ÉVALUATION FORMATIVE. On considère le circuit électrique RC représenté ci-dessous où R et C sont des constantes strictement positives.

Save this PDF as:
Dimension: px
Commencer à balayer dès la page:

Download "ÉVALUATION FORMATIVE. On considère le circuit électrique RC représenté ci-dessous où R et C sont des constantes strictement positives."

Transcription

1 L G L G Prof. Éric J.M.DELHEZ ANALYSE MATHÉMATIQUE ÉALUATION FORMATIE Novembre 211 Ce test vous est proposé pour vous permettre de faire le point sur votre compréhension du cours d Analyse Mathématique. Il est purement facultatif. Les résultats, bons ou mauvais, ne seront en aucun cas pris en compte. Pour que l exercice vous soit réellement profitable, il vous est conseillé de vous placer autant que possible dans les conditions d une interrogation normale : répondez aux questions tout(e) seul(e), sans l aide des notes, sans interrompre votre travail, dans un délai maximum de 2 heures. Les copies seront reprises lors du cours ex-cathedra d analyse du 29 novembre. On considère le circuit électrique représenté ci-dessous où R et C sont des constantes strictement positives. R i (t) C c (t) On applique une tension électrique i (t) aux bornes du système et on mesure la tension c (t) aux bornes du condensateur. Celles-ci sont liées par R i(t)+ c (t)= i (t) où i(t) désigne le courant électrique circulant dans le système. Si le condensateur est initialement déchargé, on a t c (t)= 1 i(τ)dτ et C dt = i i. Dans un premier temps, on applique une tension alternative i (t) = sinωt aux bornes du système, où et ω sont des constantes strictement positives. (a) Calculez la tension de sortie c (t). (b) Montrez que c (t) est asymptotique à un signal périodique pour t et déterminez l amplitude de ce signal périodique ainsi que sa période. (c) Montrez que, à haute fréquence et pour t, la tension de sortie tend à être proportionnelle à une primitive du signal d entrée i (t). On dit que le circuit se comporte comme un montage intégrateur ou comme un filtre passe-bas. ii. Dans un deuxième temps, on applique une tension i (t) variant comme indiqué ci-dessous. En raisonnant d abord séparément pour t < et pour t >, déterminez l expression de c (t) pour tout t >. i (t) t iii. Déterminez la tension de sortie c (t) si on applique une tension i (t) continue quelconque aux bornes du système.

2 SOLUTION i. (a) Dans ce premier cas, l équation à résoudre est Décomposition en c h et c p (écrite explicitement dt = sinωt ou mise en oeuvre La solution de cette équation différentielle linéaire non homogène peut être exprimée sous la forme c (t)= c h (t)+c p (t) dans la suite) avec justification par la linéarité : 2 pts où h c (t) est la solution générale de l équation homogène associée et où p c (t) désigne une solution particulière de l équation non homogène. générale de l équation homogène. L équation homogène dt = étant linéaire à coefficients constants, sa solution générale peut être construite en considérant les zéros de son polynôme caractéristique z+ 1 Le seul zéro est simple et vaut 1/. La solution générale s écrit donc où A est une constante. h c (t)=ae t/ homogène : 4pts dont 2pts pour la méthode Le second membre f(t) = sinωt n est pas à première vue du type exponentiellepolynôme. Cependant, en remarquant que on peut écrire sinωt = Ie iωt f(t)=i eiωt En notant que l équation est à coefficients réels, il est alors possible d obtenir p c (t) en prenant la partie imaginaire d une solution particulière de l équation dt = eiωt à laquelle nous pouvons appliquer la méthode de l exponentielle-polynôme. Comme iω n est pas zéro du polynôme caractéristique, on peut trouver une solution particulière de la forme Be iωt où la constante B est déterminée par substitution : soit iωbe iωt + B eiωt = eiωt B= 1+iω = (1 iω) 2

3 et donc [ ] [ ] (1 iω) (1 iω) c P (t)=i eiωt = I 1+ω 2 R 2 (cosωt+ isinωt) C2 = ( ω cosωt+ sinωt) générale de l équation non homogène. La solution générale de l équation différentielle est donc particulière : 4pts dont 2pts pour la méthode c (t)=ae t/ + 1+ω 2 R 2 C2( ω cosωt+ sinωt) La condition initiale c ()= 1 C permet de déterminer la constante A. On a i(τ)dτ= c ()= : 1pt = c ()=A ω et donc aleur de la A= ω constante : 2pts Finalement, la solution du problème différentiel s écrit (b) Puisque on obtient c (t)= ω e t/ + c (t) ( ω cosωt+ sinωt) : 1pt Total (a) : 14 pts lim t e t/ = 1+ω 2 R 2 C2( ω cosωt+ sinωt), (t ) (1) que l on peut réécrire sous la forme d une fonction trigonométrique unique c (t) Ãsin(ωt ϕ)=ãsinωt cosϕ Ãcosωt sinϕ, (t ) Comportement asymptotique : 1pt avec aleur de la Ãcosϕ= période : 1 pt Ãsinϕ= ω Il s agit d un signal périodique caractérisé par une période T = 2π/ω et une amplitude à donnée par aleur de Ã= l amplitude : 2 pts = Total (b) : 4 pts 3

4 (c) Partant du comportement asymptotique (1) obtenu en (b), on peut écrire, si ω est très grand, Or c (t) cosωt, (t, ω ) ω sinωt dt = ω cosωt Le circuit se comporte donc bien en intégrateur. ii. La fonction i (t) correspondant au graphe donné s écrit t i (t)= pour t pour t > Comportement asymptotique : 1 pt Conclusion : 1 pt Total (c) : 2 pts Total i. : 2 pts Expression de i pour t : 1 pt La fonction c (t) recherchée obéit à l équation différentielle du premier ordre linéaire à coefficients constants dt = i(t) où i (t) est une fonction continue, elle est donc continûment dérivable. (a) Dans un premier temps, recherchons l expression de c (t) pour t en résolvant dt = t La solution de cette équation différentielle linéaire non homogène peut être exprimée sous la forme c (t)= c h (t)+c p (t) où h c (t)=ae t/ est la solution générale de l équation homogène associée déterminée au point ii(a) et où p c (t) désigne une solution particulière de l équation non homogène. Le second membre f(t)= t est du type exponentielle-polynôme avec le coefficient de la variable t dans l argument de l exponentielle valant et n étant donc pas zéro du polynôme caractéristique. On peut alors trouver une solution particulière de la forme C 1 t+c 2 où les constante C 1 et C 2 sont déterminées par substitution : particulière pour ce f(t) : 4 pts dont 2 pts pour la méthode soit et C 1 + C 1 t+ C 2 = t C 1 = et C 2 = c p (t)= (t ) t générale de l équation non homogène. La solution générale de l équation différentielle est donc 4

