Chapitre V : Les organes du turboréacteur et leur fonction.

Documents pareils
ÉJECTEURS. CanmetÉNERGIE Juillet 2009

Premier principe de la thermodynamique - conservation de l énergie

Cours de turbomachine à fluide compressible

BREVET DE TECHNICIEN SUPÉRIEUR AGRICOLE SUJET

U-31 CHIMIE-PHYSIQUE INDUSTRIELLES

COURS DE THERMODYNAMIQUE

Premier principe : bilans d énergie

Equipement d un forage d eau potable

NOTIONS FONDAMENTALES SUR LES ENERGIES

Production d eau chaude sanitaire thermodynamique, que dois-je savoir?

Les très grandes souffleries de l ONERA 2014

Annexe 3 Captation d énergie

NOTIONS DE PERTE DE CHARGE PERTE DE PRESSION

L énergie sous toutes ses formes : définitions

Etude numérique et expérimentale du processus de recompression le long d un éjecteur supersonique

Chapitre 4 Le deuxième principe de la thermodynamique

1 Thermodynamique: première loi

Datacentre : concilier faisabilité, performance et éco-responsabilité

Réduction de la pollution d un moteur diesel

Initiation à la Mécanique des Fluides. Mr. Zoubir HAMIDI

Le turbo met les gaz. Les turbines en équation

DYNAMIQUE DE FORMATION DES ÉTOILES

L énergie de l air extérieur pour une eau chaude sanitaire naturellement moins chère

Physique : Thermodynamique

Programme Pédagogique National du DUT «Génie thermique et énergie»

Exemples d application

Catalogue Diffuseur industriel WKD 381

Chapitre 3 LES GAZ PARFAITS : EXEMPLES DE CALCULS DE GRANDEURS THERMODYNAMIQUES

A. Énergie nucléaire 1. Fission nucléaire 2. Fusion nucléaire 3. La centrale nucléaire

Chapitre 7: Dynamique des fluides

METEOROLOGIE. Aéroclub Besançon La Vèze. Cours MTO - Ivan TORREADRADO 1. F-SO au FL65 over LFQM

Mesure de la dépense énergétique

2 ) Appareillage :L'appareil utilisé est un banc d'essai portatif CEV dont la photo et le schéma de principe indiqués ci-dessous ( figures 1 et 2 )

Chapitre n 6 MASSE ET ÉNERGIE DES NOYAUX

Contenu pédagogique des unités d enseignement Semestre 1(1 ère année) Domaine : Sciences et techniques et Sciences de la matière

CHAÎNES ÉNERGÉTIQUES I CHAÎNES ÉNERGÉTIQUES. II PUISSANCE ET ÉNERGIE

SCIENCES TECHNOLOGIES

1 Problème 1 : L avion solaire autonome (durée 1h)

Exercice 1. Exercice n 1 : Déséquilibre mécanique

À propos d ITER. 1- Principe de la fusion thermonucléaire

Phénomènes dangereux et modélisation des effets

Saisie des chauffe-eau thermodynamiques à compression électrique

PHYSIQUE-CHIMIE. Partie I - Propriétés de l atome

36% T.Flow VMC hygroréglable & chauffe eau thermodynamique QUAND LA VENTILATION RÉINVENTE L EAU CHAUDE. BÉNÉFICIEZ DE

Optimisation des systèmes énergétiques Master 1 : GSI Génie Energétique et Thermique

de l Université Laval Orientations et exigences générales et techniques de construction

T.P. FLUENT. Cours Mécanique des Fluides. 24 février 2006 NAZIH MARZOUQY

6 CYCLES DE PRODUCTION D'ÉLECTRICITÉ À VAPEUR

Réduire sa consommation d énergie dans les entreprises industrielles

2 e partie de la composante majeure (8 points) Les questions prennent appui sur six documents A, B, C, D, E, F (voir pages suivantes).

Notions physiques Niveau 2

Pompe à chaleur Air-Eau. Confort et économies

Incitants relatifs à l installation de pompes à chaleur en Région wallonne

I. Introduction: L énergie consommée par les appareils de nos foyers est sous forme d énergie électrique, facilement transportable.

