 Réseaux de Neurones, Mélanges de classifieurs, SVM avancé I. Réseau Artificiel de Neurones 1. Neurone 2. Type de réseaux Feedforward Couches successives Récurrents Boucles de rétroaction Exemples de choix pour la fonction : suivant une loi de probabilité Carte

Plus en détail

SPLEX Statistiques pour la classification et fouille de données en

SPLEX Statistiques pour la classification et fouille de données en SPLEX Statistiques pour la classification et fouille de données en génomique Classification Linéaire Binaire CLB Pierre-Henri WUILLEMIN DEcision, Système Intelligent et Recherche opérationnelle LIP6 pierre-henri.wuillemin@lip6.fr

Plus en détail

Analyse d un système de freinage récupératif d un véhicule électrique

Analyse d un système de freinage récupératif d un véhicule électrique Analyse d un système de freinage récupératif d un véhicule électrique Par Mohamed Amine Bey, Gabriel Georges, Pascal Jacq, Doha Hadouni, Roxane Duroux, Erwan Scornet, Encadré par Alexis Simonnet 1 Compréhension

Plus en détail

Apprentissage statistique Stratégie du Data-Mining

Apprentissage statistique Stratégie du Data-Mining Apprentissage statistique Stratégie du Data-Mining Hélène Milhem Institut de Mathématiques de Toulouse, INSA Toulouse, France IUP SID, 2011-2012 H. Milhem (IMT, INSA Toulouse) Apprentissage statistique

Plus en détail

Analyse discriminante

Analyse discriminante Analyse discriminante Christine Decaestecker & Marco Saerens ULB & UCL LINF2275 1 Analyse Discriminante Particularités: 2 formes/utilisations complémentaires: méthode factorielle: description "géométrique"

Plus en détail

Coup de Projecteur sur les Réseaux de Neurones

Coup de Projecteur sur les Réseaux de Neurones Coup de Projecteur sur les Réseaux de Neurones Les réseaux de neurones peuvent être utilisés pour des problèmes de prévision ou de classification. La représentation la plus populaire est le réseau multicouche

Plus en détail

L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ

L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ INTRODUCTION Données : n individus observés sur p variables quantitatives. L A.C.P. permet d eplorer les liaisons entre variables et

Plus en détail

Méthodes avancées en décision

Méthodes avancées en décision Méthodes avancées en décision Support vector machines - Chapitre 2 - Principes MRE et MRS Principe MRE. Il s agit de minimiser la fonctionnelle de risque 1 P e (d) = y d(x;w, b) p(x, y) dxdy. 2 La densité

Plus en détail

Classification par des méthodes de data mining. Yawo Eli Amesefe Guillaume Cernier Christophe Labrousse

Classification par des méthodes de data mining. Yawo Eli Amesefe Guillaume Cernier Christophe Labrousse Classification par des méthodes de data mining Yawo Eli Amesefe Guillaume Cernier Christophe Labrousse Plan: Le processus métier Présentation des 3 méthodes étudiées: Arbres de décision Machines à vecteurs

Plus en détail

Outils Statistiques du Data Mining

Outils Statistiques du Data Mining Outils Statistiques du Data Mining Pr Roch Giorgi roch.giorgi@univ-amu.fr SESSTIM, Faculté de Médecine, Aix-Marseille Université, Marseille, France http://sesstim-orspaca.org http://optim-sesstim.univ-amu.fr

Plus en détail

1.1 Définitions... 2 1.2 Opérations élémentaires... 2 1.3 Systèmes échelonnés et triangulaires... 3

1.1 Définitions... 2 1.2 Opérations élémentaires... 2 1.3 Systèmes échelonnés et triangulaires... 3 Chapitre 5 Systèmes linéaires 1 Généralités sur les systèmes linéaires 2 11 Définitions 2 12 Opérations élémentaires 2 13 Systèmes échelonnés et triangulaires 3 2 Résolution des systèmes linéaires 3 21

Plus en détail

11. Tests d hypothèses (partie 1/2)

11. Tests d hypothèses (partie 1/2) 11. Tests d hypothèses (partie 1/2) MTH2302D S. Le Digabel, École Polytechnique de Montréal H2015 (v1) MTH2302D: tests d hypothèses 1/30 Plan 1. Introduction 2. Hypothèses et erreurs 3. Tests d hypothèses

Plus en détail

La notion de dualité

La notion de dualité La notion de dualité Dual d un PL sous forme standard Un programme linéaire est caractérisé par le tableau simplexe [ ] A b. c Par définition, le problème dual est obtenu en transposant ce tableau. [ A

Plus en détail

Analyse en composantes principales

Analyse en composantes principales Analyse en composantes principales Alain Rakotomamonjy - Gilles Gasso. INSA Rouen -Département ASI Laboratoire LITIS Analyse en composantes principales p. 1/18 Introduction Objectifs Soit {x i } i=1,,l

Plus en détail

WEKA : c est quoi? Brigitte Bigi. 15 février 2011. LPL - Équipe C3I. Brigitte Bigi (LPL - Équipe C3I) WEKA : c est quoi? 15 février 2011 1 / 32