5 c (t)=ae t/ + (t ) générale : La condition initiale permet de déterminer la constante A. On a c ()= = c ()= A et donc A= Finalement, la solution du problème différentiel s écrit, pour t, c (t)= e t/ + (t ) t (b) Pour t >, l équation différentielle à résoudre est 1 pt Constante d intégration : 1 pt pour t : 1 pt dt = Une fois encore, la solution de cette équation différentielle linéaire non homogène peut être exprimée sous la forme c (t)= c h (t)+ c p (t) où h c (t)=ae t/ est la solution générale de l équation homogène associée déterminée au point ii(a) et où p c (t) désigne une solution particulière de l équation non homogène. Par inspection, on trouve facilement que la fonction constante p c (t)= est une solution particulière de l équation non homogène. particulière t > : 2 pts pour générale de l équation non homogène. La solution générale de l équation différentielle est donc générale : 1 pt c (t)=ae t/ + Pour déterminer la constante A, il faut tenir compte de la continuité de la fonction c (t). On Continuité de c a donc, en utilisant la solution pour t, en et valeur de c ( ) : 2pts c ( )= ( ) e t / 1 + qui constitue la condition initiale pour la deuxième phase correspondant à t >. 5

6 Ainsi, ( ) e t / 1 + = Ae t / + et donc aleur de A : 1 pt A= ( ) 1 e t / Finalement, la solution du problème différentiel s écrit, pour t >, pour t > : 1 pt c (t)= ( ) 1 e t / e t/ + iii. Dans ce cas, l équation différentielle à résoudre est dt = i(t) Une fois encore, la solution de cette équation différentielle linéaire non homogène peut être exprimée sous la forme c (t)= c h (t)+ c p (t) où h c (t)=ae t/ Total ii. : 15 pts Décomposition en c h et c p avec justification par la linéarité : 1 pt est la solution générale de l équation homogène associée déterminée au point ii(a) et où c p (t) désigne une solution particulière de l équation non homogène. homogène : 2 pts La méthode de variation des constantes nous suggère de rechercher une solution particulière de la forme p c (t)=b(t)e t/ Introduisant cette solution dans l équation différentielle, on obtient soit et donc, on peut choisir et db dt e t/ B e t/ + B e t/ = i(t) db dt = i(t) et/ t i (τ) B(t)= eτ/ dτ p c (t)= [ t générale de l équation non homogène. ] i (τ) eτ/ dτ e t/ particulière : 4 pts dont 2 pts pour la méthode La solution générale de l équation différentielle est générale : [ 1 pt t ] c (t)=ae t/ i (τ) + eτ/ dτ e t/ La condition initiale c ()= 6

7 permet de déterminer la constante A. On a = c ()=A. Finalement, la solution du problème différentiel s écrit complète [ du problème : 2 pts t ] i (τ) c (t)= eτ/ dτ e t/ Total iii. : 1 pts TOTAL : 45 PTS ERREURS LES PLUS FRÉQUENTES i. (a) * L utilisation de la méthode de variation des constantes est inutile ici et induit, par sa longueur, des erreurs de calcul qui pourraient être évitées en utilisant la méthode de l exponentielle-polynôme. La méthode de résolution la plus directe et la plus efficace devrait toujours être utilisée, en tirant parti de la structure du problème. La formule (2.26) des notes de cours donnant l expression de la solution d un problème différentiel général linéaire du premier ordre ne devrait être utilisée que dans un cadre théorique, pas pour résoudre des exercices. La formule ne doit pas être étudiée par cœur ; le risque d erreur est grand en cas de problème de mémoire. * Dans l utilisation de la méthode de l exponentielle-polynôme, les principales erreurs proviennent de mauvaises manipulations des nombres complexes, en particulier dans l extraction d une partie imaginaire. (b) La détermination de l amplitude apparaît comme une difficulté majeure dans la plupart des copies. Il suffit pourtant d utiliser une formule de trigonométrie pour transformer la solution obtenue en un sinus unique dont l amplitude se lit directement. Cette approche est habituelle en mécanique et en physique. Cette partie de la solution devrait donc être relue très attentivement. (c) Très peu d étudiants arrivent à (ou même essaient de) déterminer le comportement asymptotique pour t + et ω +. ii. * Les étudiants éprouvent des difficultés pour exprimer analytiquement le signal donné graphiquement. * Le problème doit être séparé en deux phases puisque i (t) est définie par morceaux. Pour résoudre un tel problème, il convient d utiliser les conditions à la fin de la première phase comme conditions initiales de la deuxième phase. La solution de t = à t = en utilisant la condition initiale c () = permet de déterminer la solution en, soit c ( ). Ensuite, cette valeur constitue la condition initiale de la deuxième phase pour t. Il est erroné de considérer c () = comme condition initiale de la deuxième phase, laquelle ne débute qu en. Cette erreur a cependant été commise par la plupart des étudiants. iii. L énoncé a été mal compris. Il s agissait bien d une tension i (t) continue quelconque et pas d une tension constante. 7

Oscillations libres des systèmes à deux degrés de liberté

Oscillations libres des systèmes à deux degrés de liberté Chapitre 4 Oscillations libres des systèmes à deux degrés de liberté 4.1 Introduction Les systèmes qui nécessitent deux coordonnées indépendantes pour spécifier leurs positions sont appelés systèmes à

Plus en détail

Union générale des étudiants de Tunisie Bureau de l institut Préparatoire Aux Etudes D'ingénieurs De Tunis. Modèle de compte-rendu de TP.

Union générale des étudiants de Tunisie Bureau de l institut Préparatoire Aux Etudes D'ingénieurs De Tunis. Modèle de compte-rendu de TP. Union générale des étudiants de Tunisie Modèle de compte-rendu de TP Dipôle RC Ce document a été publié pour l unique but d aider les étudiants, il est donc strictement interdit de l utiliser intégralement

Plus en détail

POLY-PREPAS ANNEE 2009/2010 Centre de Préparation aux Concours Paramédicaux

POLY-PREPAS ANNEE 2009/2010 Centre de Préparation aux Concours Paramédicaux POLY-PREPAS ANNEE 2009/2010 Centre de Préparation aux Concours Paramédicaux - Section : i-prépa Audioprothésiste (annuel) - MATHEMATIQUES 8 : EQUATIONS DIFFERENTIELLES - COURS + ENONCE EXERCICE - Olivier

Plus en détail

BTS Groupement A. Mathématiques Session 2011. Spécialités CIRA, IRIS, Systèmes électroniques, TPIL

BTS Groupement A. Mathématiques Session 2011. Spécialités CIRA, IRIS, Systèmes électroniques, TPIL BTS Groupement A Mathématiques Session 11 Exercice 1 : 1 points Spécialités CIRA, IRIS, Systèmes électroniques, TPIL On considère un circuit composé d une résistance et d un condensateur représenté par

Plus en détail

Fonction polynôme du second degré : Forme canonique

Fonction polynôme du second degré : Forme canonique Fonction polynôme du second degré : Forme canonique I) Introduction. Soit g(x) = a(x - s)²+h. Toute fonction polynôme du second degré peut s écrire sous cette forme. Le passage de la forme développée à

Plus en détail

Trépier avec règle, ressort à boudin, chronomètre, 5 masses de 50 g.