Comment peut-on produire du chauffage et de l'eau chaude à partir de l'air? EFFICACITÉ POUR LES MAISONS

ETUDE DES PERFORMANCES D UN SYSTEME EOLIEN. APPLICATION POUR DES SITES ALGERIENS

PHYSIQUE Discipline fondamentale

Eau chaude Eau glacée

UNIVERSITÉ D ORLÉANS. THÈSE présentée par :

Prescriptions Techniques

Simulation numérique de l écoulement compressible supersonique Application aux tuyères propulsives à combustible liquide hydrogène

Des systèmes de chauffage avec pompe à chaleur et accumulateur de chaleur pour les construction dans les zones de montagne.


Catalogue Diffuseur à jet hélicoïdal DAL 359

DAHER-SOCATA dévoile le TBM 900, son nouveau TBM

Monitoring de surface de sites de stockage de CO 2 SENTINELLE. (Pilote CO2 de TOTAL Lacq-Rousse, France) Réf. : ANR-07-PCO2-007

8 Ensemble grand-canonique

UTILISATION DE GT-Suite EN THERMIQUE MOTEUR Exemple d utilisation

Soumise à l effet du vent, à la différence

Introduction aux plasmas. Magneto-hydrodynamique

Centre Universitaire LA CITADELLE 220, avenue de l Université B.P DUNKERQUE CEDEX 1 GUIDE DES ETUDES LICENCE PROFESSIONNELLE

MODELISATION DE LA COMBUSTION D'UN MOTEUR A ESSENCE

2.0. Ballon de stockage : Marque : Modèle : Capacité : L. Lien vers la documentation technique :

Synthèse sur les réglementations et permis relatifs à l installation et à l exploitation de pompes à chaleur en Région wallonne

LA DISPERSION ATMOSPHERIQUE

Séquence 9. Étudiez le chapitre 11 de physique des «Notions fondamentales» : Physique : Dispersion de la lumière

ALFÉA HYBRID DUO FIOUL BAS NOX

Pourquoi une. Maison BBC

Réduction des consommations d hydrocarbures par pré-traitement physique

Fiche d application. 7 octobre

1 RÉPUBLIQUE FRANÇAISE MINISTÈRE DE L EMPLOI, DE LA COHÉSION SOCIALE ET DU LOGEMENT ARRÊTÉ

Etude de faisabilité

Conception et construction des ouvrages gaz. Club de la Performance Immobilière

AIDE-MÉMOIRE LA THERMOCHIMIE TABLE DES MATIERES

LYCEE TECHNIQUE PIERRE EMILE MARTIN BOURGES ETUDE D UN TRAITEMENT DE SURFACE

Molécules et Liaison chimique

Mesures calorimétriques

Fiche commerciale. Pompes à chaleur. Arcoa duo Arcoa bi-bloc MT pompes a chaleur bi-bloc INNOVATION bi-bloc MT

Variantes du cycle à compression de vapeur

LA CONSOMMATION D ENERGIE EN ALLEMAGNE ET EN FRANCE : UNE COMPARAISON INSTRUCTIVE

Stockage de chaleur solaire par sorption : Analyse et contrôle du système à partir de sa simulation dynamique

Énergie décentralisée : La micro-cogénération

Système à débit variable T.One

Chaudières et chaufferies fioul basse température. Olio 1500, 2500, 3500, 4500, 7000

Ce dispositif fiscal, mis en place en 2005, est en vigueur jusqu'en 2016.

FICHE INFORMATION. Le Comptage comptage individuel. Votre partenaire en économie d énergie

TRAITEMENT D'AIR DES PISCINES COUVERTES

Thermodynamique (Échange thermique)

Planification de la Maintenance des Mirage 2000-N sous ms Project

Physique: 1 er Bachelier en Medecine. 1er juin Duree de l'examen: 3 h. Partie 1: /56. Partie 2 : /20. Nom: N ō carte d étudiant:

Transcription:

Chapitre V : Les organes du turboréacteur et leur fonction. V.1 : Introduction. Ce chapitre traite exclusivement, l aspect thermodynamique et énergétique des cinq stations des turboréacteurs. Le coté technologique sera traité dans le cours technologie des turboréacteurs (S6) 0 1 2 3 4 5 Figure n 15 : Schéma d un turboréacteur simple flux représentant les différentes stations Les principaux organes d'un turboréacteur sont les suivants. L entrée d air : 0 1 Le Compresseur basse et haute pression : 1 2 La chambre de combustion : 2 3 La turbine basse et haute pression : 3 4 La tuyère : 4 5 Cours de thermopropulsion II (Dr HENNI MANSOUR Zoubir) Page 48

V.2: L'entrée d'air. V.2.1 : Définition. Chapitre V: Les organes du turboréacteur et leur fonction. L entrée d air est un conduit destiné à capter l'air et à 'amener dans les meilleurs conditions possibles à l'entrée du compresseur. Elle transforme l'énergie cinétique de l'air capté en énergie potentielle, par ralentissement de l'écoulement. Lorsque l'avion avance, l'air pénètre par ce conduit en fournissant l'air requis au compresseur. Sa conception doit en outre être parfaite au niveau aérodynamique * pour ne pas affecter les performance de l'avion c'est a dire éviter le phénomène de trainée. * de diriger l'air uniformément dans le compresseur, en évitant au maximum les turbulences. Figure n : 16 Entrée d'air et soufflante V.2.2 : Etude thermodynamique. T P i0 P i1 P 1 0 1 T i0 =T i1 V 1 T i1is V 0 1 1 is T 1 T 0 0 P 0 S Figure n 17 : évolution de l'air dans l'entrée d'air. Cours de thermopropulsion II (Dr HENNI MANSOUR Zoubir) Page 49

Le Premier principe de la thermodynamique pour un système ouvert donne : =..(86) =0 (pas de travail technique dans le diffuseur). Q=0 (évolution supposée adiabatique). =0 (pas de dénivellation). ou :.(87) = (88) conversion de l énergie cinétique en pression. On peut écrire également :.(89) ou : = = = cte (90) Le terme = H i = cte Enthalpie totale. Soit..(91) Conservation de l enthalpie totale. Pour un gaz parfait, H= C p.t.(92) Ou encore, + = + = Or : V = M.a et a = = M 2.γ.r.T.(93) Et (94) D où :.T.(95) Or : Ou :..(96) Ou encore :.(97) Conservation de la température d impact Si de plus, l évolution est réversible (sans pertes) la 2 ème loi de poisson donne : Cours de thermopropulsion II (Dr HENNI MANSOUR Zoubir) Page 50

T. = cte ou = cte..(98) Or : T =.(99) et P = (100) En remplaçant (99) et (100) dans (98), on obtient :. = = = cte Comme T i = cte, cela entraine si l évolution est réversible P i = cte..(101) Ou : P io = P i1 = cte.(102) Conservation de la pression totale. Efficacité d'une entrée d'air. Dans le cas d'un écoulement isentropique (adiabatique et réversible), la pression totale (ou génératrice) devrait rester constante le long de l'écoulement (c'est-à-dire le long de l'entré d'air) Malheureusement, l'évolution dans l'entrée d'air se fait avec des frottements (pertes) et la pression totale à la sortie du diffuseur est inferieure à ce quelle serait dans le cas d'une évolution isentropique. La température totale s'est conservée. On définit alors l'efficacité de l'entrée d'air comme étant : é é = 3.(104) Rappelons que :.(105) et Or : T i0 =T i1 (106) Cours de thermopropulsion II (Dr HENNI MANSOUR Zoubir) Page 51

Or : =1 + (107) Or : =1 + =1 +..(108) Evolution isentropique : = = 1 +..(109)..(110) On a également..(111) Résumé. =..(112) Entrée d air parfaite Entrée d air type Pitot subsonique Entrée d air (ou diffuseur 0 1). * Grandeurs totales Entrée d air parfaite (isentropique)..(113) * Grandeurs totales Entrée d air avec pertes..(114) = (115)..(116) Cours de thermopropulsion II (Dr HENNI MANSOUR Zoubir) Page 52