WEKA : c est quoi? Brigitte Bigi. 15 février 2011. LPL - Équipe C3I. Brigitte Bigi (LPL - Équipe C3I) WEKA : c est quoi? 15 février 2011 1 / 32 WEKA : c est quoi? Brigitte Bigi LPL - Équipe C3I 15 février 2011 Brigitte Bigi (LPL - Équipe C3I) WEKA : c est quoi? 15 février 2011 1 / 32 Introduction 1 Introduction 2 Classification supervisée 3 WEKA

Plus en détail

Introduction à l analyse des données. Olivier Godechot

Introduction à l analyse des données. Olivier Godechot Introduction à l analyse des données Olivier Godechot Introduction. Les données statistiques : de très nombreuses variables. Aucune n est parfaite La perception d un phénomène appréhendée comme la combinaison

Plus en détail

Fouille de Données et Media Sociaux Cours 2 Master DAC Data Science UPMC - LIP6

Fouille de Données et Media Sociaux Cours 2 Master DAC Data Science UPMC - LIP6 Fouille de Données et Media Sociaux Cours 2 Master DAC Data Science UPMC - LIP6 Ludovic Denoyer 21 septembre 2015 Ludovic Denoyer () FDMS 21 septembre 2015 1 / 1 Contexte Observation La plupart des bonnes

Plus en détail

Statistique et analyse de données pour l assureur : des outils pour la gestion des risques et le marketing

Statistique et analyse de données pour l assureur : des outils pour la gestion des risques et le marketing Statistique et analyse de données pour l assureur : des outils pour la gestion des risques et le marketing Gilbert Saporta Chaire de Statistique Appliquée, CNAM ActuariaCnam, 31 mai 2012 1 L approche statistique

Plus en détail

Master IAD Module PS. Reconnaissance de la parole (suite) Modèles de Markov et bases de données. Gaël RICHARD Février 2008

Master IAD Module PS. Reconnaissance de la parole (suite) Modèles de Markov et bases de données. Gaël RICHARD Février 2008 Master IAD Module PS Reconnaissance de la parole (suite) Modèles de Markov et bases de données Gaël RICHARD Février 2008 1 Reconnaissance de la parole Introduction Approches pour la reconnaissance vocale

Plus en détail

TABLE DES MATIÈRES. Bruxelles, De Boeck, 2011, 736 p.

TABLE DES MATIÈRES. Bruxelles, De Boeck, 2011, 736 p. STATISTIQUE THÉORIQUE ET APPLIQUÉE Tome 2 Inférence statistique à une et à deux dimensions Pierre Dagnelie TABLE DES MATIÈRES Bruxelles, De Boeck, 2011, 736 p. ISBN 978-2-8041-6336-5 De Boeck Services,

Plus en détail

Reconnaissance des formes : Classement d ensembles d objets

Reconnaissance des formes : Classement d ensembles d objets Reconnaissance des formes : Classement d ensembles d objets Données Méthodes Extraction de connaissances Applications Expertise Apprentissage Bernard FERTIL Directeur de Recherche CNRS Équipe LXAO, UMR

Plus en détail

Hélène Desmier ab, Pascale Kuntz a & Ivan Kojadinovic a. Pauc, 44306 Nantes. {prenom.nom}@polytech.univ-nantes.fr

Hélène Desmier ab, Pascale Kuntz a & Ivan Kojadinovic a. Pauc, 44306 Nantes. {prenom.nom}@polytech.univ-nantes.fr Une classification hiérarchique de variables discrètes basée sur l information mutuelle en pré-traitement d un algorithme de sélection de variables pertinentes. Hélène Desmier ab, Pascale Kuntz a & Ivan

Plus en détail

SY09 Rapport TP4 : Analyse discriminante, régression logistique

SY09 Rapport TP4 : Analyse discriminante, régression logistique UNIVERSITÉ DE TECHNOLOGIE DE COMPIÈGNE SY09 Rapport TP4 : Analyse discriminante, régression logistique CUNI Frédéric 15 juin 2015 Objectifs du TP : Le but de ce TP est l application de l analyse discriminante

Plus en détail

SAS BI DASHBOARD 4.3 : POUR LE MEILLEUR ET POUR LE FILTRE

SAS BI DASHBOARD 4.3 : POUR LE MEILLEUR ET POUR LE FILTRE SAS BI DASHBOARD 4.3 : POUR LE MEILLEUR ET POUR LE FILTRE En tant qu outils d aide à la décision, les tableaux de bord doivent répondre rapidement. Pour participer à cet effort de réactivité en termes

Plus en détail

Introduction aux Support Vector Machines (SVM)

Introduction aux Support Vector Machines (SVM) Introduction aux Support Vector Machines (SVM) Olivier Bousquet Centre de Mathématiques Appliquées Ecole Polytechnique, Palaiseau Orsay, 15 Novembre 2001 But de l exposé 2 Présenter les SVM Encourager

