PROBABILITES ET STATISTIQUE I&II

Dimension: px
Commencer à balayer dès la page:

Download "PROBABILITES ET STATISTIQUE I&II"

Transcription

1 PROBABILITES ET STATISTIQUE I&II TABLE DES MATIERES CHAPITRE I - COMBINATOIRE ELEMENTAIRE I.1. Rappel des notations de la théorie des ensemble I.1.a. Ensembles et sous-ensembles I.1.b. Diagrammes (dits de Venn) I.1.c. Cardinal d un ensemble fini I.1.d. Opérations booléennes I.1.e. Suites de sous-ensembles I.1.f. Ensemble produit cartésien I.1.g. Propriétés élémentaires du complémentaire et des opérations booléennes I.2. Notions de combinatoire I.2.a. La règle de multiplication I.2.b. Permutations et arrangements I.2.c. Combinaisons (sans répétition) I.2.d. Propriétés des coefficients binomiaux I.2.e. Coefficients multinomiaux I.2.f. Combinaisons (avec répétition) I.3. Notions de combinatoire I.3.a. Bridge I.3.b. Poker

2 CHAPITRE II - NOTIONS DE PROBABILITES II.1. Un exemple : le poker II.2. La définition du modèle probabiliste II.2.a. L ensemble fondamental II.2.b. La notion d événement II.2.c. La notion de probabilité II.3. Propriétés d une distribution de probabilité II.3.a. Propriétés élémentaires II.3.b. Probabilités de réunions d ensembles : Règle d inclusion-exclusion II.3.c. * Suites infinies d événements et lemme de Borel-Cantelli II.4. Evénements indépendants II.4.a. Indépendance de deux événements II.4.b. Indépendance de plusieurs événements II.4.c. Probabilité de réunions d événements indépendants II.5. Probabilités conditionnelles II.5.a. Définition II.5.b. Conditionnement multiple II.5.c. Formule des probabilités totales II.5.d. Formule de Bayes II.5.e. Exemples

3 CHAPITRE III - SUITES D EXPERIENCES ALEATOIRES III.1. Le modèle III.1.a. Le modèle abstrait le processus de Bernoulli III.1.b. Exemples III.2. La loi binomiale III.2.a. Le nombre de succès III.2.b. Stabilité III.3. La loi géométrique et loi binomiale négative III.3.a. Loi du temps du 1 er succès III.3.b. Propriété caractéristique de la loi géométrique : perte de mémoire III.3.c. Loi binomiale négative III.3.d. Stabilité III.4. Extensions du modèle III.4.a. Le modèle multinomial III.4.b. Modèle hypergéométrique III.5. Théorèmes limites III.5.a. Convergence du modèle hypergéométrique vers le modèle binomial III.5.b. Convergence du modèle binomial vers la loi de Poisson III.5.c. Convergence de la loi géométrique vers la loi exponentielle III.5.d. Loi des grands nombres III.5.e. Convergence vers la loi gaussienne ou normale III.6. Marche aléatoire et fortune du joueur III.6.a. Définition III.6.b. La loi de Z N III.6.c. Application au problème de la ruine de joueur III.6.d. Marche aléatoire et théorèmes limites

4 CHAPITRE IV - VARIABLES ALEATOIRES IV.1. Définitions et exemples IV.1.a. Variables aléatoires IV.1.b. Distribution de probabilités : densité de probabilités et fonction de répartition IV.2. Couples des variables aléatoires IV.2.a. Fonction de répartition conjointe IV.2.b. Fonction de répartition marginale IV.2.c. Propriétés de la fonction de répartition conjointe IV.2.d. Loi discrète conjointe IV.2.e. Loi continue conjointe IV.3. Espérance IV.3.a. Définition IV.3.b. Exemples IV.3.c. Propriétés élémentaires de l espérance IV.3.d. Espérance d une fonction d une variable aléatoire IV.3.e. Espérance : Inégalités IV.4. Variance et Covariance IV.4.a. Définitions IV.4.b. Exemples (Variance) IV.4.c. Propriétés élémentaires IV.5. Moments et transformée de Laplace IV.5.a. Moments IV.5.b. Définition de la transformée de Laplace IV.5.c. Relation avec les moments IV.5.d. Exemples IV.5.e. Convergence vers la loi gaussienne ou normale IV.6. Loi d une fonction des variables aléatoires IV.6.a. Changement de variables à une dimension IV.6.b. Changement de variables multidimensionnelles

5 CHAPITRE V - VARIABLES INDEPENDANTES ET THEOREMES LIMITES V.1. Définition de l indépendance des variables aléatoires V.1.a. Définition : Indépendance des deux variables aléatoires V.1.b. Indépendance et covariance V.1.c. Indépendance de plusieurs variables aléatoires V.1.d. Distribution conjointe de variables aléatoires indépendantes V.2. Variables aléatoires indépendantes et ordre V.2.a. Maximum ou minimum de variables aléatoires indépendantes V.2.b. Théorème limite pour les valeurs extrêmes de variables iid V.2.c. Statistique d ordre et vecteur des rangs V.3. Sommes des variables indépendantes V.3.a. Somme de deux variables indépendantes discrètes V.3.b. Somme de N variables indépendantes discrètes V.3.c. Somme de deux variables indépendantes continues V.3.d. Somme de N variables indépendantes continues V.3.e. Rôle de la transformation de Laplace V.3.f. Théorèmes de stabilité V.4. Lois des grands nombres V.4.a. Loi faible des grands nombres V.4.b. Loi forte des grands nombres V.4.c. Propriétés élémentaires V.5. Le Théorème central limite V.6. Pratique du Théorème central limite V.6.a. Approcher des variables continues V.6.b. Approcher des variables discrètes : Correction d histogramme