V.3 : Le compresseur.. IV.3.1 : Définition et description ( voir chapitre II) IV.3.2 : Etude thermodynamique. T P i2 T i2 = T i2 T i2 is i 2 is i 2 I 2 P i2 P 2 1 ROTOR 2 STATOR 2 2 is P 2 V 1 V 2 P i1 T 2 T i1 i 1 T 1 T 1 1 P 1 S Figure n 18 : évolution de l'air dans un étage de compresseur. 1 2 is : Compression mécanique théoriquement isentropique (adiabatique et réversible) 1 2 : Compression réelle. Travail théorique de( l u.d.m) du fluide transvasé. 1 er principe de la thermodynamique pour un système ouvert. (W T + Q) 1-2is =ΔH 1-2is + ΔE C1-2is +ΔEp 1-2is..(117) (W T + Q) 1-2is =(H 2is H 1 ) + ½(V 2is 2 V 1 2 ) + g (z 2is z 1 ).(118) Compression adiabatique Q 1-2is =0 Pas de dénivellation g (z 2is z 1 )=0 (W T ) 1-2 = (H 2 H 1 ) + ½(V 2 2 V 1 2 )..(119) Pour un gaz parfait on a : (W T ) 1-2 = C p (T 2 T 1 ) + ½ (V 2 2 V 1 2 ).(120) Cours de thermopropulsion II (Dr HENNI MANSOUR Zoubir) Page 53

(W T ) 1-2 = C p + ½ (V 2 2 V 1 2 )...(121) Or : é T 2is 2 P2 P1 = = = 1 =..(122) S Remplaçons (122) dans (121) on obtient : (W T ) 1-2 = C p + ½ (V 2 2 V 1 2 ).(123) Or : = =..(124) (W T ) 1-2 = C p + ½ (V 2 2 V 1 2 ).(125) Gaz parfait : Cp = et l équation (125) s écrit (W T ) 1-2 = + ½ (V 2 2 V 1 2 ).(126) Remarque : Pour une évolution isentropique =1 (W T ) 1-2 = C p + ½ (V 2 2 V 1 2 )..(127) (W T ) 1-2 = + ½ (V 2 2 V 1 2 ) (128) En grandeurs totales on peut écrire : W T = (H 2 + ½ V 2 2 ) - ( H 1 + ½V 1 2 ) (129)) Cours de thermopropulsion II (Dr HENNI MANSOUR Zoubir) Page 54

En posant : H i = H + ½ V 2 (Enthalpie totale), On obtient : (W T ) 1-2 = H i2 H i1. (130) Variation d Enthalpie totale entre sortie et entrée compresseur. Gaz parfait (W T ) 1-2 = C p (T 2 T 1 ) + ½ (V 2 2 V 1 2 ).(131) (W T ) 1-2 = (C p T 2 +½ V 2 2 )- (C p T 1 +½ V 1 2 ).(132) (W T ) 1-2 = C p [( ) ( ) ] (133) (W T ) 1-2 = Cp (T i2 T i1 ) (134) (W T ) 1-2 = C p.(135) Or : = =..(136) =.(137) (W T ) 1-2 = C p (138) = (W T ) 1-2 = C p = C p.(139) Gaz parfait : Cp = et l équation (139) s écrit (W T ) 1-2 =.. (140) Pour une transformation isentropique, on peut écrire : (W T ) 1-2is = H i2is H i1.(141) (W T ) 1-2is = C p (T i2is T i1 ).(142) (W T ) 1-2is = C p = C p.(143) (W T ) 1-2is = =..(144) Cours de thermopropulsion II (Dr HENNI MANSOUR Zoubir) Page 55

Récapitulatif. Compression réelle En grandeurs statiques et vitesses 2 (W T ) 1-2 = (H 2 H 1 ) + ½(V 2 V 2 1 ) Pour un gaz parfait on a : (W T ) 1-2 = C p (T 2 T 1 ) + ½ (V 2 2 V 2 1 ) (W T ) 1-2 = C p + ½ (V 2 2 V 1 2 ) (W T ) 1-2 = + ½ (V 2 2 V 1 2 ) En grandeurs totales : (W T ) 1-2 = H i2 H i1 Pour un gaz parfait on a : (W T ) 1-2 = Cp (T i2 T i1 ) (W T ) 1-2 = C p = C p (W T ) 1-2 = Compression isentropique. En grandeurs statiques et vitesses. 2 (W T ) 1-2is = (H 2is H 1 ) + ½(V 2 V 2 1 ) Pour un gaz parfait on a : Cours de thermopropulsion II (Dr HENNI MANSOUR Zoubir) Page 56