Trépier avec règle, ressort à boudin, chronomètre, 5 masses de 50 g. PHYSQ 130: Hooke 1 LOI DE HOOKE: CAS DU RESSORT 1 Introduction La loi de Hooke est fondamentale dans l étude du mouvement oscillatoire. Elle est utilisée, entre autres, dans les théories décrivant les

Plus en détail

CHAPITRE V SYSTEMES DIFFERENTIELS LINEAIRES A COEFFICIENTS CONSTANTS DU PREMIER ORDRE. EQUATIONS DIFFERENTIELLES.

CHAPITRE V SYSTEMES DIFFERENTIELS LINEAIRES A COEFFICIENTS CONSTANTS DU PREMIER ORDRE. EQUATIONS DIFFERENTIELLES. CHAPITRE V SYSTEMES DIFFERENTIELS LINEAIRES A COEFFICIENTS CONSTANTS DU PREMIER ORDRE EQUATIONS DIFFERENTIELLES Le but de ce chapitre est la résolution des deux types de systèmes différentiels linéaires

Plus en détail

Loi binomiale Lois normales

Loi binomiale Lois normales Loi binomiale Lois normales Christophe ROSSIGNOL Année scolaire 204/205 Table des matières Rappels sur la loi binomiale 2. Loi de Bernoulli............................................ 2.2 Schéma de Bernoulli

Plus en détail

Agrégation externe de mathématiques, session 2013 Épreuve de modélisation, option B : Calcul Scientifique

Agrégation externe de mathématiques, session 2013 Épreuve de modélisation, option B : Calcul Scientifique Agrégation externe de mathématiques, session 2013 Épreuve de modélisation, option (Public2014-B1) Résumé : On présente un exemple de système de deux espèces en compétition dans un environnement périodique.

Plus en détail

Primitives Cours maths Terminale S

Primitives Cours maths Terminale S Primitives Cours maths Terminale S Dans ce module est introduite la notion de primitive d une fonction sur un intervalle. On définit cette notion puis on montre qu une fonction admet une infinité de primitives

Plus en détail

Mathématiques pour l informatique. - Soutien - 1 Nombres complexes. 2 Suites. Exercice 1. (Nombres complexes) Soit le nombre complexe z = (2 + 2i) 7.

Mathématiques pour l informatique. - Soutien - 1 Nombres complexes. 2 Suites. Exercice 1. (Nombres complexes) Soit le nombre complexe z = (2 + 2i) 7. Mathématiques pour l informatique IMAC première année - Soutien - Nombres complexes Rappels. Un nombre complexe z admet plusieurs représentations : représentation vectorielle z = (a, b) où a, b R représentation

Plus en détail

BREVET DE TECHNICIEN SUPÉRIEUR COMPTABILITÉ ET GESTION DES ORGANISATIONS Session 2013 ÉPREUVE DE MATHÉMATIQUES. Durée : 2 heures Coefficient : 2

BREVET DE TECHNICIEN SUPÉRIEUR COMPTABILITÉ ET GESTION DES ORGANISATIONS Session 2013 ÉPREUVE DE MATHÉMATIQUES. Durée : 2 heures Coefficient : 2 BREVET DE TECHNICIEN SUPÉRIEUR COMPTABILITÉ ET GESTION DES ORGANISATIONS Session 2013 ÉPREUVE DE MATHÉMATIQUES Durée : 2 heures Coefficient : 2 SUJET Dès que le sujet vous est remis, assurez-vous qu il

Plus en détail

Systèmes oscillants Oscillateur harmonique amorti, oscillations libres amorties

Systèmes oscillants Oscillateur harmonique amorti, oscillations libres amorties Systèmes oscillants Oscillateur harmonique amorti, oscillations libres amorties L'objet de cette ressource est l'étude des systèmes physiques, de type mécanique, électrique ou microscopique, se comportant

Plus en détail

RAPPELS DE MATHEMATIQUES. ORTHOPHONIE Première année. Dr MF DAURES

RAPPELS DE MATHEMATIQUES. ORTHOPHONIE Première année. Dr MF DAURES RAPPELS DE MATHEMATIQUES ORTHOPHONIE Première année 27 28 Dr MF DAURES 1 RAPPELS DE MATHEMATIQUES I - LES FONCTIONS A - Caractéristiques générales des fonctions B - La fonction dérivée C - La fonction

Plus en détail

SYSTEMES LINEAIRES DU PREMIER ORDRE

SYSTEMES LINEAIRES DU PREMIER ORDRE SYSTEMES LINEIRES DU PREMIER ORDRE 1. DEFINITION e(t) SYSTEME s(t) Un système est dit linéaire invariant du premier ordre si la réponse s(t) est liée à l excitation e(t) par une équation différentielle

Plus en détail

Fonctions. Fonctions linéaires, affines et constantes

Fonctions. Fonctions linéaires, affines et constantes linéaires, affines et constantes 1. linéaires Comme il existe une infinité de fonctions différentes, on les classe par catégories. La première catégorie est constituée par les fonctions linéaires. Une

Plus en détail

Chapitre 9 Les équations différentielles

Chapitre 9 Les équations différentielles Chapitre 9 Les équations différentielles A) Généralités Une équation différentielle est une équation dont l inconnue est une fonction et dans laquelle apparaissent une ou plusieurs dérivées de cette fonction.