6 CHAPITRE VI - INTRODUCTION AUX STATISTIQUES VI.1. Le problème de l'estimation VI.2. Qualité d'un estimateur VI.2.a. Biais VI.2.b. Risque quadratique VI.2.c. Efficacité et optimalité d'estimateurs VI.2.d. Estimateurs consistants VI.3. Le maximum de vraisemblance VI.3.a. Le maximum de vraisemblance : variables aléatoires discrètes VI.3.b. Le maximum de vraisemblance : variables aléatoires continues VI.4. Estimation de la moyenne et de la variance pour un échantillon quelconque VI.5. Echantillons gaussiens VI.5.a. Loi des estimateurs naturels VI.5.b. Intervalles de confiance VI.5.c. Cas où la variance est inconnue VI.5.d. Comparaison de deux moyennes VI.6. Le problème des tests VI.7. Test sur la moyenne d'un échantillon gaussien VI.8. Le cas binomial VI.9. Test du Chi-deux

Programmes des classes préparatoires aux Grandes Ecoles

Programmes des classes préparatoires aux Grandes Ecoles Programmes des classes préparatoires aux Grandes Ecoles Filière : scientifique Voie : Biologie, chimie, physique et sciences de la Terre (BCPST) Discipline : Mathématiques Seconde année Préambule Programme

Plus en détail

Modélisation aléatoire en fiabilité des logiciels

Modélisation aléatoire en fiabilité des logiciels collection Méthodes stochastiques appliquées dirigée par Nikolaos Limnios et Jacques Janssen La sûreté de fonctionnement des systèmes informatiques est aujourd hui un enjeu économique et sociétal majeur.

Plus en détail

Théorie des probabilités

Théorie des probabilités Théorie des probabilités LAVOISIER, 2008 LAVOISIER 11, rue Lavoisier 75008 Paris www.hermes-science.com www.lavoisier.fr ISBN 978-2-7462-1720-1 ISSN 1952 2401 Le Code de la propriété intellectuelle n'autorisant,

Plus en détail

Simulation de variables aléatoires

Simulation de variables aléatoires Chapter 1 Simulation de variables aléatoires Références: [F] Fishman, A first course in Monte Carlo, chap 3. [B] Bouleau, Probabilités de l ingénieur, chap 4. [R] Rubinstein, Simulation and Monte Carlo

Plus en détail

Transformations nucléaires

Transformations nucléaires I Introduction Activité p286 du livre Transformations nucléaires II Les transformations nucléaires II.a Définition La désintégration radioactive d un noyau est une transformation nucléaire particulière

Plus en détail

TABLE DES MATIERES. C Exercices complémentaires 42

TABLE DES MATIERES. C Exercices complémentaires 42 TABLE DES MATIERES Chapitre I : Echantillonnage A - Rappels de cours 1. Lois de probabilités de base rencontrées en statistique 1 1.1 Définitions et caractérisations 1 1.2 Les propriétés de convergence

Plus en détail

Loi binomiale Lois normales

Loi binomiale Lois normales Loi binomiale Lois normales Christophe ROSSIGNOL Année scolaire 204/205 Table des matières Rappels sur la loi binomiale 2. Loi de Bernoulli............................................ 2.2 Schéma de Bernoulli

Plus en détail

Table des matières. I Mise à niveau 11. Préface

Table des matières. I Mise à niveau 11. Préface Table des matières Préface v I Mise à niveau 11 1 Bases du calcul commercial 13 1.1 Alphabet grec...................................... 13 1.2 Symboles mathématiques............................... 14 1.3

Plus en détail

Cours de Probabilités et de Statistique

Cours de Probabilités et de Statistique Cours de Probabilités et de Statistique Licence 1ère année 2007/2008 Nicolas Prioux Université Paris-Est Cours de Proba-Stat 2 L1.2 Science-Éco Chapitre Notions de théorie des ensembles 1 1.1 Ensembles

Plus en détail

Définition d un Template

Définition d un Template Objectif Ce document a pour objectif de vous accompagner dans l utilisation des templates EuroPerformance. Il définit les différents modèles et exemples proposés. Définition d un Template Un template est

Plus en détail

Catalogue des connaissances de base en mathématiques dispensées dans les gymnases, lycées et collèges romands.

Catalogue des connaissances de base en mathématiques dispensées dans les gymnases, lycées et collèges romands. Catalogue des connaissances de base en mathématiques dispensées dans les gymnases, lycées et collèges romands. Pourquoi un autre catalogue en Suisse romande Historique En 1990, la CRUS (Conférences des

Plus en détail

AGRÉGATION DE SCIENCES DE LA VIE - SCIENCES DE LA TERRE ET DE L UNIVERS

AGRÉGATION DE SCIENCES DE LA VIE - SCIENCES DE LA TERRE ET DE L UNIVERS AGRÉGATION DE SCIENCES DE LA VIE - SCIENCES DE LA TERRE ET DE L UNIVERS CONCOURS EXTERNE ÉPREUVES D ADMISSION session 2010 TRAVAUX PRATIQUES DE CONTRE-OPTION DU SECTEUR A CANDIDATS DES SECTEURS B ET C

Plus en détail

Licence MASS 2000-2001. (Re-)Mise à niveau en Probabilités. Feuilles de 1 à 7

Licence MASS 2000-2001. (Re-)Mise à niveau en Probabilités. Feuilles de 1 à 7 Feuilles de 1 à 7 Ces feuilles avec 25 exercices et quelques rappels historiques furent distribuées à des étudiants de troisième année, dans le cadre d un cours intensif sur deux semaines, en début d année,