Plus en détail

Validation probabiliste d un Système de Prévision d Ensemble

Validation probabiliste d un Système de Prévision d Ensemble Validation probabiliste d un Système de Prévision d Ensemble Guillem Candille, janvier 2006 Système de Prévision d Ensemble (EPS) (ECMWF Newsletter 90, 2001) Plan 1 Critères de validation probabiliste

Plus en détail

Support Vector Machines

Support Vector Machines Support Vector Machines Séparateurs à vaste marge Arnaud Revel revel.arnaud@gmail.com Plan 1 Introduction 2 Formalisation 3 Utilisation des noyaux 4 Cas multi-classes 5 Applications des SVM 6 Bibliographie

Plus en détail

PRIMAVERA RISK ANALYSIS

PRIMAVERA RISK ANALYSIS PRIMAVERA RISK ANALYSIS PRINCIPALES FONCTIONNALITÉS Guide d analyse des risques Vérification de planning Modélisation rapide des risques Assistant de registres de risques Registre de risques Analyse de

Plus en détail

Statistique : Résumé de cours et méthodes

Statistique : Résumé de cours et méthodes Statistique : Résumé de cours et méthodes 1 Vocabulaire : Population : c est l ensemble étudié. Individu : c est un élément de la population. Effectif total : c est le nombre total d individus. Caractère

Plus en détail

RAPPORT SUR L ETUDE DES DONNEES FINANCIERES ET STATISTIQUES A L AIDE DU LOGICIEL SCILAB

RAPPORT SUR L ETUDE DES DONNEES FINANCIERES ET STATISTIQUES A L AIDE DU LOGICIEL SCILAB RAPPORT SUR L ETUDE DES DONNEES FINANCIERES ET STATISTIQUES A L AIDE DU LOGICIEL SCILAB PAR : MAROOF ASIM DAN BENTOLILA WISSAM ESSID GROUPE 1 LM206 Lundi 10H45 INTRODUCTION : ( Ce rapport est un compte

Plus en détail

6.1 Méthode des champs de potentiel

6.1 Méthode des champs de potentiel Chapitre 6 Évitement d obstacles L évitement d obstacles est un comportement de base présent dans quasiment tous les robots mobiles. Il est indispensable pour permettre au robot de fonctionner dans un

Plus en détail

Évaluation de la classification et segmentation d'images en environnement incertain

Évaluation de la classification et segmentation d'images en environnement incertain Évaluation de la classification et segmentation d'images en environnement incertain EXTRACTION ET EXPLOITATION DE L INFORMATION EN ENVIRONNEMENTS INCERTAINS / E3I2 EA3876 2, rue F. Verny 29806 Brest cedex

Plus en détail

CNAM 2002-2003 2léments de cours Bonus-malus et Crédibilité

CNAM 2002-2003 2léments de cours Bonus-malus et Crédibilité 1 CNAM 2002-2003 2léments de cours Bonus-malus et Crédibilité Une situation fréquente en pratique est de disposer non pas d un résultat mais de plusieurs. Le cas se présente en assurance, par exemple :

Plus en détail

Guide technique Vérification périodique des enregistreurs de température conformément aux dispositions du règlement CE 37/2005

Guide technique Vérification périodique des enregistreurs de température conformément aux dispositions du règlement CE 37/2005 Vérification périodique des enregistreurs de température conformément aux dispositions du règlement CE 37/2005 2/11 Contenu 1. CONTEXTE REGLEMENTAIRE ET DEFINITION... 3 1.1 Contexte réglementaire... 3

Plus en détail

INTRODUCTION AU DATA MINING. Cina MOTAMED

INTRODUCTION AU DATA MINING. Cina MOTAMED INTRODUCTION AU DATA MINING Cina MOTAMED 2 Data Mining : contexte Âge numérique : explosion des volumes de données Transactions commerciales Opérations bancaires Navigation Internet Indicateurs démographiques

Plus en détail

Le Data Mining au service du Scoring ou notation statistique des emprunteurs!

Le Data Mining au service du Scoring ou notation statistique des emprunteurs! France Le Data Mining au service du Scoring ou notation statistique des emprunteurs! Comme le rappelle la CNIL dans sa délibération n 88-083 du 5 Juillet 1988 portant adoption d une recommandation relative

Plus en détail

Économétrie. Francesco Quatraro M1 EFM 2010/2011

Économétrie. Francesco Quatraro M1 EFM 2010/2011 Francesco Quatraro M1 EFM 2010/2011 1 La violation des hypothèses Le modèle des MCO considère que les hypothèses suivantes sont toutes respectées: H1: le modèle est linéaire en x i,t H2: les valeurs x

Plus en détail

Les Réseaux de Neurones avec

Les Réseaux de Neurones avec Les Réseaux de Neurones avec Au cours des deux dernières décennies, l intérêt pour les réseaux de neurones s est accentué. Cela a commencé par les succès rencontrés par cette puissante technique dans beaucoup

Plus en détail

Anne-lise HUYET- Jean-Luc PARIS LIMOS équipe Recherche en Systèmes de Production IFMA Mail: huyet@ifma.fr, paris@ifma.fr

Anne-lise HUYET- Jean-Luc PARIS LIMOS équipe Recherche en Systèmes de Production IFMA Mail: huyet@ifma.fr, paris@ifma.fr Extraction de Connaissances pertinentes sur le comportement des systèmes de production: une approche conjointe par Optimisation Évolutionniste via Simulation et Apprentissage Anne-lise HUYET- Jean-Luc

Plus en détail

La gestion des ventes.