Plus en détail

Equations Différentielles

Equations Différentielles Cours optionnel S4 - Maths Renforcées 1 Equations Différentielles I- Définitions élémentaires. On appelle Equation Différentielle Ordinaire (EDO) toute équation (E) du type (E) : y (n) (t) = F (t; y(t);

Plus en détail

1 Introduction. CIRCUITS RLC À COURANT ALTERNATIF

1 Introduction. CIRCUITS RLC À COURANT ALTERNATIF PHYSQ 126: Circuits RLC 1 CIRCUITS RLC À COURANT ALTERNATIF 1 Introduction. Le but de cette expérience est d introduire le concept de courant alternatif (en anglais, Alternating Current ou AC) et d étudier

Plus en détail

Fonctions - Continuité Cours maths Terminale S

Fonctions - Continuité Cours maths Terminale S Fonctions - Continuité Cours maths Terminale S Dans ce module, introduction d une nouvelle notion qu est la continuité d une fonction en un point. En repartant de la définition et de l illustration graphique

Plus en détail

La science des fusées 1

La science des fusées 1 Mth1101 - TD - Application 9 : optimisation avec contraintes, multiplicateurs de Lagrange La science des fusées 1 Introduction Une fusée comporte plusieurs étages composés d un moteur et de son carburant.

Plus en détail

Les quatre opérations sur les nombres entiers Statistiques et probabilités I. Code Unités Devoirs Code Unités Devoirs

Les quatre opérations sur les nombres entiers Statistiques et probabilités I. Code Unités Devoirs Code Unités Devoirs 1 re secondaire 2 e secondaire Les quatre opérations sur les nombres entiers Statistiques et probabilités I MAT-1005-2 2 3 MAT-2008-2 2 3 (+, -, x, ) dans l ensemble des entiers Z. Ce premier cours portant

Plus en détail

Méthodes de quadrature. Polytech Paris-UPMC. - p. 1/48

Méthodes de quadrature. Polytech Paris-UPMC. - p. 1/48 Méthodes de Polytech Paris-UPMC - p. 1/48 Polynôme d interpolation de Preuve et polynôme de Calcul de l erreur d interpolation Étude de la formule d erreur Autres méthodes - p. 2/48 Polynôme d interpolation

Plus en détail

CONCOURS DE RECRUTEMENT D ÉLÈVES PILOTE DE LIGNE

CONCOURS DE RECRUTEMENT D ÉLÈVES PILOTE DE LIGNE ÉCOLE NATIONALE DE L AVIATION CIVILE ANNÉE 2006 CONCOURS DE RECRUTEMENT D ÉLÈVES PILOTE DE LIGNE ÉPREUVE DE MATHÉMATIQUES Durée : 2 Heures Coefficient : 1 Ce sujet comporte (dans l énoncé d origine, pas

Plus en détail

Chapitre 5 La puissance en régime sinusoïdal

Chapitre 5 La puissance en régime sinusoïdal Chapitre 5 La puissance en régime sinusoïdal forcé 61 5.1. Les grandeurs instantanée, moyenne et e cace Les signaux étudiés dans ce chapitre sont des courants ou des tensions sinusoïdaux i(t) et u(t).

Plus en détail

5 Analyse de Fourier. 5.1 Aspects théoriques. 5.1.1 Analyse de Fourier

5 Analyse de Fourier. 5.1 Aspects théoriques. 5.1.1 Analyse de Fourier Responsable : J.Roussel Objectif Ce TP est une initiation à l analyse de Fourier. Nous verrons notamment comment une analyse spectrale permet de remonter à la courbe de réponse d un filtre électrique.

Plus en détail

Chapitre 1 : Évolution COURS

Chapitre 1 : Évolution COURS Chapitre 1 : Évolution COURS OBJECTIFS DU CHAPITRE Savoir déterminer le taux d évolution, le coefficient multiplicateur et l indice en base d une évolution. Connaître les liens entre ces notions et savoir

Plus en détail

Chapitre 1 Régime transitoire dans les systèmes physiques

Chapitre 1 Régime transitoire dans les systèmes physiques Chapitre 1 Régime transitoire dans les systèmes physiques Savoir-faire théoriques (T) : Écrire l équation différentielle associée à un système physique ; Faire apparaître la constante de temps ; Tracer

Plus en détail

Fonctions hyperboliques et applications réciproques

Fonctions hyperboliques et applications réciproques Chapitre III Fonctions hyperboliques et applications réciproques A Fonctions hyperboliques directes A. Sinus hyperbolique et cosinus hyperbolique On va définir de nouvelles fonctions inspirées notamment

Plus en détail

Ressources pour le lycée technologique

Ressources pour le lycée technologique éduscol Enseignement de mathématiques Classe de première STMG Ressources pour le lycée technologique Dérivation : Approximation affine et applications aux évolutions successives Contexte pédagogique Objectifs

Plus en détail

Cours Mathématiques PACES UHP-Nancy

Cours Mathématiques PACES UHP-Nancy Cours Mathématiques PACES UHP-Nancy V. Latocha PACES UHP septembre 2010 remerciements à D. Schmitt et V. Ries V. Latocha (PACES UHP) Cours mathématiques Paces septembre 2010 1 / 48 1 Fonctions d une variable

Plus en détail

Plusieurs exercices de la douzième séance de TD

Plusieurs exercices de la douzième séance de TD Plusieurs exercices de la douzième séance de TD Décembre 2006 1 Offre du travail 1.1 énoncé On considère un ménage dont les préférences portent sur la consommation et le temps consacré aux activités non

Plus en détail

6GEI305 Dynamique des systèmes II. Laboratoire #2

6GEI305 Dynamique des systèmes II. Laboratoire #2 6GEI305 Dynamique des systèmes II Laboratoire #2 Introduction aux impédances et à la plaquette de prototypage Automne 2010 1. Objectifs Se familiariser avec les plaquettes de prototypage Concrétiser la

Plus en détail

Comparaison de fonctions Développements limités. Chapitre 10

Comparaison de fonctions Développements limités. Chapitre 10 PCSI - 4/5 www.ericreynaud.fr Chapitre Points importants 3 Questions de cours 6 Eercices corrigés Plan du cours 4 Eercices types 7 Devoir maison 5 Eercices Chap Et s il ne fallait retenir que si points?

Plus en détail

1 Systèmes triphasés symétriques

1 Systèmes triphasés symétriques 1 Systèmes triphasés symétriques 1.1 Introduction Un système triphasé est un ensemble de grandeurs (tensions ou courants) sinusoïdales de même fréquence, déphasées les unes par rapport aux autres. Le système

Plus en détail

Fonctions homographiques

Fonctions homographiques Fonctions homographiques On donne ci-dessous deux définitions des fonctions homographiques, et on montre que ces deux définitions sont équivalentes. On décrit la courbe représentative d une fonction homographique.