Plus en détail

Travaux dirigés d introduction aux Probabilités

Travaux dirigés d introduction aux Probabilités Travaux dirigés d introduction aux Probabilités - Dénombrement - - Probabilités Élémentaires - - Variables Aléatoires Discrètes - - Variables Aléatoires Continues - 1 - Dénombrement - Exercice 1 Combien

Plus en détail

MATIERES PM 2. VERT (Axe/mesures/actions) AXE I

MATIERES PM 2. VERT (Axe/mesures/actions) AXE I AXE I CAPITAL HUMAIN MESURE I.1 I.1.A I.1.B I.1.C Mobiliser collectivement les acteurs de l'enseignement, de la formation professionnelle et de l'emploi Développer les bassins de vie et créer des pôles

Plus en détail

Chapitre 7. Statistique des échantillons gaussiens. 7.1 Projection de vecteurs gaussiens

Chapitre 7. Statistique des échantillons gaussiens. 7.1 Projection de vecteurs gaussiens Chapitre 7 Statistique des échantillons gaussiens Le théorème central limite met en évidence le rôle majeur tenu par la loi gaussienne en modélisation stochastique. De ce fait, les modèles statistiques

Plus en détail

PHYSIQUE-CHIMIE. Partie I - Propriétés de l atome

PHYSIQUE-CHIMIE. Partie I - Propriétés de l atome PHYSIQUE-CHIMIE Ce sujet traite de quelques propriétés de l aluminium et de leurs applications. Certaines données fondamentales sont regroupées à la fin du texte. Partie I - Propriétés de l atome I.A -

Plus en détail

Introduction à la Statistique Inférentielle

Introduction à la Statistique Inférentielle UNIVERSITE MOHAMMED V-AGDAL SCIENCES FACULTE DES DEPARTEMENT DE MATHEMATIQUES SMI semestre 4 : Probabilités - Statistique Introduction à la Statistique Inférentielle Prinemps 2013 0 INTRODUCTION La statistique

Plus en détail

Lois de probabilité. Anita Burgun

Lois de probabilité. Anita Burgun Lois de probabilité Anita Burgun Problème posé Le problème posé en statistique: On s intéresse à une population On extrait un échantillon On se demande quelle sera la composition de l échantillon (pourcentage

Plus en détail

BTS BAT 1 Notions élémentaires de chimie 1

BTS BAT 1 Notions élémentaires de chimie 1 BTS BAT 1 Notions élémentaires de chimie 1 I. L ATOME NOTIONS EÉLEÉMENTAIRES DE CIMIE Les atomes sont des «petits grains de matière» qui constituent la matière. L atome est un système complexe que l on

Plus en détail

Code social - Sécurité sociale 2012

Code social - Sécurité sociale 2012 Code social - Sécurité sociale 2012 Ce Code est à jour au 15 janvier 2012. Editeur responsable: Hans Suijkerbuijk 2012 Wolters Kluwer Belgium SA Waterloo Office Park Drève Richelle 161 L B-1410 Waterloo

Plus en détail

Tests du χ 2. on accepte H 0 bonne décision erreur de seconde espèce on rejette H 0 erreur de première espèce bonne décision

Tests du χ 2. on accepte H 0 bonne décision erreur de seconde espèce on rejette H 0 erreur de première espèce bonne décision Page n 1. Tests du χ 2 une des fonctions des statistiques est de proposer, à partir d observations d un phénomène aléatoire (ou modélisé comme tel) une estimation de la loi de ce phénomène. C est que nous

Plus en détail

Probabilités III Introduction à l évaluation d options

Probabilités III Introduction à l évaluation d options Probabilités III Introduction à l évaluation d options Jacques Printems Promotion 2012 2013 1 Modèle à temps discret 2 Introduction aux modèles en temps continu Limite du modèle binomial lorsque N + Un

Plus en détail

Qu est-ce qu une probabilité?

Qu est-ce qu une probabilité? Chapitre 1 Qu est-ce qu une probabilité? 1 Modéliser une expérience dont on ne peut prédire le résultat 1.1 Ensemble fondamental d une expérience aléatoire Une expérience aléatoire est une expérience dont

Plus en détail

ENS de Lyon TD 1 17-18 septembre 2012 Introduction aux probabilités. A partie finie de N

ENS de Lyon TD 1 17-18 septembre 2012 Introduction aux probabilités. A partie finie de N ENS de Lyon TD 7-8 septembre 0 Introduction aux probabilités Exercice Soit (u n ) n N une suite de nombres réels. On considère σ une bijection de N dans N, de sorte que (u σ(n) ) n N est un réordonnement

Plus en détail

Variables Aléatoires. Chapitre 2

Variables Aléatoires. Chapitre 2 Chapitre 2 Variables Aléatoires Après avoir réalisé une expérience, on ne s intéresse bien souvent à une certaine fonction du résultat et non au résultat en lui-même. Lorsqu on regarde une portion d ADN,

Plus en détail

Conditions Générales d'utilisation

Conditions Générales d'utilisation Conditions Générales d'utilisation Préambule Le présent site Internet www.tournoi7decoeur.com (le " Site Internet") est édité par l association Côté Ouvert, Association loi de 1901, enregistrée à la préfecture

Plus en détail

La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1

La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1 La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1 La licence Mathématiques et Economie-MASS de l Université des Sciences Sociales de Toulouse propose sur les trois

Plus en détail

Méthodes de Simulation

Méthodes de Simulation Méthodes de Simulation JEAN-YVES TOURNERET Institut de recherche en informatique de Toulouse (IRIT) ENSEEIHT, Toulouse, France Peyresq06 p. 1/41 Remerciements Christian Robert : pour ses excellents transparents

Plus en détail

Moments des variables aléatoires réelles

Moments des variables aléatoires réelles Chapter 6 Moments des variables aléatoires réelles Sommaire 6.1 Espérance des variables aléatoires réelles................................ 46 6.1.1 Définition et calcul........................................