La gestion des ventes. I. La prévision des ventes. A. Principe. La gestion des ventes. Elle consiste à déterminer les ventes futures à la fois en quantité et en valeur en tenant compte des tendances et contraintes imposées à

Plus en détail

Discrétisation et génération de hiérarchies de concepts

Discrétisation et génération de hiérarchies de concepts Prétraitement des données 1 Pourquoi prétraiter les données? Nettoyage des données Intégration et transformation Réduction des données Discrétisation et génération de hiérarchies de g concepts Pourquoi

Plus en détail

Master 1 Informatique Éléments de statistique inférentielle

Master 1 Informatique Éléments de statistique inférentielle Master 1 Informatique Éléments de statistique inférentielle Faicel Chamroukhi Maître de Conférences UTLN, LSIS UMR CNRS 7296 email: chamroukhi@univ-tln.fr web: chamroukhi.univ-tln.fr 2014/2015 Faicel Chamroukhi

Plus en détail

9. Distributions d échantillonnage

9. Distributions d échantillonnage 9. Distributions d échantillonnage MTH2302D S. Le Digabel, École Polytechnique de Montréal H2015 (v3) MTH2302D: distributions d échantillonnage 1/46 Plan 1. Échantillons aléatoires 2. Statistiques et distributions

Plus en détail

Les outils de planification d achat. Préparé par : Othman karra

Les outils de planification d achat. Préparé par : Othman karra Les outils de planification d achat Préparé par : Othman karra plan INTRODUCTION I. Rôle des stocks dans la fonction achat 1. définition des stocks 2. avantages et inconvénients des stocks 3. types de

Plus en détail

Évaluation d une approche de classification conceptuelle

Évaluation d une approche de classification conceptuelle Évaluation d une approche de classification conceptuelle Marie Chavent Yves Lechevallier Mathématiques Appliquées de Bordeaux, UMR 5466 CNRS Université Bordeaux 1-351, Cours de la libération 33405 Talence

Plus en détail

Savoir Faire Excel Niveau 2. 5 novembre 2007 Naomi Yamaguchi naomi.yamaguchi@univ-paris3.fr

Savoir Faire Excel Niveau 2. 5 novembre 2007 Naomi Yamaguchi naomi.yamaguchi@univ-paris3.fr Savoir Faire Excel Niveau 2 5 novembre 2007 Naomi Yamaguchi naomi.yamaguchi@univ-paris3.fr Ce qu on sait faire Entrer et recopier des données numériques Les fonctions de base (somme, moyenne, nb, si) Faire

Plus en détail

FICHES D AIDE POUR L UTILISATION DU LOGICIEL

FICHES D AIDE POUR L UTILISATION DU LOGICIEL FICHES D AIDE POUR L UTILISATION DU LOGICIEL MECA 3D Travailler avec Méca 3D Effectuer un calcul mécanique Simuler le mouvement d un mécanisme Afficher une courbe de résultats Ajouter un effort (force

Plus en détail

Une revue des méthodes de discrimination pour la spectrométrie PIR (centrée sur les méthodes linéaires) JM Roger. jean-michel.roger@cemagref.

Une revue des méthodes de discrimination pour la spectrométrie PIR (centrée sur les méthodes linéaires) JM Roger. jean-michel.roger@cemagref. Une revue des méthodes de discrimination pour la spectrométrie PIR (centrée sur les méthodes linéaires) JM Roger jean-michel.roger@cemagref.fr Plan Qu'est ce que la discrimination? Le modèle de l'analyse

Plus en détail

LE CONTROLE D ERREURS LES CODES AUTOVERIFICATEURS OU AUTOCORRECTEURS. Les codes de blocs

LE CONTROLE D ERREURS LES CODES AUTOVERIFICATEURS OU AUTOCORRECTEURS. Les codes de blocs LE CONTROLE D ERREURS LES CODES AUTOVERIFICATEURS OU AUTOCORRECTEURS Les codes de blocs Le principe employé dans les codes de blocs consiste à construire le mot de code en «sectionnant» l information utile

Plus en détail

Observation statistique

Observation statistique 2. APERÇU DES RÉSULTATS DU RENDEMENT Observation statistique s. Les résultats présentés dans ce rapport sont fondés sur des échantillons. Des échantillons distincts ont été sélectionnés pour chaque instance

Plus en détail

Arbres binaires. Hélène Milhem. Institut de Mathématiques de Toulouse, INSA Toulouse, France IUP SID, 2011-2012

