SYLLABUS DE L ORIENTATION IAD. Introduction aux méthodes de recherche opérationnelle, optimisation et aide à la décision
|
|
|
- Nicolas Sénéchal
- il y a 9 ans
- Total affichages :
Transcription
1 SYLLABUS DE L ORIENTATION IAD Recherche opérationnelle Logique-Prolog Fouille de données Intelligence artificielle Informatique décisionnelle Projet 30h 40h 24h 20h 24h 20h Introduction aux méthodes de recherche opérationnelle, optimisation et aide à la décision Niveau : ING2 Spécialité mathématiques Orientation IAD Volume Horaire : 30 heures L objectif de ce cours est d introduire aux élèves les bases de la recherche opérationnelle et son application à l aide à la décision. La Recherche Opérationnelle fait partie intégrante des sciences de l Ingénieur. Cette discipline carrefour associant les mathématiques, l'économie et l'informatique. Elle nécessite une connaissance du domaine d'intervention. Elle a pour but de mieux comprendre et mieux résoudre les problèmes décisionnels. Le but de ce cours est de se familiariser avec les différentes méthodes utilisées pour résoudre ces problèmes d'optimisation. Pré requis : Introduction à la programmation linéaire Théorie des graphes Algorithmique. Structure de données avancées (liste, file, pile, arbre ). Maitrise d un langage de programmation (ADA, JAVA ou C++).
2 Méthodes exactes programmation dynamique recherche arborescente programmation linéaire en nombres réels, en nombres entiers ou binaires Méthodes approchées - heuristiques / métaheuristiques recuit simulé et variantes algorithmes évolutionnaires algorithme de recherche tabou algorithmes de colonies de fourmis algorithme pas essaim particulaire Elle se fait sur un projet de 4h sur le choix d un des sujets proposés. Programmation d une méthode adéquate pour la résolution du problème choisi Modéliser et résoudre le même problème en utilisant OPL Studio Comparer les résultats et conclusion Logique- Prolog- Programmation par contraintes Niveau : ING2 Spécialité mathématiques Orientation IAD Volume Horaire : 40 heures
3 L objectif de ce cours est d introduire aux élèves les bases de la logique et du langage Prolog. Un module de programmation par contraintes est ensuite présenté, permettant d aborder les notions des contraintes unaires, binaires et globales ainsi que les notions de consistance. Pré requis : Introduction à la logique de propositions et de prédicats Introduction au langage Prolog : les faits, les relations, les clauses de Horns, etc. Prolog : Traitement des bases de données, requêtes simples et récursives. Prolog : Manipulation des listes. Accès, ajout, suppression, etc. Programmation par contraintes : Problèmes de satisfaction de contraintes, Algorithmes retour en arrière, anticipation et anticipation avec choix du domaine minimal. Notions de consistances : Algorithmes AC1, AC2, AC4. Manipulation des contraintes globales. Outil : Gnu Prolog. Application : Problème de zèbre, de mariages stables, etc. Contrôle continu & Examen. Bibliographies L. STERLING and E. SHAPIRO. L'art de Prolog. Masson, R. Cori and D. Lascar. Logique mathématique, 2 vol. Masson, Fouille de données Niveau : ING2 Spécialité Mathématiques Orientation IAD Volume Horaire : 24 heures
4 Le cours de fouille de données permet aux étudiants : 1. d avoir une première approche de la problématique et des applications de la fouille de données. 2. d étudier plusieurs modèles ainsi que leurs applicabilités sur différents types de données. Pré-requis : Analyse de données Problématique, domaines et applications de la fouille de données. Nature des données et des attributs. Apprentissage supervisé ou non supervisé. Systèmes classifieurs. des classifieurs : Notions de précision et de rappel, erreur apparente, matrice de confusion et validation croisée. Comparaison entre deux modèles supervisé et non supervisé : les k plus proches voisins et les centres mobiles. Les règles d associations : algorithmes apriori et aprioritid. Génération des règles d associations. Propriétés de redondance simple et stricte. Les arbres de décisions. Les algorithmes ID3 et C4.5. Le classifieur bayésien naïf. Les réseaux bayésiens. Inférences descendante et ascendante. Loi du réseau byésien. Structure de bases : linéaire, en V ou en chapeau. Problèmes de prédiction et de diagnostic. Comparaison et bilan des méthodes étudiées via une étude de cas. Contrôle continu. Bibliographies U. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy. Advances in Knowledge Discovery and Data Mining,. AAAI/MIT Press, Ian H. Witten; Eibe Frank Data Mining: Practical machine learning tools and techniques, 2nd Edition. Morgan Kaufmann, Intelligence Artificielle Niveau : ING2 Spécialité Mathématiques Orientation IAD