Plus en détail

LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING»

LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING» LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING» Gilbert Saporta Professeur de Statistique Appliquée Conservatoire National des Arts et Métiers Dans leur quasi totalité, les banques et organismes financiers

Plus en détail

Tests non-paramétriques de non-effet et d adéquation pour des covariables fonctionnelles

Tests non-paramétriques de non-effet et d adéquation pour des covariables fonctionnelles Tests non-paramétriques de non-effet et d adéquation pour des covariables fonctionnelles Valentin Patilea 1 Cesar Sanchez-sellero 2 Matthieu Saumard 3 1 CREST-ENSAI et IRMAR 2 USC Espagne 3 IRMAR-INSA

Plus en détail

Objets Combinatoires élementaires

Objets Combinatoires élementaires Objets Combinatoires élementaires 0-0 Permutations Arrangements Permutations pour un multi-ensemble mots sous-ensemble à k éléments (Problème du choix) Compositions LE2I 04 1 Permutations Supposons que

Plus en détail

Probabilités. C. Charignon. I Cours 3

Probabilités. C. Charignon. I Cours 3 Probabilités C. Charignon Table des matières I Cours 3 1 Dénombrements 3 1.1 Cardinal.................................................. 3 1.1.1 Définition............................................. 3

Plus en détail

Probabilités et Statistiques. Feuille 2 : variables aléatoires discrètes

Probabilités et Statistiques. Feuille 2 : variables aléatoires discrètes IUT HSE Probabilités et Statistiques Feuille : variables aléatoires discrètes 1 Exercices Dénombrements Exercice 1. On souhaite ranger sur une étagère 4 livres de mathématiques (distincts), 6 livres de

Plus en détail

Estimation: intervalle de fluctuation et de confiance. Mars 2012. IREM: groupe Proba-Stat. Fluctuation. Confiance. dans les programmes comparaison

Estimation: intervalle de fluctuation et de confiance. Mars 2012. IREM: groupe Proba-Stat. Fluctuation. Confiance. dans les programmes comparaison Estimation: intervalle de fluctuation et de confiance Mars 2012 IREM: groupe Proba-Stat Estimation Term.1 Intervalle de fluctuation connu : probabilité p, taille de l échantillon n but : estimer une fréquence

Plus en détail

SCIENCES INDUSTRIELLES POUR L INGÉNIEUR. Partie I - Analyse système

SCIENCES INDUSTRIELLES POUR L INGÉNIEUR. Partie I - Analyse système SCIENCES INDUSTRIELLES POUR L INGÉNIEUR COMPORTEMENT DYNAMIQUE D UN VEHICULE AUTO-BALANCÉ DE TYPE SEGWAY Partie I - Analyse système Poignée directionnelle Barre d appui Plate-forme Photographies 1 Le support

Plus en détail

Introduction au Calcul des Probabilités

Introduction au Calcul des Probabilités Université des Sciences et Technologies de Lille U.F.R. de Mathématiques Pures et Appliquées Bât. M2, F-59655 Villeneuve d Ascq Cedex Introduction au Calcul des Probabilités Probabilités à Bac+2 et plus

Plus en détail

1 TD1 : rappels sur les ensembles et notion de probabilité

1 TD1 : rappels sur les ensembles et notion de probabilité 1 TD1 : rappels sur les ensembles et notion de probabilité 1.1 Ensembles et dénombrement Exercice 1 Soit Ω = {1, 2, 3, 4}. Décrire toutes les parties de Ω, puis vérier que card(p(ω)) = 2 4. Soit k n (

Plus en détail

Les probabilités. Guide pédagogique Le présent guide sert de complément à la série d émissions intitulée Les probabilités produite par TFO.

Les probabilités. Guide pédagogique Le présent guide sert de complément à la série d émissions intitulée Les probabilités produite par TFO. Guide pédagogique Le présent guide sert de complément à la série d émissions intitulée produite par TFO. Le guide Édition 1988 Rédacteur (version anglaise) : Ron Carr Traduction : Translatec Conseil Ltée

Plus en détail

Master IMEA 1 Calcul Stochastique et Finance Feuille de T.D. n o 1

Master IMEA 1 Calcul Stochastique et Finance Feuille de T.D. n o 1 Master IMEA Calcul Stochastique et Finance Feuille de T.D. n o Corrigé exercices8et9 8. On considère un modèle Cox-Ross-Rubinstein de marché (B,S) à trois étapes. On suppose que S = C et que les facteurs

Plus en détail

Conditions générales (CG)

Conditions générales (CG) Conditions générales (CG) pour l achat et l utilisation de l appli mobile pour les titres de transport communautaires Libero et les titres de transport électroniques Libero (application mobile LiberoTickets)

Plus en détail

MÉTHODE DE MONTE CARLO.