(W T ) 1-2is = C p (T 2is T 1 ) + ½ (V 2 2 V 1 2 ) (W T ) 1-2is = C p + ½ (V 2 2 V 1 2 ) (W T ) 1-2is = + ½ (V 2 2 V 1 2 ) En grandeurs totales (W T ) 1-2is = H i2is H i1 Pour un Gaz parfait. (W T ) 1-2is = Cp (T i2is T i1 ) (W T ) 1-2is = C p = C p (W T ) 1-2is = = Rendements d un compresseur. Rendement isentropique. On pratique, on ne peut pas négliger les frottements internes au compresseur car pour obtenir un même taux de compression on retrouve en sortie une température T i2 >T i2is é = = = Or : =..(145) En posant : et On obtient : Cours de thermopropulsion II (Dr HENNI MANSOUR Zoubir) Page 57

(146) Egalement : Ou : (147) Taux de compression compression en fonction du rendement isentropique de (148) Rapport de température en fonction du rendement isentropique de compression =.(149) Taux de compression en fonction du rendement polytropique de compression Pour une compression élémentaire, le rendement polytropique de compression est donné par : =...(150) Cours de thermopropulsion II (Dr HENNI MANSOUR Zoubir) Page 58

Gaz parfait : = r.t et =. =.(151) Delà, On peut tirer : =.(152) En intégrant de 1 à 2, on obtient :.(153) (154) = or =1 + et = D où finalement : = = =..(155) Evolution du rendement isentropique de compression en fonction du taux de compression. D après l équation (148), on a : = = = (155).. (156) Cours de thermopropulsion II (Dr HENNI MANSOUR Zoubir) Page 59

Or, la formule (155) donne : = = = = = - (157) Remplaçons (157) dans (156)...(158) 0.92 0.90 0.88 0.86 10 20 30 40 Figure n 19 : évolution du rendement isentropique de compression en fonction du rendement polytropique de compression. Compresseurs à étages multiples. Soient : Indice 1 : Entrée du compresseur. Indice 2 : Sortie du compresseur. avec : et Compresseur à N étages. : rendement isentropique de l étage Sj. : taux de compression de l étage Sj : rapport de température de l étage Sj Cours de thermopropulsion II (Dr HENNI MANSOUR Zoubir) Page 60

Pour un étage on a : Chapitre V: Les organes du turboréacteur et leur fonction. (147) Etage n 1 : 0 1 Etage n 2 : 1 2. Etage n j : j-1 j Etage n N : N-1 N 1 compresseur 2 + + +.+ + + + 0 1 2 J-1 j N-1 N Etage 1 Etage 2 Etage j Etage N P i0 = P i1 P in = P i2 P i0 = P i1 P in = P i2 = =. (159) Or, pour l étage Sj on a : ou :.(160) Ou encore, = 1 +..(161) Pour le compresseur, = = (162) On remplace (162) dans (159) = (163) Cours de thermopropulsion II (Dr HENNI MANSOUR Zoubir) Page 61

Pour simplifier, on suppose ( pour un étage j) : = = et = = = =.(164) = =...(165) On a aussi, = =.(166) Ou : =..(167) On obtient donc le rendement isentropique de compression (compresseur) : = = (168) En remplaçant par on obtient :.(169) IV.4: Chambre de combustion IV.4.1 :Rôle. Assure le mélange combustible (kérosène) et Oxygène (contenu dans l air) et permette la transformation la plus complète possible de l énergie chimique du mélange en énergie calorifique. Description. Voir cours technologie turboréacteurs Cours de thermopropulsion II (Dr HENNI MANSOUR Zoubir) Page 62