5 Volume Horaire : 20 heures L'objectif du cours est de présenter aux élèves ingénieurs les différentes approches, méthodes et techniques de l'intelligence artificielle. Les techniques de résolution de problème en appliquant des algorithmes de recherche dans un espace de problèmes sont enseignées. Les élèves apprendront également des méthodes et des techniques d'apprentissage symbolique permettant à un système d'enrichir ses connaissances afin de s'adapter à son environnement. Pré-requis : Logique Prolog Théorie de Graphes. Recherche aveugle et guidée dans un espace d'états : Notion d'heuristique & Algorithme A*. Théorie de jeux : noyau de graphe et l'algorithme alpha-beta. Méthodes & techniques d'apprentissage automatique supervisé : l'algorithme élimination des candidats et l'espace de versions, l'algorithme foil & la résolution inverse. Examen. Bibliographies S. Russel and P. Norvig. Artificial Intelligence: A Modern Approach. Prentice-Hall International, Inc., T.M. Mitchell. Machine Learning. MCGraw, G.F. Luger and W.A. Stubblefield. Artificial Intelligence: Structures and Strategies for Complex Problem Solving. Addition-wesley, Informatique décisionnelle
6 Niveau : ING2 Génie mathématique orientation IAD Volume Horaire : 24 heures Ce cours d introduction au décisionnel a pour objet de fournir les bases sur ce qu est un système d information décisionnel : Concept généraux, Présentation de la modélisation Présentation des ETL, Présentation du reporting, Présentation de l OLAP, Pré-requis : les SGBD Système d information décisionnel, Présentation de chacune des composantes du système Cours +TP Examen
Université du Québec à Chicoutimi. Département d informatique et de mathématique. Plan de cours. Titre : Élément de programmation.
Université du Québec à Chicoutimi Département d informatique et de mathématique Plan de cours Titre : Élément de programmation Sigle : 8inf 119 Session : Automne 2001 Professeur : Patrice Guérin Local
Programme de l option Ingénierie d Aide à la Décision (IAD)
Programme de l option Ingénierie d Aide à la Décision (IAD) Responsable : Maria Malek 18 octobre 2013 1 Objectif Deux domaines sont explorés dans cette option : La fouille des données (Data Mining) : Découvrir
Intelligence Artificielle et Robotique
Intelligence Artificielle et Robotique Introduction à l intelligence artificielle David Janiszek [email protected] http://www.math-info.univ-paris5.fr/~janiszek/ PRES Sorbonne Paris Cité
Christophe CANDILLIER Cours de DataMining mars 2004 Page 1
Christophe CANDILLIER Cours de DataMining mars 2004 age 1 1. Introduction 2. rocessus du DataMining 3. Analyse des données en DataMining 4. Analyse en Ligne OLA 5. Logiciels 6. Bibliographie Christophe
Francis BISSON (06 794 819) Kenny CÔTÉ (06 836 427) Pierre-Luc ROGER (06 801 883) IFT702 Planification en intelligence artificielle
Francis BISSON (06 794 819) Kenny CÔTÉ (06 836 427) Pierre-Luc ROGER (06 801 883) PLANIFICATION DE TÂCHES DANS MS PROJECT IFT702 Planification en intelligence artificielle Présenté à M. Froduald KABANZA
Machines virtuelles Cours 1 : Introduction
Machines virtuelles Cours 1 : Introduction Pierre Letouzey 1 [email protected] PPS - Université Denis Diderot Paris 7 janvier 2012 1. Merci à Y. Régis-Gianas pour les transparents Qu est-ce qu une
Data Mining. Master 1 Informatique - Mathématiques UAG
Data Mining Master 1 Informatique - Mathématiques UAG 1.1 - Introduction Data Mining? On parle de Fouille de données Data Mining Extraction de connaissances à partir de données Knowledge Discovery in Data
Semestre 1. Objectifs Approfondissement de l environnement Java et de son interface de programmation d applications : réseaux, et processus.
Programmation Java avancée (3 ECTS 36h) Semestre 1 Approfondissement de l environnement Java et de son interface de programmation d applications : réseaux, et processus. Introduction. Rappels des concepts
Application de K-means à la définition du nombre de VM optimal dans un cloud
Application de K-means à la définition du nombre de VM optimal dans un cloud EGC 2012 : Atelier Fouille de données complexes : complexité liée aux données multiples et massives (31 janvier - 3 février
Pourquoi l apprentissage?