MÉTHODE DE MONTE CARLO. MÉTHODE DE MONTE CARLO. Alexandre Popier Université du Maine, Le Mans A. Popier (Le Mans) Méthode de Monte Carlo. 1 / 95 PLAN DU COURS 1 MÉTHODE DE MONTE CARLO 2 PROBLÈME DE SIMULATION Théorème fondamental

Plus en détail

INF 162 Probabilités pour l informatique

INF 162 Probabilités pour l informatique Guy Melançon INF 162 Probabilités pour l informatique Licence Informatique 20 octobre 2010 Département informatique UFR Mathématiques Informatique Université Bordeaux I Année académique 2010-2011 Table

Plus en détail

Orientations devant guider la mise en œuvre de la Convention du patrimoine mondial

Orientations devant guider la mise en œuvre de la Convention du patrimoine mondial WHC.12/01 juillet 2012 Orientations devant guider la mise en œuvre de la Convention du patrimoine mondial ORGANISATION DES NATIONS UNIES POUR L EDUCATION, LA SCIENCE ET LA CULTURE COMITE INTERGOUVERNEMENTAL

Plus en détail

Modèle de troncature gauche : Comparaison par simulation sur données indépendantes et dépendantes

Modèle de troncature gauche : Comparaison par simulation sur données indépendantes et dépendantes de troncature gauche : Comparaison par simulation sur données indépendantes et dépendantes Zohra Guessoum 1 & Farida Hamrani 2 1 Lab. MSTD, Faculté de mathématique, USTHB, BP n 32, El Alia, Alger, Algérie,zguessoum@usthb.dz

Plus en détail

Développement d'un projet informatique

Développement d'un projet informatique Développement d'un projet informatique par Emmanuel Delahaye (Espace personnel d'emmanuel Delahaye) Date de publication : 27 janvier 2008 Dernière mise à jour : 25 avril 2009 Cet article présente un certain

Plus en détail

Modèles et Méthodes de Réservation

Modèles et Méthodes de Réservation Modèles et Méthodes de Réservation Petit Cours donné à l Université de Strasbourg en Mai 2003 par Klaus D Schmidt Lehrstuhl für Versicherungsmathematik Technische Universität Dresden D 01062 Dresden E

Plus en détail

Plan comptable. Octobre 2005. B.I.B.F. Beroepsinstituut van erkende Boekhouders en Fiscalisten

Plan comptable. Octobre 2005. B.I.B.F. Beroepsinstituut van erkende Boekhouders en Fiscalisten I.P.C.F. Institut Professionnel des Comptables et Fiscalistes agréés B.I.B.F. Beroepsinstituut van erkende Boekhouders en Fiscalisten Plan comptable Octobre 2005 Avenue Legrand 45-1050 BRUXELLES Tél. (02)

Plus en détail

Que faire lorsqu on considère plusieurs variables en même temps?

Que faire lorsqu on considère plusieurs variables en même temps? Chapitre 3 Que faire lorsqu on considère plusieurs variables en même temps? On va la plupart du temps se limiter à l étude de couple de variables aléatoires, on peut bien sûr étendre les notions introduites

Plus en détail

Dunod, Paris, 2014 ISBN 978-2-10-059615-7

Dunod, Paris, 2014 ISBN 978-2-10-059615-7 Illustration de couverture : Federo-istock.com Dunod, Paris, 2014 ISBN 978-2-10-059615-7 1.1 Symétrie du hasard et probabilité uniforme 3 1.2 Loi de probabilité sur un ensemble fini 6 1.3 Probabilité sur

Plus en détail

Capes 2002 - Première épreuve

Capes 2002 - Première épreuve Cette correction a été rédigée par Frédéric Bayart. Si vous avez des remarques à faire, ou pour signaler des erreurs, n hésitez pas à écrire à : mathweb@free.fr Mots-clés : équation fonctionnelle, série

Plus en détail

Sites web éducatifs et ressources en mathématiques

Sites web éducatifs et ressources en mathématiques Sites web éducatifs et ressources en mathématiques Exercices en ligne pour le primaire Calcul mental élémentaire : http://www.csaffluents.qc.ca/wlamen/tables-sous.html Problèmes de soustraction/addition

Plus en détail

Température corporelle d un castor (une petite introduction aux séries temporelles)

Température corporelle d un castor (une petite introduction aux séries temporelles) Température corporelle d un castor (une petite introduction aux séries temporelles) GMMA 106 GMMA 106 2014 2015 1 / 32 Cas d étude Temperature (C) 37.0 37.5 38.0 0 20 40 60 80 100 Figure 1: Temperature

Plus en détail

Mesures gaussiennes et espaces de Fock

Mesures gaussiennes et espaces de Fock Mesures gaussiennes et espaces de Fock Thierry Lévy Peyresq - Juin 2003 Introduction Les mesures gaussiennes et les espaces de Fock sont deux objets qui apparaissent naturellement et peut-être, à première

Plus en détail

Actuariat I ACT2121. septième séance. Arthur Charpentier. Automne 2012. charpentier.arthur@uqam.ca. http ://freakonometrics.blog.free.