Plus en détail

Chapitre 11. Séries de Fourier. Nous supposons connues les formules donnant les coefficients de Fourier d une fonction 2 - périodique :

Chapitre 11. Séries de Fourier. Nous supposons connues les formules donnant les coefficients de Fourier d une fonction 2 - périodique : Chapitre Chapitre. Séries de Fourier Nous supposons connues les formules donnant les coefficients de Fourier d une fonction - périodique : c c a0 f x dx c an f xcosnxdx c c bn f xsinn x dx c L objet de

Plus en détail

PRECISION - REJET DE PERTURBATIONS T.D. G.E.I.I.

PRECISION - REJET DE PERTURBATIONS T.D. G.E.I.I. PRECISION - REJET DE PERTURBATIONS T.D. G.E.I.I.. Donner les erreurs en position, en vitesse et en accélération d un système de transfert F BO = N(p) D(p) (transfert en boucle ouverte) bouclé par retour

Plus en détail

Équations du troisième degré

Équations du troisième degré par Z, auctore L objet de cet article est d exposer deux méthodes pour trouver des solutions à une équation du troisième degré : la recherche de racines évidentes d une part, et la formule de Cardan d

Plus en détail

Contrôle de session 2 et/ou de rattrapage UF1 Physique Electricité et électrostatique, 9 mars 2011

Contrôle de session 2 et/ou de rattrapage UF1 Physique Electricité et électrostatique, 9 mars 2011 Nom : Prénom : Groupe : Session 2 Rattrapage Cocher SVP Contrôle de session 2 et/ou de rattrapage UF1 Physique Electricité et électrostatique, 9 mars 2011 Durée 3h00. Tous les documents sont interdits.

Plus en détail

Contrôle final de Thermique,

Contrôle final de Thermique, Contrôle final de Thermique, GM3C mars 08 2heures, tous documents autorisés Calculatrices autorisées Problèmes de refroidissement d un ordinateur On se donne un ordinateur qui dissipe une certaine puissance,

Plus en détail

Analyse des diagrammes de Bode d'un filtre passe-bande:

Analyse des diagrammes de Bode d'un filtre passe-bande: TD N 3: Filtrage, fonction de transfert et diagrammes de Bode. M1107 : Initiation à la mesure du signal Le but de ce TD est de vous permettre d'appréhender les notions indispensables à la compréhension

Plus en détail

Points fixes de fonctions à domaine fini

Points fixes de fonctions à domaine fini ÉCOLE POLYTECHNIQUE ÉCOLE NORMALE SUPÉRIEURE DE CACHAN ÉCOLE SUPÉRIEURE DE PHYSIQUE ET DE CHIMIE INDUSTRIELLES CONCOURS D ADMISSION 2013 FILIÈRE MP HORS SPÉCIALITÉ INFO FILIÈRE PC COMPOSITION D INFORMATIQUE

Plus en détail

Etude de fonctions: procédure et exemple

Etude de fonctions: procédure et exemple Etude de fonctions: procédure et exemple Yves Delhaye 8 juillet 2007 Résumé Dans ce court travail, nous présentons les différentes étapes d une étude de fonction à travers un exemple. Nous nous limitons

Plus en détail

T.P. n 4. polytech-instrumentation.fr 0,15 TTC /min à partir d un poste fixe

T.P. n 4. polytech-instrumentation.fr 0,15 TTC /min à partir d un poste fixe T.P. n 4 polytech-instrumentation.fr 0 825 563 563 0,15 TTC /min à partir d un poste fixe Redressement d une tension I. Objectifs Redressement d une tension alternative par le moyen de diodes. Transformation

Plus en détail

Devoir maison numéro 03 Première S

Devoir maison numéro 03 Première S Devoir maison numéro 03 Première S Conseils pour ces vacances : Se reposer durant la première semaine, puis se mettre à travailler régulièrement et de plus en plus jusqu à la rentrée Pour ceux qui ont

Plus en détail

POLY-PREPAS Centre de Préparation aux Concours Paramédicaux. - Section Orthoptiste / stage i-prépa intensif -

POLY-PREPAS Centre de Préparation aux Concours Paramédicaux. - Section Orthoptiste / stage i-prépa intensif - POLY-PREPAS Centre de Préparation aux Concours Paramédicaux - Section Orthoptiste / stage i-prépa intensif - 1 Chapitre 10 : Condensateur et circuit RC I. Notions de base en électricité : a) Courant électrique

Plus en détail

aux différences est appelé équation aux différences d ordre n en forme normale.

aux différences est appelé équation aux différences d ordre n en forme normale. MODÉLISATION ET SIMULATION EQUATIONS AUX DIFFÉRENCES (I/II) 1. Rappels théoriques : résolution d équations aux différences 1.1. Équations aux différences. Définition. Soit x k = x(k) X l état scalaire

Plus en détail

G.P. DNS Décembre 2008

G.P. DNS Décembre 2008 DNS Sujet Électronique...1 A.Principe de la détection synchrone...1 1)Étude du filtre RC...1 2)Étude du multiplieur...2 3)Conclusion...2 B.Un filtre universel à amplificateurs opérationnels...2 A. Principe

Plus en détail

a et b étant deux nombres relatifs donnés, une fonction affine est une fonction qui a un nombre x associe le nombre ax + b

a et b étant deux nombres relatifs donnés, une fonction affine est une fonction qui a un nombre x associe le nombre ax + b I Définition d une fonction affine Faire l activité 1 «une nouvelle fonction» 1. définition générale a et b étant deux nombres relatifs donnés, une fonction affine est une fonction qui a un nombre x associe

Plus en détail

Les Conditions aux limites

Les Conditions aux limites Chapitre 5 Les Conditions aux limites Lorsque nous désirons appliquer les équations de base de l EM à des problèmes d exploration géophysique, il est essentiel, pour pouvoir résoudre les équations différentielles,

Plus en détail

Nombre dérivé et tangente

Nombre dérivé et tangente Nombre dérivé et tangente I) Interprétation graphique 1) Taux de variation d une fonction en un point. Soit une fonction définie sur un intervalle I contenant le nombre réel a, soit (C) sa courbe représentative

Plus en détail

Méthodes de Monte-Carlo Simulation de grandeurs aléatoires

Méthodes de Monte-Carlo Simulation de grandeurs aléatoires Méthodes de Monte-Carlo Simulation de grandeurs aléatoires Master Modélisation et Simulation / ENSTA TD 1 2012-2013 Les méthodes dites de Monte-Carlo consistent en des simulations expérimentales de problèmes

Plus en détail

Devoir Surveillé n 5 BTS 2009 groupement B

Devoir Surveillé n 5 BTS 2009 groupement B EXERCICE 1 (12 points) Devoir Surveillé n 5 BTS 2009 groupement B Les trois parties de cet exercice peuvent être traitées de façon indépendante. A. Résolution d une équation différentielle On considère