Pourquoi l apprentissage? Les SE sont basés sur la possibilité d extraire la connaissance d un expert sous forme de règles. Dépend fortement de la capacité à extraire et formaliser ces connaissances. Apprentissage
Programmes des classes préparatoires aux Grandes Ecoles
Programmes des classes préparatoires aux Grandes Ecoles Filière : scientifique Voies : Mathématiques, physique et sciences de l'ingénieur (MPSI) Physique, chimie et sciences de l ingénieur (PCSI) Physique,
Le "tout fichier" Le besoin de centraliser les traitements des fichiers. Maitriser les bases de données. Historique
Introduction à l informatique : Information automatisée Le premier ordinateur Définition disque dure, mémoire, carte mémoire, carte mère etc Architecture d un ordinateur Les constructeurs leader du marché
Business Intelligence avec SQL Server 2012 Maîtrisez les concepts et réalisez un système décisionnel
Avant-propos 1. À qui s'adresse ce livre? 9 2. Les pré-requis 10 3. Les objectifs du livre 10 Introduction 1. Présentation du décisionnel 15 1.1 La notion de décideur 15 1.2 Les facteurs d'amélioration
TP2_1 DE BUSINESS INTELLIGENCE ISIMA ZZ3 F3
TP2_1 DE BUSINESS INTELLIGENCE ISIMA ZZ3 F3 03/11/2014 Plan du TP 2 Présentation de la suite Microsoft BI Ateliers sur SSIS (2H) Ateliers sur RS (2H) 3 Présentation de la suite Microsoft BI Présentation
TP2 DE BUSINESS INTELLIGENCE ISIMA ZZ3 F3
TP2 DE BUSINESS INTELLIGENCE ISIMA ZZ3 F3 30/11/2011 Plan du TP 2 Rappel sur la chaine de BI Présentation de la suite Microsoft BI Ateliers sur SSIS (2H) Ateliers sur RS (2H) 3 Rappel sur la chaine de
Introduction à la B.I. Avec SQL Server 2008
Introduction à la B.I. Avec SQL Server 2008 Version 1.0 VALENTIN Pauline 2 Introduction à la B.I. avec SQL Server 2008 Sommaire 1 Présentation de la B.I. et SQL Server 2008... 3 1.1 Présentation rapide
Université Paris-Dauphine Département Mathématiques et Informatique de la Décision et des Organisations
Université Paris-Dauphine Département Mathématiques et Informatique de la Décision et des Organisations Mention : Domaine : Informatique des Organisations Mathématiques et Informatique de la Décisions
Masses de données. 1. Introduction 2. Problématiques 3. Socle de formation (non présenté) 4. Liens avec Formation INSA
Masses de données 1. Introduction 2. Problématiques 3. Socle de formation (non présenté) 4. Liens avec Formation INSA Rédacteurs : Mjo Huguet / N. Jozefowiez 1. Introduction : Besoins Informations et Aide
L apprentissage automatique
L apprentissage automatique L apprentissage automatique L'apprentissage automatique fait référence au développement, à l analyse et à l implémentation de méthodes qui permettent à une machine d évoluer
Business Intelligence avec SQL Server 2014 Maîtrisez les concepts et réalisez un système décisionnel
Avant-propos 1. À qui s'adresse ce livre? 9 2. Les pré-requis 10 3. Les objectifs du livre 11 Introduction 1. Présentation du décisionnel 13 1.1 La notion de décideur 14 1.2 Les facteurs d'amélioration
Programmation linéaire
1 Programmation linéaire 1. Le problème, un exemple. 2. Le cas b = 0 3. Théorème de dualité 4. L algorithme du simplexe 5. Problèmes équivalents 6. Complexité de l Algorithme 2 Position du problème Soit
4.2 Unités d enseignement du M1
88 CHAPITRE 4. DESCRIPTION DES UNITÉS D ENSEIGNEMENT 4.2 Unités d enseignement du M1 Tous les cours sont de 6 ECTS. Modélisation, optimisation et complexité des algorithmes (code RCP106) Objectif : Présenter
Etudier l informatique
Etudier l informatique à l Université de Genève 2015-2016 Les bonnes raisons d étudier l informatique à l UNIGE La participation à des dizaines de projets de recherche européens Dans la présente brochure,
1 Introduction et installation
TP d introduction aux bases de données 1 TP d introduction aux bases de données Le but de ce TP est d apprendre à manipuler des bases de données. Dans le cadre du programme d informatique pour tous, on
Master CCI. Compétences Complémentaires en Informatique. Livret de l étudiant
Master CCI Compétences Complémentaires en Informatique Livret de l étudiant 2014 2015 Master CCI Le Master CCI (Compétences Complémentaires en Informatique) permet à des étudiants de niveau M1 ou M2 dans
Introduction. Informatique décisionnelle et data mining. Data mining (fouille de données) Cours/TP partagés. Information du cours
Information du cours Informatique décisionnelle et data mining www.lia.univ-avignon.fr/chercheurs/torres/cours/dm Juan-Manuel Torres [email protected] LIA/Université d Avignon Cours/TP
Créer le schéma relationnel d une base de données ACCESS
Utilisation du SGBD ACCESS Polycopié réalisé par Chihab Hanachi et Jean-Marc Thévenin Créer le schéma relationnel d une base de données ACCESS GENERALITES SUR ACCESS... 1 A PROPOS DE L UTILISATION D ACCESS...