Arbres binaires. Hélène Milhem. Institut de Mathématiques de Toulouse, INSA Toulouse, France IUP SID, 2011-2012 Arbres binaires Hélène Milhem Institut de Mathématiques de Toulouse, INSA Toulouse, France IUP SID, 2011-2012 H. Milhem (IMT, INSA Toulouse) Arbres binaires IUP SID 2011-2012 1 / 35 PLAN Introduction Construction

Plus en détail

La classification 2012-2013. Fabien Chevalier Jérôme Le Bellac

La classification 2012-2013. Fabien Chevalier Jérôme Le Bellac La classification 2012-2013 Fabien Chevalier Jérôme Le Bellac Introduction : Classification : méthode d analyse de données Objectif : Obtenir une représentation schématique simple d'un tableau de données

Plus en détail

Estimateur et Estimation Prof Franck Bonnetain Unité de méthodologie & de qualité de vie en cancérologie (EA3181) CHRU Besançon

Estimateur et Estimation Prof Franck Bonnetain Unité de méthodologie & de qualité de vie en cancérologie (EA3181) CHRU Besançon PACES - APEMK UE 4 Evaluation des méthodes d analyses appliquées aux sciences de la vie et de la santé Estimateur et Estimation Prof Franck Bonnetain Unité de méthodologie & de qualité de vie en cancérologie

Plus en détail

Simulation avancée du procédé d injection

Simulation avancée du procédé d injection Simulation avancée du procédé d injection JT «Conception et optimisation numérique en plasturgie» Jeudi 30 juin Ronan Le Goff Sommaire Introduction Modèle numérique Cas d étude Paramètres rhéo Stratégies

Plus en détail

Rapport. TME2 - Problème d affectation multi-agents

Rapport. TME2 - Problème d affectation multi-agents Rapport TME2 - Problème d affectation multi-agents Auteurs : Encadrant : Lan Zhou Safia Kedad-Sidhoum Minh Viet Le Plan I. Problème :... 2 II. Question 1 - Formulation linéaire du problème :... 2 III.

Plus en détail

téléphone sur l'exposition de la tête»

téléphone sur l'exposition de la tête» «Analyse statistique de l'influence de la position du téléphone sur l'exposition de la tête» A.Ghanmi 1,2,3 J.Wiart 1,2, O.Picon 3 1 Orange Labs R&D 2 WHIST LAB (http://whist.institut-telecom.fr), 3 Paris

Plus en détail

Première partie. Préliminaires : noyaux itérés. MPSI B 6 juin 2015

Première partie. Préliminaires : noyaux itérés. MPSI B 6 juin 2015 Énoncé Soit V un espace vectoriel réel. L espace vectoriel des endomorphismes de V est désigné par L(V ). Lorsque f L(V ) et k N, on désigne par f 0 = Id V, f k = f k f la composée de f avec lui même k

Plus en détail

Apprentissage par exploration

Apprentissage par exploration Apprentissage par exploration 1/32 Introduction Méthode particulière d acquisition de connaissance : apprentissage artificiel, à partir d induction. obtention des connaissances à partir d exemples. On

Plus en détail

Fiche pratique de la concurrence et de la consommation. Métrologie à destination des professionnels Exigences à respecter pour les préemballages

Fiche pratique de la concurrence et de la consommation. Métrologie à destination des professionnels Exigences à respecter pour les préemballages Fiche pratique de la concurrence et de la consommation Métrologie à destination des professionnels Exigences à respecter pour les préemballages Il s agit ici de donner les grandes lignes de la réglementation

Plus en détail

Les quatre opérations sur les nombres entiers Statistiques et probabilités I. Code Unités Devoirs Code Unités Devoirs

Les quatre opérations sur les nombres entiers Statistiques et probabilités I. Code Unités Devoirs Code Unités Devoirs 1 re secondaire 2 e secondaire Les quatre opérations sur les nombres entiers Statistiques et probabilités I MAT-1005-2 2 3 MAT-2008-2 2 3 (+, -, x, ) dans l ensemble des entiers Z. Ce premier cours portant

Plus en détail

HUITIEME PARTIE ANALYSE EN COMPSANTES PRINCIPALES

HUITIEME PARTIE ANALYSE EN COMPSANTES PRINCIPALES 105 HUITIEME PARTIE ANALYSE EN COMPSANTES PRINCIPALES 1. Introduction En statistiques il arrive fréquemment que les individus soient décrits par un grand nombre de caractères. : voitures décrites par leur

Plus en détail

AK-MCS : une méthode d apprentissage alliant krigeage et simulation Monte Carlo pour évaluer efficacement P f

AK-MCS : une méthode d apprentissage alliant krigeage et simulation Monte Carlo pour évaluer efficacement P f JFMS Toulouse 24, 25, 26 mars 2010 AK-MCS : une méthode d apprentissage alliant krigeage et simulation Monte Carlo pour évaluer efficacement P f Benjamin Echard Nicolas Gayton Maurice Lemaire LaMI Laboratoire

Plus en détail

Analyse de variance à un facteur Tests d hypothèses Analyse de variance à deux facteurs. Analyse de la variance ANOVA