Plus en détail

Agrégation interne de Mathématiques. Session 2009. Deuxième épreuve écrite. (et CAERPA)

Agrégation interne de Mathématiques. Session 2009. Deuxième épreuve écrite. (et CAERPA) Agrégation interne de Mathématiques (et CAEPA Session 2009 Deuxième épreuve écrite 2 NOTATIONS ET PÉLIMINAIES On désigne par le corps des nombres réels et par C le corps des nombres complexes. Si f est

Plus en détail

Continuité d une fonction de plusieurs variables

Continuité d une fonction de plusieurs variables Chapitre 2 Continuité d une fonction de plusieurs variables Maintenant qu on a défini la notion de limite pour des suites dans R n, la notion de continuité s étend sans problème à des fonctions de plusieurs

Plus en détail

I Exercices. 1 Définition de suites. 2 Sens de variation d une suite

I Exercices. 1 Définition de suites. 2 Sens de variation d une suite I Exercices 1 Définition de suites Pour toutes les suites (u n ) définies ci-dessous, on demande de calculer u 1, u, u 3 et u 6 1 u n = 7n n + { u0 = u n+1 = u n + 3 3 u n est le n ième nombre premier

Plus en détail

SOMMES ET PRODUITS. 1 Techniques de calcul. 1.1 Le symbole. 1.2 Règles de calcul. Laurent Garcin MPSI Lycée Jean-Baptiste Corot

SOMMES ET PRODUITS. 1 Techniques de calcul. 1.1 Le symbole. 1.2 Règles de calcul. Laurent Garcin MPSI Lycée Jean-Baptiste Corot SOMMES ET PRODUITS 1 Techniques de calcul 1.1 Le symbole Notation 1.1 Soient m et n deux entiers naturels. Alors { a m + a m+1 + + a + a n si m n, a = 0 sinon. On peut aussi noter m n =m a ou encore m,n

Plus en détail

TRAVAUX DIRIGÉS DE l UE MNBif. Informatique 3A MÉTHODES NUMÉRIQUES DE BASE. 2015-2016, Automne. N. Débit & J. Bastien

TRAVAUX DIRIGÉS DE l UE MNBif. Informatique 3A MÉTHODES NUMÉRIQUES DE BASE. 2015-2016, Automne. N. Débit & J. Bastien TRAVAUX DIRIGÉS DE l UE MNBif Informatique 3A MÉTHODES NUMÉRIQUES DE BASE 2015-2016, Automne N. Débit & J. Bastien Document compilé le 13 novembre 2015 Liste des Travaux Dirigés Avant-propos iii Travaux

Plus en détail

Montages non linéaires à amplificateurs opérationnels

Montages non linéaires à amplificateurs opérationnels Montages non linéaires à amplificateurs opérationnels Partie théorique I. omparateur L utilisation la plus simple d un amplificateur opérationnel (AOP) en montage non-linéaire est le comparateur. Deux

Plus en détail

Fonctions de référence Variation des fonctions associées

Fonctions de référence Variation des fonctions associées DERNIÈRE IMPRESSION LE 9 juin 05 à 8:33 Fonctions de référence Variation des fonctions associées Table des matières Fonction numérique. Définition.................................. Ensemble de définition...........................3

Plus en détail

CARACTERISTIQUE D UNE DIODE ET POINT DE FONCTIONNEMENT

CARACTERISTIQUE D UNE DIODE ET POINT DE FONCTIONNEMENT TP CIRCUITS ELECTRIQUES R.DUPERRAY Lycée F.BUISSON PTSI CARACTERISTIQUE D UNE DIODE ET POINT DE FONCTIONNEMENT OBJECTIFS Savoir utiliser le multimètre pour mesurer des grandeurs électriques Obtenir expérimentalement

Plus en détail

Les fonctions sinus et cosinus

Les fonctions sinus et cosinus DERNIÈRE IMPRESSION LE 6 juin 03 à 5:06 Les fonctions sinus et cosinus Table des matières Rappels. Mesure principale.............................. Résolution d équations...........................3 Signe

Plus en détail

ETUDE D'UN MULTIMETRE NUMERIQUE UTILISANT LE TRANSFERT DE CHARGES 1

ETUDE D'UN MULTIMETRE NUMERIQUE UTILISANT LE TRANSFERT DE CHARGES 1 ETUDE D'UN MULTIMETRE NUMERIQUE UTILISANT LE TRANSFERT DE CHARGES 1 Le schéma de principe d'un multimètre numérique est donné ci-dessous Il met en œuvre un montage comparateur (dont le rôle sera défini

Plus en détail

x x² = y x -3-2 -1-0,5 0 0,5 1 2 3 y CHAPITRE 12 I. INTRODUCTION

x x² = y x -3-2 -1-0,5 0 0,5 1 2 3 y CHAPITRE 12 I. INTRODUCTION CHAPITRE 2 FONCTIONS I. INTRODUCTION Une fonction est «une machine à transformer des nombres». Par eemple, la fonction «carré» désigne la «machine» qui transforme les nombres en leurs carrés. Ainsi elle

Plus en détail

Session de Juillet 2001. Durée 2 H Documents interdits.

Session de Juillet 2001. Durée 2 H Documents interdits. Session de Juillet 2001 Durée 2 H Documents interdits. Exercice 1 : Oscillations forcées de dipôles électriques Lors d une séance de travaux pratiques, les élèves sont conduits à étudier les dipôles en

Plus en détail

Entrée à Sciences Po ADMISSION AU COLLÈGE UNIVERSITAIRE Mardi 26 juin 2012 MATHEMATIQUES durée de l épreuve : 4h

Entrée à Sciences Po ADMISSION AU COLLÈGE UNIVERSITAIRE Mardi 26 juin 2012 MATHEMATIQUES durée de l épreuve : 4h Entrée à Sciences Po ADMISSION AU COLLÈGE UNIVERSITAIRE Mardi 26 juin 2012 MATHEMATIQUES durée de l épreuve : 4h A. P. M. E. P. Le problème se compose de 4 parties. La dernière page sera à rendre avec

Plus en détail

Série 7 : circuits en R.S.F.

Série 7 : circuits en R.S.F. Série 7 : circuits en R.S.F. 1 Documents du chapitre Action d un circuit du 1er ordre sur un échelon de tension et sur une entrée sinusoïdale : Déphasage de grandeurs sinusoïdales et représentation de

Plus en détail

POLY-PREPAS Centre de Préparation aux Concours Paramédicaux

POLY-PREPAS Centre de Préparation aux Concours Paramédicaux POLY-PREPAS Centre de Préparation aux Concours Paramédicaux - Sections : L1 Santé - 1 Olivier CAUDRELIER oc.polyprepas@orange.fr Chapitre 1 : Equations aux dimensions 1. Equation aux dimensions a) Dimension

Plus en détail

Session 2011. Enseignement de Spécialité. Durée de l épreuve : 3 heures. Coefficient : 7. Ce sujet comporte 7 pages numérotées de 1 à 7.