INF 232: Langages et Automates. Travaux Dirigés. Université Joseph Fourier, Université Grenoble 1 Licence Sciences et Technologies
INF 232: Langages et Automates Travaux Dirigés Université Joseph Fourier, Université Grenoble 1 Licence Sciences et Technologies Année Académique 2013-2014 Année Académique 2013-2014 UNIVERSITÉ JOSEPH
UEO11 COURS/TD 1. nombres entiers et réels codés en mémoire centrale. Caractères alphabétiques et caractères spéciaux.
UEO11 COURS/TD 1 Contenu du semestre Cours et TDs sont intégrés L objectif de ce cours équivalent a 6h de cours, 10h de TD et 8h de TP est le suivant : - initiation à l algorithmique - notions de bases
DUT. Informatique, orientation Imagerie Numérique. Domaine : Sciences, Technologies, Santé. Mention : Informatique
DUT Informatique, orientation Imagerie Numérique Domaine : Sciences, Technologies, Santé Mention : Informatique Organisation : Institut Universitaire de Technologie Lieu de formation : Le Puy en Velay
Analyse de grandes bases de données en santé
.. Analyse de grandes bases de données en santé Alain Duhamel Michaël Genin Mohamed Lemdani EA 2694 / CERIM Master 2 Recherche Biologie et Santé Journée Thématique Fouille de Données Plan. 1 Problématique.
Apprentissage Automatique
Apprentissage Automatique Introduction-I [email protected] www.lia.univ-avignon.fr Définition? (Wikipedia) L'apprentissage automatique (machine-learning en anglais) est un des champs
Analyses croisées de sites Web pour détecter les sites de contrefaçon. Prof. Dr. Olivier Biberstein
Analyses croisées de sites Web pour détecter les sites de contrefaçon Prof. Dr. Olivier Biberstein Division of Computer Science 14 Novembre 2013 Plan 1. Présentation générale 2. Projet 3. Travaux futurs
Évaluation et implémentation des langages
Évaluation et implémentation des langages Les langages de programmation et le processus de programmation Critères de conception et d évaluation des langages de programmation Les fondations de l implémentation
IT203 : Systèmes de gestion de bases de données. A. Zemmari [email protected]
IT203 : Systèmes de gestion de bases de données A. Zemmari [email protected] 1 Informations pratiques Intervenants : Cours : (A. Zemmari [email protected]) TDs, TPs : S. Lombardy et A. Zemmari Organisation
Ordonnancement en temps réel d un jobshop par métaheuristique hybride : étude comparative
Ordonnancement en temps réel d un jobshop par métaheuristique hybride : étude comparative Y. Houbad, M. Souier, A. Hassam, Z.Sari Laboratoire d automatique Tlemcen Faculté de technologie, Université Abou
Bases de données avancées Introduction
Bases de données avancées Introduction Dan VODISLAV Université de Cergy-Pontoise Master Informatique M1 Cours BDA Plan Objectifs et contenu du cours Rappels BD relationnelles Bibliographie Cours BDA (UCP/M1)
SQL Server 2012 et SQL Server 2014
SQL Server 2012 et SQL Server 2014 Principales fonctions SQL Server 2012 est le système de gestion de base de données de Microsoft. Il intègre un moteur relationnel, un outil d extraction et de transformation
Chapitre 9 : Informatique décisionnelle
Chapitre 9 : Informatique décisionnelle Sommaire Introduction... 3 Définition... 3 Les domaines d application de l informatique décisionnelle... 4 Architecture d un système décisionnel... 5 L outil Oracle
SQL SERVER 2008, BUSINESS INTELLIGENCE
SGBD / Aide à la décision SQL SERVER 2008, BUSINESS INTELLIGENCE Réf: QLI Durée : 5 jours (7 heures) OBJECTIFS DE LA FORMATION Cette formation vous apprendra à concevoir et à déployer une solution de Business
La problématique. La philosophie ' ) * )
La problématique!" La philosophie #$ % La philosophie &'( ' ) * ) 1 La philosophie +, -) *. Mise en oeuvre Data warehouse ou Datamart /01-2, / 3 13 4,$ / 5 23, 2 * $3 3 63 3 #, 7 Datawarehouse Data warehouse
Master Informatique Aix-Marseille Université