Figure n 20 : Chambre de combustion photo IV.4.2 : Etude thermodynamique. T T i3is 3is P i3is P i3 T i3 3 2 Figure n 21 : évolution des gaz dans la chambre de combustion S 2 3 is : Combustion isobare (sans pertes). La puissance calorifique mise en jeu dans une chambre de combustion et la l élévation de température qui s en suit sont données par l expression suivante : c. P ci = ( a + c) H i3is a.h i2 (170) pour un gaz parfait on a : avec : pouvoir calorifique inférieur en kj/kg = (171) = -...(172) Cours de thermopropulsion II (Dr HENNI MANSOUR Zoubir) Page 63

=. (173) =.(174) =.(175) =..(176) ou : = =.(177) Avec : = f (dosage) kg fuel/kg air. 2 3 : Combustion avec pertes. En prenant en compte la perte de charge due aux frottements du fluide, la pression à la sortie de la chambre sera : Pi 2 = P 3iis = Pi 3 + ΔP Avec : Pi 3 <Pi 2 Pi 3 = Pi 2 ΔP = Pi 2 (1 - )..(178) Rendement thermique réel de la chambre de combustion. = =.. (179) =..(180) = + (181) = -.(182) Cours de thermopropulsion II (Dr HENNI MANSOUR Zoubir) Page 64

= = = f.(183) IV.5: La turbine. IV.5.1 : Description et rôle ( voir chapitre II) IV.5.2 : Etude thermodynamique. T T i3 =T i3is I 3 P i3 i 3 P i3 P 3 3 3 stator 3 4 rotor P 3 i 4 P i4 P 4 T i4 T i4is P i4is i 4is T 3 T 4 Figure n 21 : évolution du gaz dan un étage de turbine 3 4 is : Détente isentropique (adiabatique et réversible) 3 4 : Détente réelle. Expression du travail indiqué de ( l u.d.m)( Energie cédée par les gaz à la turbine). 1 er principe de la thermodynamique pour un système ouvert. (W T + Q) 3-4 =ΔH 3-4 + ΔE C3-4 +ΔEp 3-4...(184) (W T + Q) 3-4 =(H 4 H 3 ) + ½(V 4 2 V 3 2 ) + g (z 4 z 3 ).(185) Compression adiabatique Q 3-4 =0 Pas de dénivellation g (z 4 z 3 )=0 (W T ) 3-4 = (H 4 H 3 ) + ½(V 4 2 V 3 2 )..(186) Cours de thermopropulsion II (Dr HENNI MANSOUR Zoubir) Page 65

Pour un gaz parfait on a : (W T ) 3-4 = C p (T 4 T 3 ) + ½ (V 2 4 V 2 3 )...(187) (W T ) 3-4 = C p + ½ (V 2 4 V 2 3 )...(188) Or : T 3 P3 P4 = = = 4is 4 =.(189) S Remplaçons (189) dans (188) on obtient : (W T ) 3-4 = C p + ½ (V 4 2 V 3 2 ).(190) Or : = =..(191) (W T ) 3-4 = C p + ½ (V 4 2 V 3 2 )..(192) Gaz parfait : Cp = et l équation (192) s écrit (W T ) 3-4 = + ½ (V 4 2 V 3 2 ).(193) Remarque : Pour une évolution isentropique =1 (W T ) 3-4 = C p + ½ (V 4 2 V 3 2 )..(194) (W T ) 3-4 = + ½ (V 4 2 V 3 2 ) (195) En grandeurs totales on peut écrire : Cours de thermopropulsion II (Dr HENNI MANSOUR Zoubir) Page 66

W T = (H 4 + ½ V 4 2 ) - ( H 3 + ½V 3 2 ) (196)) En posant : H i = H + ½ V 2 (Enthalpie totale), On obtient : Gaz parfait (W T ) 3-4 = H i4 H i3. (197) Variation d Enthalpie totale entre sortie et entrée compresseur. (W T ) 3-4 = C p (T 4 T 3 ) + ½ (V 4 2 V 3 2 ).(198) (W T ) 3-4 = (C p T 4 +½ V 4 2 )- (C p T 3 +½ V 3 2 ).(199) (W T ) 3-4 = C p [( ) ( ) ] (200) (W T ) 3-4 = Cp (T i4 T i3 ) (201) (W T ) 3-4 = C p.(202) 3 Or : T i 3 Pi 3 Pi 4 = = = i 4 i 4is =.(203) S Remplaçons (203) dans (202) (W T ) 3-4 = C p (204) Or, = (W T ) 3-4 = C p.(205) Gaz parfait : Cp = et l équation (205) s écrit (W T ) 3-4 =...(206) Cours de thermopropulsion II (Dr HENNI MANSOUR Zoubir) Page 67