Analyse de variance à un facteur Tests d hypothèses Analyse de variance à deux facteurs. Analyse de la variance ANOVA Analyse de la variance ANOVA Terminologie Modèles statistiques Estimation des paramètres 1 Analyse de variance à un facteur Terminologie Modèles statistiques Estimation des paramètres 2 3 Exemple. Analyse

Plus en détail

Mathématiques Fonctions réelles et équations

Mathématiques Fonctions réelles et équations Définition du domaine d'examen MAT-5106-1 Mathématiques Fonctions réelles et équations Mise à jour novembre 2004 Définition du domaine d'examen MAT-5106-1 Mathématiques Fonctions réelles et équations Mise

Plus en détail

CORRECTION TP Multimètres - Mesures de résistances - I. Mesure directe de résistors avec ohmmètre - comparaison de deux instruments de mesure

CORRECTION TP Multimètres - Mesures de résistances - I. Mesure directe de résistors avec ohmmètre - comparaison de deux instruments de mesure Introduction CORRECTION TP Multimètres - Mesures de résistances - La mesure d une résistance s effectue à l aide d un multimètre. Utilisé en mode ohmmètre, il permet une mesure directe de résistances hors

Plus en détail

L analyse des correspondances et ses applications en recherche marketing. MONSUG mai 2015

L analyse des correspondances et ses applications en recherche marketing. MONSUG mai 2015 L analyse des correspondances et ses applications en recherche marketing MONSUG mai 2015 Contenu Mise en contexte et exemple d application L analyse des correspondances multiples (ACM) L ACM et la segmentation

Plus en détail

Programmation linéaire

Programmation linéaire 1 Programmation linéaire 1. Le problème, un exemple. 2. Le cas b = 0 3. Théorème de dualité 4. L algorithme du simplexe 5. Problèmes équivalents 6. Complexité de l Algorithme 2 Position du problème Soit

Plus en détail

ESSEC. Cours «Management bancaire» Séance 3 Le risque de crédit Le scoring

ESSEC. Cours «Management bancaire» Séance 3 Le risque de crédit Le scoring ESSEC Cours «Management bancaire» Séance 3 Le risque de crédit Le scoring Les méthodes d évaluation du risque de crédit pour les PME et les ménages Caractéristiques Comme les montants des crédits et des

Plus en détail

CALCUL D UN SCORE ( SCORING) Application de techniques de discrimination LES OBJECTIFS DU SCORING

CALCUL D UN SCORE ( SCORING) Application de techniques de discrimination LES OBJECTIFS DU SCORING CALCUL D UN SCORE ( SCORING) Application de techniques de discrimination LES OBJECTIFS DU SCORING SÉLECTION DES RISQUES PRÉVISION DES DÉFAUTS SUIVI ET CONTRÔLE Pierre-Louis GONZALEZ Différents types de

Plus en détail

16. Comment introduire les valeurs prises par la variable SPORT pour les 30 premiers sujets introduits dans L2?

16. Comment introduire les valeurs prises par la variable SPORT pour les 30 premiers sujets introduits dans L2? T.P. 5 partie 1 Variable ordinale Calcul manuel de quantiles Utilisation des fonctions intégrées de la TI-84 Utilisation du programme D1 (Corrigé pour 30 cas) V. Prise en compte de 30 cas (pour éviter

Plus en détail

Type de ressources : aide à la prise en main de logiciels permettant le traitement numérique des calculs d incertitudes

Type de ressources : aide à la prise en main de logiciels permettant le traitement numérique des calculs d incertitudes Niveau : terminale S. Thème : Calcul d incertitudes à l aide d outils numériques Type de ressources : aide à la prise en main de logiciels permettant le traitement numérique des calculs d incertitudes

Plus en détail

Optimisation en nombres entiers

Optimisation en nombres entiers Optimisation en nombres entiers p. 1/83 Optimisation en nombres entiers Michel Bierlaire michel.bierlaire@epfl.ch EPFL - Laboratoire Transport et Mobilité - ENAC Optimisation en nombres entiers p. 2/83

Plus en détail

Théorie des graphes. Introduction. Programme de Terminale ES Spécialité. Résolution de problèmes à l aide de graphes. Préparation CAPES UCBL

Théorie des graphes. Introduction. Programme de Terminale ES Spécialité. Résolution de problèmes à l aide de graphes. Préparation CAPES UCBL Introduction Ces quelques pages ont pour objectif de vous initier aux notions de théorie des graphes enseignées en Terminale ES. Le programme de Terminale (voir ci-après) est construit sur la résolution

Plus en détail

1 - Procédure pour géoréférencer une image dans un Système de Coordonnées de Référence, mise en projection

1 - Procédure pour géoréférencer une image dans un Système de Coordonnées de Référence, mise en projection 1 - Procédure pour géoréférencer une image dans un Système de Coordonnées de Référence, mise en projection Utilisation du projet Portel georef fotos.rvc Lancement de la procédure d édition d un géoréférencement