Actuariat I ACT2121. septième séance. Arthur Charpentier. Automne 2012. charpentier.arthur@uqam.ca. http ://freakonometrics.blog.free. Actuariat I ACT2121 septième séance Arthur Charpentier charpentier.arthur@uqam.ca http ://freakonometrics.blog.free.fr/ Automne 2012 1 Exercice 1 En analysant le temps d attente X avant un certain événement

Plus en détail

Introduction à la théorie des files d'attente. Claude Chaudet Claude.Chaudet@enst.fr

Introduction à la théorie des files d'attente. Claude Chaudet Claude.Chaudet@enst.fr Introduction à la théorie des files d'attente Claude Chaudet Claude.Chaudet@enst.fr La théorie des files d'attente... Principe: modélisation mathématique de l accès à une ressource partagée Exemples réseaux

Plus en détail

REGLEMENT INTERIEUR. COLLEGE Emile ZOLA

REGLEMENT INTERIEUR. COLLEGE Emile ZOLA REGLEMENT INTERIEUR ***** COLLEGE Emile ZOLA (Modifié par les conseil d administration du 5 octobre 2006, du 14 juin 2007, du 19 juin 2008) 1 REGLEMENT INTERIEUR COLLEGE EMILE ZOLA RENNES Préambule I ORGANISATION

Plus en détail

COURS 470 Série 10. Comptabilité Générale

COURS 470 Série 10. Comptabilité Générale COURS 470 Série 10 Comptabilité Générale Administration générale de l'enseignement et de la Recherche scientifique Direction de l'enseignement à distance REPRODUCTION INTERDITE Communauté française de

Plus en détail

Séminaire TEST. 1 Présentation du sujet. October 18th, 2013

Séminaire TEST. 1 Présentation du sujet. October 18th, 2013 Séminaire ES Andrés SÁNCHEZ PÉREZ October 8th, 03 Présentation du sujet Le problème de régression non-paramétrique se pose de la façon suivante : Supposons que l on dispose de n couples indépendantes de

Plus en détail

Distribution Uniforme Probabilité de Laplace Dénombrements Les Paris. Chapitre 2 Le calcul des probabilités

Distribution Uniforme Probabilité de Laplace Dénombrements Les Paris. Chapitre 2 Le calcul des probabilités Chapitre 2 Le calcul des probabilités Equiprobabilité et Distribution Uniforme Deux événements A et B sont dits équiprobables si P(A) = P(B) Si il y a équiprobabilité sur Ω, cad si tous les événements

Plus en détail

I Stabilité, Commandabilité et Observabilité 11. 1 Introduction 13 1.1 Un exemple emprunté à la robotique... 13 1.2 Le plan... 18 1.3 Problème...

I Stabilité, Commandabilité et Observabilité 11. 1 Introduction 13 1.1 Un exemple emprunté à la robotique... 13 1.2 Le plan... 18 1.3 Problème... TABLE DES MATIÈRES 5 Table des matières I Stabilité, Commandabilité et Observabilité 11 1 Introduction 13 1.1 Un exemple emprunté à la robotique................... 13 1.2 Le plan...................................

Plus en détail

FORMULAIRE DE STATISTIQUES

FORMULAIRE DE STATISTIQUES FORMULAIRE DE STATISTIQUES I. STATISTIQUES DESCRIPTIVES Moyenne arithmétique Remarque: population: m xμ; échantillon: Mx 1 Somme des carrés des écarts "# FR MOYENNE(série) MOYENNE(série) NL GEMIDDELDE(série)

Plus en détail

PHYSIQUE-CHIMIE. Partie I - Spectrophotomètre à réseau

PHYSIQUE-CHIMIE. Partie I - Spectrophotomètre à réseau PHYSIQUE-CHIMIE L absorption des radiations lumineuses par la matière dans le domaine s étendant du proche ultraviolet au très proche infrarouge a beaucoup d applications en analyse chimique quantitative

Plus en détail

Guide de l'archivage électronique sécurisé

Guide de l'archivage électronique sécurisé Original : Français Guide de l'archivage électronique sécurisé Recommandations pour la mise en œuvre d'un système d'archivage interne ou externe utilisant des techniques de scellement aux fins de garantir

Plus en détail

Statistiques Descriptives à une dimension

Statistiques Descriptives à une dimension I. Introduction et Définitions 1. Introduction La statistique est une science qui a pour objectif de recueillir et de traiter les informations, souvent en très grand nombre. Elle regroupe l ensemble des

Plus en détail

UFR de Sciences Economiques Année 2008-2009 TESTS PARAMÉTRIQUES

UFR de Sciences Economiques Année 2008-2009 TESTS PARAMÉTRIQUES Université Paris 13 Cours de Statistiques et Econométrie I UFR de Sciences Economiques Année 2008-2009 Licence de Sciences Economiques L3 Premier semestre TESTS PARAMÉTRIQUES Remarque: les exercices 2,

Plus en détail

Couples de variables aléatoires discrètes

Couples de variables aléatoires discrètes Couples de variables aléatoires discrètes ECE Lycée Carnot mai Dans ce dernier chapitre de probabilités de l'année, nous allons introduire l'étude de couples de variables aléatoires, c'est-à-dire l'étude

Plus en détail

Chapitre 3 : INFERENCE

Chapitre 3 : INFERENCE Chapitre 3 : INFERENCE 3.1 L ÉCHANTILLONNAGE 3.1.1 Introduction 3.1.2 L échantillonnage aléatoire 3.1.3 Estimation ponctuelle 3.1.4 Distributions d échantillonnage 3.1.5 Intervalles de probabilité L échantillonnage

Plus en détail

4 Distributions particulières de probabilités

4 Distributions particulières de probabilités 4 Distributions particulières de probabilités 4.1 Distributions discrètes usuelles Les variables aléatoires discrètes sont réparties en catégories selon le type de leur loi. 4.1.1 Variable de Bernoulli

Plus en détail

MA6.06 : Mesure et Probabilités

MA6.06 : Mesure et Probabilités Année universitaire 2002-2003 UNIVERSITÉ D ORLÉANS Olivier GARET MA6.06 : Mesure et Probabilités 2 Table des matières Table des matières i 1 Un peu de théorie de la mesure 1 1.1 Tribus...............................