Pour une transformation isentropique, on peut écrire : (W T ) 3-4is = H i4is H i3 (W T ) 3-4is = C p (T i4is T i3 ).(207) (W T ) 3-4is = C p = C p...(208) (W T ) 3-4is = =..(209) Récapitulatif: Détente réelle. En grandeurs statiques et vitesses. 2 (W T ) 3-4 = (H 4 H 3 ) + ½(V 4 V 2 3 ) Pour un gaz parfait on a : (W T ) 3-4 = C p (T 4 T 3 ) + ½ (V 2 4 V 2 3 ) (W T ) 3-4 = C p + ½ (V 2 4 V 2 3 ) (W T ) 3-4 = + ½ (V 4 2 V 3 2 ) En grandeurs totales on peut écrire : (W T ) 3-4 = H i4 H i3 Pour un gaz parfait: (W T ) 3-4 = Cp (T i4 T i3 ) (W T ) 3-4 = C p (W T ) 3-4 = Cours de thermopropulsion II (Dr HENNI MANSOUR Zoubir) Page 68

Détente isentropique. En grandeurs statiques et vitesses. 2 (W T ) 3-4is = (H 4is H 3 ) + ½(V 4is V 2 3 ) Pour un gaz parfait on a : (W T ) 3-4 = C p (T 4 T 3 ) + ½ (V 2 4 V 2 3 ) (W T ) 3-4 = C p + ½ (V 2 4 V 2 3 ) (W T ) 3-4 = + ½ (V 2 4 V 2 3 ) En grandeurs totales. (W T ) 3-4is = H i4is H i3 Pour un gaz parfait on a : (W T ) 3-4is = C p (T i4is T i3 ) (W T ) 3-4is = C p = C p (W T ) 3-4is = = Rendement isentropique. é = = = Or : =.(210) En posant : et On obtient :. (211) Cours de thermopropulsion II (Dr HENNI MANSOUR Zoubir) Page 69

Taux de détente d une transformation réelle. = Ce qui donne : = = (212) Taux de détente en fonction du rendement polytropique de détente...(213) =.(214) Delà, on retrouve la relation :. =.....(215) En intégrant de 3 à 4, on obtient :...(216)... (217).. (218).. (219) Ou : = =..(220) Avec : = Evolution du rendement isentropique de détente en fonction du taux de détente.. = 3 = = 3.. (221) Cours de thermopropulsion II (Dr HENNI MANSOUR Zoubir) Page 70

Or d après (190), = En remplaçant ( ) dans ( ) on obtient :.(222) =...(223) IV.6 : La tuyère. IV.6.1 : Définition. Figure n 23 : Tuyère photo Le rôle de la tuyère est de poursuivre la détente de la turbine et de transformer l'énergie potentielle en énergie cinétique. Cette transformation procure une poussée (le reste de la poussée provenant du moteur et de la prise d'air). L'arrière-corps est la partie externe de la tuyère. Pour les avions subsoniques, les tuyères sont convergentes ; les flux primaire et secondaire peuvent être séparés, confluents ou mélangés. Pour les avions supersoniques, les tuyères sont convergentesdivergentes. Les sections du col et de sortie sont réglables de manière à assurer un bon fonctionnement de la tuyère dans tout le domaine de vol (subsonique, supersonique avec et sans réchauffe). D après la relation d HYGONIOT, Avec : S : section de la tuyère. V : vitesse des gaz. Cours de thermopropulsion II (Dr HENNI MANSOUR Zoubir) Page 71