Plus en détail

Comparaison de stratégies de discrimination de masses de véhicules automobiles

Comparaison de stratégies de discrimination de masses de véhicules automobiles Comparaison de stratégies de discrimination de masses de véhicules automobiles Alain Rakotomamonjy * Rodolphe Le Riche ** David Gualandris *** Stéphane Canu * * PSI, INSA Rouen, 7681 St. Etienne du R ay

Plus en détail

Laboratoire 2 Extraction des caractéristiques

Laboratoire 2 Extraction des caractéristiques Laboratoire 2 Extraction des caractéristiques L objectif de l extraction et de la sélection de caractéristiques est d identifier les caractéristiques importantes pour la discrimination entre classes. Après

Plus en détail

TROISIÈME LOI DE KÉPLER : VÉRIFICATIONS ET APPLICATIONS DANS LE SYSTÈME SOLAIRE

TROISIÈME LOI DE KÉPLER : VÉRIFICATIONS ET APPLICATIONS DANS LE SYSTÈME SOLAIRE Gabriel Scherer TS3 TROISIÈME LOI DE KÉPLER : VÉRIFICATIONS ET APPLICATIONS DANS LE SYSTÈME SOLAIRE TPP4.odt 1/6 Rappels : 1 U.A. = 1,497.10 11 m Constante de gravitation universelle G = 6,67.10 11 u.s.i.

Plus en détail

Comparaison d approches statistiques pour la classification de textes d opinion. Michel Plantié, Gérard Dray, Mathieu Roche (LGI2P/EMA LIRMM)

Comparaison d approches statistiques pour la classification de textes d opinion. Michel Plantié, Gérard Dray, Mathieu Roche (LGI2P/EMA LIRMM) Comparaison d approches statistiques pour la classification de textes d opinion Michel Plantié, Gérard Dray, Mathieu Roche (LGI2P/EMA LIRMM) Caractéristiques des traitements Approche identique pour les

Plus en détail

Techniques d estimation : Maximum de Vraisemblance et Méthode des Moments Généralisée

Techniques d estimation : Maximum de Vraisemblance et Méthode des Moments Généralisée Techniques d estimation : Maximum de Vraisemblance et Méthode des Moments Généralisée Philippe Gagnepain Université Paris 1 Ecole d Economie de Paris Centre d économie de la Sorbonne-UG 4-Bureau 405 philippe.gagnepain@univ-paris1.fr

Plus en détail

VI. Tests non paramétriques sur un échantillon

VI. Tests non paramétriques sur un échantillon VI. Tests non paramétriques sur un échantillon Le modèle n est pas un modèle paramétrique «TESTS du CHI-DEUX» : VI.1. Test d ajustement à une loi donnée VI.. Test d indépendance de deux facteurs 96 Différentes

Plus en détail

PROGRAMMATION D UN ENREGISTREUR NUMÉRIQUE PERSONNEL (ENP) À PARTIR D ILLICO WEB. Guide d utilisation v 1.0

PROGRAMMATION D UN ENREGISTREUR NUMÉRIQUE PERSONNEL (ENP) À PARTIR D ILLICO WEB. Guide d utilisation v 1.0 PROGRAMMATION D UN ENREGISTREUR NUMÉRIQUE PERSONNEL (ENP) À PARTIR D ILLICO WEB Guide d utilisation v 1.0 1 Table des matières I PRÉSENTATION... 3 II IDENTIFICATION ET OUVERTURE DE SESSION... 4 1) Identification

Plus en détail

Resolution limit in community detection

Resolution limit in community detection Introduction Plan 2006 Introduction Plan Introduction Introduction Plan Introduction Point de départ : un graphe et des sous-graphes. But : quantifier le fait que les sous-graphes choisis sont des modules.

Plus en détail

Heuristique et métaheuristique. 8. Optimisation combinatoire et métaheuristiques. Optimisation combinatoire. Problème du voyageur de commerce

Heuristique et métaheuristique. 8. Optimisation combinatoire et métaheuristiques. Optimisation combinatoire. Problème du voyageur de commerce Heuristique et métaheuristique IFT1575 Modèles de recherche opérationnelle (RO) 8. Optimisation combinatoire et métaheuristiques Un algorithme heuristique permet d identifier au moins une solution réalisable

Plus en détail

Construction à partir d une régression logistique

Construction à partir d une régression logistique Construction à partir d une régression logistique Ricco RAKOTOMALALA Université Lumière Lyon 2 Tutoriels Tanagra - http://tutoriels-data-mining.blogspot.fr/ 1 PLAN 1. Position du problème Grille de score?

Plus en détail

TP force centrifuge. Ce TP est évalué à l'aide d'un questionnaire moodle.