Session 2011. Enseignement de Spécialité. Durée de l épreuve : 3 heures. Coefficient : 7. Ce sujet comporte 7 pages numérotées de 1 à 7. BACCALAURÉAT GENÉRAL Session 2011 MATHÉMATIQUES Série ES Enseignement de Spécialité Durée de l épreuve : 3 heures Coefficient : 7 Ce sujet comporte 7 pages numérotées de 1 à 7. L utilisation d une calculatrice

Plus en détail

CONCOURS GÉNÉRAL DES LYCÉES SESSION DE 2009 COMPOSITION DE MATHÉMATIQUES. (Classe terminale S)

CONCOURS GÉNÉRAL DES LYCÉES SESSION DE 2009 COMPOSITION DE MATHÉMATIQUES. (Classe terminale S) MA 09 CONCOURS GÉNÉRAL DES LYCÉES SESSION DE 009 COMPOSITION DE MATHÉMATIQUES (Classe terminale S) DURÉE : 5 heures La calculatrice de poche est autorisée, conformément à la réglementation. La clarté et

Plus en détail

1 Une simple histoire de production, et déjà des calculs

1 Une simple histoire de production, et déjà des calculs Université François Rabelais - L AES Cours d Economie Générale Enoncé du TD n 7 Automne 202 Une simple histoire de production, et déjà des calculs Vous considérez dans cet exercice une firme qui a la possibilité

Plus en détail

9. Équations différentielles

9. Équations différentielles 63 9. Équations différentielles 9.1. Introduction Une équation différentielle est une relation entre une ou plusieurs fonctions inconnues et leurs dérivées. L'ordre d'une équation différentielle correspond

Plus en détail

Cours de Mécanique du point matériel

Cours de Mécanique du point matériel Cours de Mécanique du point matériel SMPC1 Module 1 : Mécanique 1 Session : Automne 2014 Prof. M. EL BAZ Cours de Mécanique du Point matériel Chapitre 1 : Complément Mathématique SMPC1 Chapitre 1: Rappels

Plus en détail

Fonctions de deux variables. Mai 2011

Fonctions de deux variables. Mai 2011 Fonctions de deux variables Dédou Mai 2011 D une à deux variables Les fonctions modèlisent de l information dépendant d un paramètre. On a aussi besoin de modéliser de l information dépendant de plusieurs

Plus en détail

Travaux pratiques d électronique, première séance. Circuits passifs. S. Orsi, A. Miucci 22 septembre 2014

Travaux pratiques d électronique, première séance. Circuits passifs. S. Orsi, A. Miucci 22 septembre 2014 Travaux pratiques d électronique, première séance Circuits passifs S. Orsi, A. Miucci 22 septembre 2014 1 Révision 1. Explorez le protoboard avec le voltmètre. Faites un schéma des connexions. 2. Calibrez

Plus en détail

TS Physique L automobile du futur Electricité

TS Physique L automobile du futur Electricité P a g e 1 TS Physique Electricité Exercice résolu Enoncé Le moteur thermique, étant très certainement appelé à disparaître, les constructeurs automobiles recourront probablement au «tout électrique» ou

Plus en détail

Exercice 1 Trouver l équation du plan tangent pour chaque surface ci-dessous, au point (x 0,y 0,z 0 ) donné :

Exercice 1 Trouver l équation du plan tangent pour chaque surface ci-dessous, au point (x 0,y 0,z 0 ) donné : Enoncés : Stephan de Bièvre Corrections : Johannes Huebschmann Exo7 Plans tangents à un graphe, différentiabilité Exercice 1 Trouver l équation du plan tangent pour chaque surface ci-dessous, au point

Plus en détail

Nombres complexes Forme trigonométrique d un complexe Exercices corrigés

Nombres complexes Forme trigonométrique d un complexe Exercices corrigés Nombres complexes Forme trigonométrique d un complexe Exercices corrigés Sont abordés dans cette fiche : Exercice 1 : affixe d un point, représentation d un point-image dans le plan complexe, argument

Plus en détail

Sujet de Bac 2013 - Maths ES Obligatoire & Spécialité Amérique du Nord

Sujet de Bac 2013 - Maths ES Obligatoire & Spécialité Amérique du Nord Sujet de Bac 2013 - Maths ES Obligatoire & Spécialité Amérique du Nord Exercice 1 : 4 points et exercice est un questionnaire à choix multiples. Chaque question ci-après comporte quatre réponses possibles.

Plus en détail

Analyse spectrale du signal

Analyse spectrale du signal Analyse spectrale du signal Principe de l analyse spectrale (ou harmonique) La réponse en fréquence des circuits est un élément caractéristique du comportement dynamique des circuits R, L et C. L autre

Plus en détail

Lycée Alexis de Tocqueville. BACCALAUREAT TECHNOLOGIQUE Blanc Corrigé. Série S.T.M.G. Février 2015 Épreuve de mathématiques.

Lycée Alexis de Tocqueville. BACCALAUREAT TECHNOLOGIQUE Blanc Corrigé. Série S.T.M.G. Février 2015 Épreuve de mathématiques. Lycée Alexis de Tocqueville BACCALAUREAT TECHNOLOGIQUE Blanc Corrigé Série S.T.M.G. Février 2015 Épreuve de mathématiques Durée 3 heures Le candidat traitera obligatoirement les quatre exercices ******

Plus en détail

Examen de l UE LM125 Janvier 2007 Corrigé

Examen de l UE LM125 Janvier 2007 Corrigé Université Pierre et Marie Curie Licence Sciences et Technologies MIME L énoncé est repris sur fond mauve. En prune : des commentaires. Examen de l UE LM15 Janvier 007 Corrigé Commentaires généraux barème

Plus en détail

Cahier de vacances - Préparation à la Première S

Cahier de vacances - Préparation à la Première S Cahier de vacances - Préparation à la Première S Ce cahier est destiné à vous permettre d aborder le plus sereinement possible la classe de Première S. Je vous conseille de le travailler pendant les 0

Plus en détail

Exercice n 1: PRINCIPE DE L'ALLUMAGE D'UNE VOITURE (6,5 points)

Exercice n 1: PRINCIPE DE L'ALLUMAGE D'UNE VOITURE (6,5 points) Exercice n 1: PRINCIPE DE L'ALLUMAGE D'UNE VOITURE (6,5 points) Afrique 2007 http://labolycee.org 1.La batterie : principe de fonctionnement La batterie d'une voiture est un accumulateur au plomb constitué