Plus en détail

Supervision sécurité. Création d une demande de descente. 13/03/2014 Supervision sécurité Création d'une demande

Supervision sécurité. Création d une demande de descente. 13/03/2014 Supervision sécurité Création d'une demande Supervision sécurité Création d une demande de descente 1 Sommaire I. Connexion II. Création d une demande a. Informations générales b. Localisation c. Formulaire d. Suivi III. Validation 2 I. Connexion

Plus en détail

Tests d indépendance en analyse multivariée et tests de normalité dans les modèles ARMA

Tests d indépendance en analyse multivariée et tests de normalité dans les modèles ARMA Tests d indépendance en analyse multivariée et tests de normalité dans les modèles ARMA Soutenance de doctorat, sous la direction de Pr. Bilodeau, M. et Pr. Ducharme, G. Université de Montréal et Université

Plus en détail

Guidance de Statistique : Epreuve de préparation à l examen

Guidance de Statistique : Epreuve de préparation à l examen Guidance de Statistique : Epreuve de préparation à l examen Durée totale : 90 min (1h30) 5 questions de pratique (12 pts) 20 décembre 2011 Matériel Feuilles de papier De quoi écrire Calculatrice Latte

Plus en détail

Espérance conditionnelle

Espérance conditionnelle Espérance conditionnelle Samy Tindel Nancy-Université Master 1 - Nancy Samy T. (IECN) M1 - Espérance conditionnelle Nancy-Université 1 / 58 Plan 1 Définition 2 Exemples 3 Propriétés de l espérance conditionnelle

Plus en détail

CHAPITRE 5. Stratégies Mixtes

CHAPITRE 5. Stratégies Mixtes CHAPITRE 5 Stratégies Mixtes Un des problèmes inhérents au concept d équilibre de Nash en stratégies pures est que pour certains jeux, de tels équilibres n existent pas. P.ex.le jeu de Pierre, Papier,

Plus en détail

Pierre Thérond pierre@therond.fr. Année universitaire 2013-2014

Pierre Thérond pierre@therond.fr. Année universitaire 2013-2014 http://www.therond.fr pierre@therond.fr Institut de Science Financière et d Assurances - Université Lyon 1 Année universitaire 2013-2014 Plan du cours 1 Chapitre 1 - Introduction 2 3 4 Bibliographie principale

Plus en détail

Plan général du cours

Plan général du cours BTS GPN 1ERE ANNEE-MATHEMATIQUES-PROBABILITES-DENOMBREMENT,COMBINATOIRE PROBABILITES Plan général du cours 1. Dénombrement et combinatoire (permutations, arrangements, combinaisons). 2. Les probabilités

Plus en détail

Baccalauréat ES Antilles Guyane 12 septembre 2014 Corrigé

Baccalauréat ES Antilles Guyane 12 septembre 2014 Corrigé Baccalauréat ES Antilles Guyane 12 septembre 2014 Corrigé EXERCICE 1 5 points Commun à tous les candidats 1. Réponse c : ln(10)+2 ln ( 10e 2) = ln(10)+ln ( e 2) = ln(10)+2 2. Réponse b : n 13 0,7 n 0,01

Plus en détail

Le modèle de Black et Scholes

Le modèle de Black et Scholes Le modèle de Black et Scholes Alexandre Popier février 21 1 Introduction : exemple très simple de modèle financier On considère un marché avec une seule action cotée, sur une période donnée T. Dans un

Plus en détail

Université Paris 8 Introduction aux probabilités 2014 2015 Licence Informatique Exercices Ph. Guillot. 1 Ensemble fondamental loi de probabilité

Université Paris 8 Introduction aux probabilités 2014 2015 Licence Informatique Exercices Ph. Guillot. 1 Ensemble fondamental loi de probabilité Université Paris 8 Introduction aux probabilités 2014 2015 Licence Informatique Exercices Ph. Guillot 1 Ensemble fondamental loi de probabilité Exercice 1. On dispose de deux boîtes. La première contient

Plus en détail

Estimation et tests statistiques, TD 5. Solutions

Estimation et tests statistiques, TD 5. Solutions ISTIL, Tronc commun de première année Introduction aux méthodes probabilistes et statistiques, 2008 2009 Estimation et tests statistiques, TD 5. Solutions Exercice 1 Dans un centre avicole, des études

Plus en détail

Théorie de la Mesure et Intégration

Théorie de la Mesure et Intégration Ecole Nationale de la Statistique et de l Administration Economique Théorie de la Mesure et Intégration Xavier MARY 2 Table des matières I Théorie de la mesure 11 1 Algèbres et tribus de parties d un ensemble

Plus en détail

Probabilités et Statistique

Probabilités et Statistique Ricco Rakotomalala Probabilités et Statistique Notes de cours Université Lumière Lyon 2 Avant-propos Ce document est un support de cours pour les enseignements des probabilités et de la statistique. Il

Plus en détail

Analyse Combinatoire

Analyse Combinatoire Analyse Combinatoire 1) Équipes On dispose d un groupe de cinq personnes. a) Combien d équipes de trois personnes peut-on former? b) Combien d équipes avec un chef, un sous-chef et un adjoint? c) Combien

Plus en détail

Analyse de la vidéo. Chapitre 4.1 - La modélisation pour le suivi d objet. 10 mars 2015. Chapitre 4.1 - La modélisation d objet 1 / 57

Analyse de la vidéo. Chapitre 4.1 - La modélisation pour le suivi d objet. 10 mars 2015. Chapitre 4.1 - La modélisation d objet 1 / 57 Analyse de la vidéo Chapitre 4.1 - La modélisation pour le suivi d objet 10 mars 2015 Chapitre 4.1 - La modélisation d objet 1 / 57 La représentation d objets Plan de la présentation 1 La représentation