TP force centrifuge. Ce TP est évalué à l'aide d'un questionnaire moodle. TP force centrifuge Ce TP est évalué à l'aide d'un questionnaire moodle. Objectif : Étudier la force centrifuge dans le cas d un objet ponctuel en rotation uniforme autour d un axe fixe. 1 Présentation

Plus en détail

Prototypes et k plus proches voisins (kppv (knn))

Prototypes et k plus proches voisins (kppv (knn)) Prototypes et k plus proches voisins (kppv (knn)) Université Grenoble 1 - Lab. Informatique Grenbole / MRIM Learning Vector Quantization (1) Algorithme en ligne (on-line) dans lequel des prototypes sont

Plus en détail

Analyse de données longitudinales continues avec applications

Analyse de données longitudinales continues avec applications Université de Liège Département de Mathématique 29 Octobre 2002 Analyse de données longitudinales continues avec applications David MAGIS 1 Programme 1. Introduction 2. Exemples 3. Méthodes simples 4.

Plus en détail

LEHALLIER Benoît YGUEL Benjamin. Tutorial : Utilisation de R pour une modélisation optimale de phénomènes expérimentaux.

LEHALLIER Benoît YGUEL Benjamin. Tutorial : Utilisation de R pour une modélisation optimale de phénomènes expérimentaux. LEHALLIER Benoît YGUEL Benjamin Tutorial : Utilisation de R pour une modélisation optimale de phénomènes expérimentaux. ECIM Comportement et socialisation Mars 2006 La modélisation est utilisée pour comprendre

Plus en détail

4. Indices de précipitations

4. Indices de précipitations 4. Indices de précipitations Cette partie présente les évolutions prévues de cinq indices de précipitations. Il s agit de moyennes annuelles (voir annexes 1 à 4 pour les valeurs saisonnières). Il est à

Plus en détail

OPTIMISATION DE LA TARIFICATION DES RÉSEAUX MOBILES

OPTIMISATION DE LA TARIFICATION DES RÉSEAUX MOBILES OPTIMISATION DE LA TARIFICATION DES RÉSEAUX MOBILES ST50 - Projet de fin d études Matthieu Leromain - Génie Informatique Systèmes temps Réel, Embarqués et informatique Mobile - REM 1 Suiveur en entreprise

Plus en détail

LES DIFFERENTS TYPES DE MESURE

LES DIFFERENTS TYPES DE MESURE LES DIFFERENTS TYPES DE MESURE Licence - Statistiques 2004/2005 REALITE ET DONNEES CHIFFREES Recherche = - mesure. - traduction d une réalité en chiffre - abouti à des tableaux, des calculs 1) Qu est-ce

Plus en détail

1. Explorer, organiser et démontrer des propriétés géométriques en termes de longueurs et d angles. Découvrir et étudier des nombres irrationnels.

1. Explorer, organiser et démontrer des propriétés géométriques en termes de longueurs et d angles. Découvrir et étudier des nombres irrationnels. Compétences : math, 2 ème degré (pages 1 à 3) math, 3 ème degré (pages 4 à 8) 3 grands thèmes du cours à 4h sem (pages 9 à 11) 3 grands thèmes du cours à 2h sem (pages 12 à 14) (Seules les définitions

Plus en détail

Primitives Cours maths Terminale S

Primitives Cours maths Terminale S Primitives Cours maths Terminale S Dans ce module est introduite la notion de primitive d une fonction sur un intervalle. On définit cette notion puis on montre qu une fonction admet une infinité de primitives

Plus en détail

STATISTIQUES A UNE VARIABLE EXERCICES CORRIGES

STATISTIQUES A UNE VARIABLE EXERCICES CORRIGES STATISTIQUES A UNE VARIALE EXERCICES CORRIGES Exercice n Les élèves d une classe ont obtenu les notes suivantes lors d un devoir : Note 4 5 8 0 4 5 8 0 Effectif 4 7 6 4 ) Déterminer l étendue et le mode

Plus en détail

Modélisation stochastique et analyse de données

Modélisation stochastique et analyse de données Modélisation stochastique et analyse de données Formation FIL - Année 1 Régression par la méthode des moindres carrés 2011/2012 Tony Bourdier Modélisation stochastique et analyse de données 1 / 25 Plan

Plus en détail

- Mobiliser les résultats sur le second degré dans le cadre de la résolution d un problème.

- Mobiliser les résultats sur le second degré dans le cadre de la résolution d un problème. Mathématiques - classe de 1ère des séries STI2D et STL. 1. Analyse On dote les élèves d outils mathématiques permettant de traiter des problèmes relevant de la modélisation de phénomènes continus ou discrets.

Plus en détail

Exemples de dynamique sur base modale

Exemples de dynamique sur base modale Dynamique sur base modale 1 Exemples de dynamique sur base modale L. CHAMPANEY et Ph. TROMPETTE Objectifs : Dynamique sur base modale réduite, Comparaison avec solution de référence, Influence des modes

Plus en détail

Les méthodes d optimisation appliquées à la conception de convertisseurs électromécaniques. Elec 2311 : S7

Les méthodes d optimisation appliquées à la conception de convertisseurs électromécaniques. Elec 2311 : S7 Les méthodes d optimisation appliquées à la conception de convertisseurs électromécaniques Elec 2311 : S7 1 Plan du cours Qu est-ce l optimisation? Comment l optimisation s intègre dans la conception?

Plus en détail