Plus en détail

APPAREILS DE MESURE. Grandeurs électriques

APPAREILS DE MESURE. Grandeurs électriques APPAREILS DE MESURE L objectif de cette manipulation est de prendre en main des appareils de mesure tels que des voltmètres ou oscilloscopes, mais aussi d évaluer leurs performances, leurs limites et surtout

Plus en détail

Athénée Royal de Pepinster. Electrotechnique. La diode à jonction

Athénée Royal de Pepinster. Electrotechnique. La diode à jonction La diode à jonction I Introduction La diode est le semi-conducteur de base. Son fonctionnement est assimilable à celui d un interrupteur qui ne laisse passer le courant que dans un seul sens. C est la

Plus en détail

Circuits RL et RC. Chapitre 5. 5.1 Inductance

Circuits RL et RC. Chapitre 5. 5.1 Inductance Chapitre 5 Circuits RL et RC Ce chapitre présente les deux autres éléments linéaires des circuits électriques : l inductance et la capacitance. On verra le comportement de ces deux éléments, et ensuite

Plus en détail

16. Comment introduire les valeurs prises par la variable SPORT pour les 30 premiers sujets introduits dans L2?

16. Comment introduire les valeurs prises par la variable SPORT pour les 30 premiers sujets introduits dans L2? T.P. 5 partie 1 Variable ordinale Calcul manuel de quantiles Utilisation des fonctions intégrées de la TI-84 Utilisation du programme D1 (Corrigé pour 30 cas) V. Prise en compte de 30 cas (pour éviter

Plus en détail

Séquence 7 : Fonctions affines. Seconde. Séance 1 Généralités. est appelée fonction affine. est une fonction affine si son expression algébrique vaut

Séquence 7 : Fonctions affines. Seconde. Séance 1 Généralités. est appelée fonction affine. est une fonction affine si son expression algébrique vaut Seconde Définition : Soient Séquence 7 : Fonctions affines Séance 1 Généralités deux nombres réels La fonction { est appelée fonction affine Concrètement, est une fonction affine si son expression algébrique

Plus en détail

RAPPORT SUR L ETUDE DES DONNEES FINANCIERES ET STATISTIQUES A L AIDE DU LOGICIEL SCILAB

RAPPORT SUR L ETUDE DES DONNEES FINANCIERES ET STATISTIQUES A L AIDE DU LOGICIEL SCILAB RAPPORT SUR L ETUDE DES DONNEES FINANCIERES ET STATISTIQUES A L AIDE DU LOGICIEL SCILAB PAR : MAROOF ASIM DAN BENTOLILA WISSAM ESSID GROUPE 1 LM206 Lundi 10H45 INTRODUCTION : ( Ce rapport est un compte

Plus en détail

Cours Fonctions de deux variables

Cours Fonctions de deux variables Cours Fonctions de deux variables par Pierre Veuillez 1 Support théorique 1.1 Représentation Plan et espace : Grâce à un repère cartésien ( ) O, i, j du plan, les couples (x, y) de R 2 peuvent être représenté

Plus en détail

Solutions optimales multiples. 3D.1 Unicité de la solution optimale du modèle (FRB)

Solutions optimales multiples. 3D.1 Unicité de la solution optimale du modèle (FRB) 3D Solutions optimales multiples 3D.1 Unicité de la solution optimale du modèle (FRB) Le modèle (FRB) admet une solution optimale unique. En effet (voir page 182), l'algorithme du simplexe se termine par

Plus en détail

NOM : PRENOM : Centre d écrit : N Inscription : Série STI2D et STL. Mercredi 15 mai 2013. Epreuves Geipi Polytech

NOM : PRENOM : Centre d écrit : N Inscription : Série STI2D et STL. Mercredi 15 mai 2013. Epreuves Geipi Polytech NOM : PRENOM : Centre d écrit : N Inscription : SUJET DE MATHÉMATIQUES Ne rien inscrire ci-dessous Série STI2D et STL Mercredi 15 mai 2013 Epreuves Geipi Polytech 1 2 Nous vous conseillons de répartir

Plus en détail

La puissance électrique

La puissance électrique Nom : Prénom : Classe : Date : Physique Chimie La puissance électrique Fiche élève 1/5 Objectifs : o Comparer le produit de la tension d utilisation U appliquée aux bornes d une lampe par l'intensité I

Plus en détail

TP 1: Circuits passifs

TP 1: Circuits passifs Travaux Pratiques Avancés (TPA) d Electronique Année 2015-16 TP 1: ircuits passifs Sergio Gonzalez Sevilla *, Antonio Miucci Département de Physique Nucléaire et orpusculaire (DPN), Université de Genève

Plus en détail

Devoir surveillé n 1 : correction

Devoir surveillé n 1 : correction E1A-E1B 013-01 Devoir surveillé n 1 : correction Samedi 8 septembre Durée : 3 heures. La calculatrice est interdite. On attachera une grande importance à la qualité de la rédaction. Les questions du début

Plus en détail

Nom : Prénom : MPI : L oscilloscope et le générateur de fonctions - 1 - RENCONTRE AVEC L OSCILLOSCOPE ET LE GENERATEUR DE FONCTIONS

Nom : Prénom : MPI : L oscilloscope et le générateur de fonctions - 1 - RENCONTRE AVEC L OSCILLOSCOPE ET LE GENERATEUR DE FONCTIONS Nom : Prénom : MPI : L oscilloscope et le générateur de fonctions - 1 - RENCONTRE AVEC L OSCILLOSCOPE ET LE GENERATEUR DE FONCTIONS I RENCONTRE AVEC L OSCILLOSCOPE : 1) Observation du signal : a) Dessiner

Plus en détail

En 2005, année de sa création, un club de randonnée pédestre comportait 80 adhérents. Chacune des années suivantes on a constaté que :

En 2005, année de sa création, un club de randonnée pédestre comportait 80 adhérents. Chacune des années suivantes on a constaté que : Il sera tenu compte de la présentation et de la rédaction de la copie lors de l évaluation finale. Les élèves n ayant pas la spécialité mathématique traiteront les exercices 1, 2,3 et 4, les élèves ayant

Plus en détail

Loi normale ou loi de Laplace-Gauss

Loi normale ou loi de Laplace-Gauss LivreSansTitre1.book Page 44 Mardi, 22. juin 2010 10:40 10 Loi normale ou loi de Laplace-Gauss I. Définition de la loi normale II. Tables de la loi normale centrée réduite S il y avait une seule loi de

Plus en détail