Plus en détail

PROBABILITÉS: COURS DE LICENCE DE MATHÉMATIQUES APPLIQUÉES LM 390

PROBABILITÉS: COURS DE LICENCE DE MATHÉMATIQUES APPLIQUÉES LM 390 PROBABILITÉS: COURS DE LICENCE DE MATHÉMATIQUES APPLIQUÉES LM 390 Université PARIS 6 2008/2009 Jean BERTOIN 1 Table des Matières ( ) ces parties peuvent ^etre omises en première lecture, et ne feront pas

Plus en détail

Capacité d un canal Second Théorème de Shannon. Théorie de l information 1/34

Capacité d un canal Second Théorème de Shannon. Théorie de l information 1/34 Capacité d un canal Second Théorème de Shannon Théorie de l information 1/34 Plan du cours 1. Canaux discrets sans mémoire, exemples ; 2. Capacité ; 3. Canaux symétriques ; 4. Codage de canal ; 5. Second

Plus en détail

14. Introduction aux files d attente

14. Introduction aux files d attente 14. Introduction aux files d attente MTH2302D S. Le Digabel, École Polytechnique de Montréal H2015 (v2) MTH2302D: Files d attente 1/24 Plan 1. Introduction 2. Modèle M/M/1 3. Modèle M/M/1/K MTH2302D: Files

Plus en détail

Économetrie non paramétrique I. Estimation d une densité

Économetrie non paramétrique I. Estimation d une densité Économetrie non paramétrique I. Estimation d une densité Stéphane Adjemian Université d Évry Janvier 2004 1 1 Introduction 1.1 Pourquoi estimer une densité? Étudier la distribution des richesses... Proposer

Plus en détail

Modélisation des risques

Modélisation des risques 2 Modélisation des risques 2. Introduction L objectif de ce chapitre est de présenter les modèles de base utilisés pour décrire le comportement aléatoire d un risque en actuariat pour une période xe. Les

Plus en détail

Annexe commune aux séries ES, L et S : boîtes et quantiles

Annexe commune aux séries ES, L et S : boîtes et quantiles Annexe commune aux séries ES, L et S : boîtes et quantiles Quantiles En statistique, pour toute série numérique de données à valeurs dans un intervalle I, on définit la fonction quantile Q, de [,1] dans

Plus en détail

La mesure de Lebesgue sur la droite réelle

La mesure de Lebesgue sur la droite réelle Chapitre 1 La mesure de Lebesgue sur la droite réelle 1.1 Ensemble mesurable au sens de Lebesgue 1.1.1 Mesure extérieure Définition 1.1.1. Un intervalle est une partie convexe de R. L ensemble vide et

Plus en détail

LIVRET BAILLEURS. Stratégie pour l'amélioration de la gestion urbaine de proximité à partir du dispositif d'abattement de la TFPB

LIVRET BAILLEURS. Stratégie pour l'amélioration de la gestion urbaine de proximité à partir du dispositif d'abattement de la TFPB LIVRET BAILLEURS Stratégie pour l'amélioration de la gestion urbaine de proximité à partir du dispositif d'abattement de la TFPB Novembre 2011 Sommaire I.Préambule...4 I.A.«L'abattement» : un terme à préciser...4

Plus en détail

Texte Agrégation limitée par diffusion interne

Texte Agrégation limitée par diffusion interne Page n 1. Texte Agrégation limitée par diffusion interne 1 Le phénomène observé Un fût de déchets radioactifs est enterré secrètement dans le Cantal. Au bout de quelques années, il devient poreux et laisse

Plus en détail

4. Martingales à temps discret

4. Martingales à temps discret Martingales à temps discret 25 4. Martingales à temps discret 4.1. Généralités. On fixe un espace de probabilités filtré (Ω, (F n ) n, F, IP ). On pose que F contient ses ensembles négligeables mais les

Plus en détail

FIMA, 7 juillet 2005

FIMA, 7 juillet 2005 F. Corset 1 S. 2 1 LabSAD Université Pierre Mendes France 2 Département de Mathématiques Université de Franche-Comté FIMA, 7 juillet 2005 Plan de l exposé plus court chemin Origine du problème Modélisation

Plus en détail

P1 : Corrigés des exercices

P1 : Corrigés des exercices P1 : Corrigés des exercices I Exercices du I I.2.a. Poker : Ω est ( l ensemble ) des parties à 5 éléments de l ensemble E des 52 cartes. Cardinal : 5 I.2.b. Bridge : Ω est ( l ensemble ) des parties à

Plus en détail

Documentation technique du logiciel Moduleo Version du 03/12/2014

Documentation technique du logiciel Moduleo Version du 03/12/2014 Version du 03/12/2014 SOMMAIRE I) Architecture globale... 3 I.A) Logiciel modulaire... 3 I.B) Logiciel réseau... 3 I.C) Information en temps-réel... 3 I.D) Client lourd / serveur lourd... 4 II) Réseau...

Plus en détail

TABLE DES MATIÈRES. Bruxelles, De Boeck, 2011, 736 p.

TABLE DES MATIÈRES. Bruxelles, De Boeck, 2011, 736 p. STATISTIQUE THÉORIQUE ET APPLIQUÉE Tome 2 Inférence statistique à une et à deux dimensions Pierre Dagnelie TABLE DES MATIÈRES Bruxelles, De Boeck, 2011, 736 p. ISBN 978-2-8041-6336-5 De Boeck Services,

Plus en détail