On a : Pour M <0 V dans un convergent. dans un divergent. Pour M >0 V dans un convergent. V dans un divergent. IV.6.2 Tuyères convergentes. La plus part des aéronefs n étaient équipés que des tuyères simplement convergentes (avions civils et avion de transport). Nous nous contentons dans cette étude, que des tuyères convergentes. Les tuyères convergentes- divergentes seront traitées dans le cours de turboréacteurs (master 1). Espace amont Espace aval P i P 0 T i V=0 col tuyère Pour P 0 = cte : Si P i = P 0 (débit massique nul). Si P i >P 0, on faisant croitre P i, la différence P i P 0 augmente la vitesse de sortie augmente jusqu'à la valeur critique V c = a c ( M=1) à la Sortie de la tuyère. Ce qui donne d après la relation :..(224) 3.(225) Cours de thermopropulsion II (Dr HENNI MANSOUR Zoubir) Page 72

On appelle le rapport lorsque M =1, le rapport critique. Dans ce cas, on dit que P 0 est la pression critique et on la note P c ( P 0 = P c ) Fonctionnement pratique. Dans la pratique, le rapport réel r r r c 3 cas se présentent: = M 5 <1...(226) Pour un rapport avec la relation de SAINT VENANT. donné, on peut calculer M 5 à la sortie de la tuyère On a dans ce cas : - Débit masse n est pas maximal. - Tuyère n est pas sonique. - Ecoulement subsonique. - Pression statique au col P 5 égale à la pression atmosphérique P 0 (P 5 = P 0 ) détente complète. On dit que la tuyère est adaptée. Rencontré dans les faibles régimes (ralenti sol ralenti vol). = M 5 =1..(227) On a dans ce cas : - Vitesse maximale. - Débit masse maximal. - Poussée maximale. - Tuyère adaptée dans la plus part des cas. - Correspond au régime maximal du moteur. Rencontré pour des régimes proches du régime de décollage. = M 5 >1 (228) Cours de thermopropulsion II (Dr HENNI MANSOUR Zoubir) Page 73

En résumé : Chapitre V: Les organes du turboréacteur et leur fonction. Ce n est pas possible avec une tuyère convergente d après la relation d HUGONIOT. Nous aurons forcement en section de sortie tuyère : M 5 =1 avec : = Tuyère sonique à l intérieur de laquelle la détente est incomplète.(p 5 >P 0 ) Dans ce cas, la détente n est pas terminée en sortie tuyère et elle se poursuivra à l extérieur par une succession d ondes de détente et de chocs jusqu'à la pression atmosphérique. r < r c Tuyère adaptée M 5 <1 r = r c Tuyère le plus souvent adaptée M 5 =1 Tuyère adaptée P 5 = P 0 r > r c Détente incomplète (P 5 >P 0 ) IV.6.3 : Etude thermodynamique. Le Premier principe de la thermodynamique pour un système ouvert donne : =0 (pas de travail technique dans le diffuseur). Q=0 (évolution supposée adiabatique). =0 (pas de dénivellation). = ou = Conversion de l enthalpie en énergie cinétique. On peut écrire également : ou : = = = cte Le terme = H i = cte Enthalpie totale. Soit Conservation de l enthalpie totale. Cours de thermopropulsion II (Dr HENNI MANSOUR Zoubir) Page 74

Pour un gaz parfait, H= Cp.T Ou encore, + = + = Or : V = M.a et a = = M 2.γ.r.T Et D où :.T Or : Ou : Ou encore : Conservation de la température d impact Si de plus, l évolution est réversible (sans pertes) la 2 ème loi de poisson donne : T. = cte ou = cte Or : T = et P = En remplaçant dans la loi de poisson, on obtient :. = = = cte Comme T i = cte, cela entraine si l évolution est réversible P i = cte Ou : P i4 = P i5 = cte Conservation de la pression totale. Cours de thermopropulsion II (Dr HENNI MANSOUR Zoubir) Page 75

Conditions atmosphériques. Entre 0 et 11000 m ( Troposphère) Température T en fonction de l altitude z. = 15 0.0065 z Pression P en fonction de l altitude z. Masse volumique ρ en fonction de z. ρ(z) = Avec : k =1.235 r= 287 j/kg K Cours de thermopropulsion II (Dr HENNI MANSOUR Zoubir) Page 76