Aix-Marseille Université http://masterinfo.univ-mrs.fr/ Département Informatique et Interactions UFR Sciences Laboratoire d Informatique Fondamentale Laboratoire des Sciences de l Information et des Systèmes
Rappel sur les bases de données
Rappel sur les bases de données 1) Généralités 1.1 Base de données et système de gestion de base de donnés: définitions Une base de données est un ensemble de données stockées de manière structurée permettant
TANAGRA : un logiciel gratuit pour l enseignement et la recherche
TANAGRA : un logiciel gratuit pour l enseignement et la recherche Ricco Rakotomalala ERIC Université Lumière Lyon 2 5, av Mendès France 69676 Bron [email protected] http://eric.univ-lyon2.fr/~ricco
Info0804. Cours 6. Optimisation combinatoire : Applications et compléments
Recherche Opérationnelle Optimisation combinatoire : Applications et compléments Pierre Delisle Université de Reims Champagne-Ardenne Département de Mathématiques et Informatique 17 février 2014 Plan de
Didier MOUNIEN Samantha MOINEAUX
Didier MOUNIEN Samantha MOINEAUX 08/01/2008 1 Généralisation des ERP ERP génère une importante masse de données Comment mesurer l impact réel d une décision? Comment choisir entre plusieurs décisions?
Présentation de la majeure ISN. ESILV - 18 avril 2013
Présentation de la majeure ISN ESILV - 18 avril 2013 La Grande Carte des Métiers et des Emplois Sociétés de service Entreprises Administrations Grand- Public Sciences Utiliser Aider à utiliser Vendre APPLICATIONS:
ANNEXES. Evaluation de la formation à Polytech Lille Département GIS. Enseignements les plus utiles. Enseignements à renforcer
ANNEXES Evaluation de la formation à Polytech Lille Département GIS Enseignements les plus utiles Enseignements à renforcer Enseignements à intégrer Commentaires Généraux Accompagnement Professionnel Enseignements
UE 8 Systèmes d information de gestion Le programme
UE 8 Systèmes d information de gestion Le programme Légende : Modifications de l arrêté du 8 mars 2010 Suppressions de l arrêté du 8 mars 2010 Partie inchangée par rapport au programme antérieur Indications
La Certification de la Sécurité des Automatismes de METEOR
1 La Certification de la Sécurité des Automatismes de METEOR 2 un mot sur METEOR 3 Le projet METEOR, c'est... un système automatique complexe fortement intégré matériel roulant, équipements électriques,
Cours des Méthodes de Résolution Exactes Heuristiques et Métaheuristiques
Université Mohammed V, Faculté des Sciences de Rabat Laboratoire de Recherche Mathématiques, Informatique et Applications Cours des Méthodes de Résolution Exactes Heuristiques et Métaheuristiques MASTER
Le langage SQL Rappels
Le langage SQL Rappels Description du thème : Présentation des principales notions nécessaires pour réaliser des requêtes SQL Mots-clés : Niveau : Bases de données relationnelles, Open Office, champs,
données en connaissance et en actions?
1 Partie 2 : Présentation de la plateforme SPSS Modeler : Comment transformer vos données en connaissance et en actions? SPSS Modeler : l atelier de data mining Large gamme de techniques d analyse (algorithmes)
Cours de Master Recherche
Cours de Master Recherche Spécialité CODE : Résolution de problèmes combinatoires Christine Solnon LIRIS, UMR 5205 CNRS / Université Lyon 1 2007 Rappel du plan du cours 16 heures de cours 1 - Introduction
Initiation à la Programmation en Logique avec SISCtus Prolog
Initiation à la Programmation en Logique avec SISCtus Prolog Identificateurs Ils sont représentés par une suite de caractères alphanumériques commençant par une lettre minuscule (les lettres accentuées
PROGRAMME PEDAGOGIQUE. SPÉCIALITÉ Logistique Pour la Santé
PROGRAMME PEDAGOGIQUE MASTER RECHERCHE 2 ème année DOMAINE SCIENCES, TECHNOLOGIES, SANTE MENTION Ingénierie de la Santé SPÉCIALITÉ Logistique Pour la Santé Objectifs de la formation Le but de ce mastère
Intelligence Economique - Business Intelligence
Intelligence Economique - Business Intelligence Notion de Business Intelligence Dès qu'il y a une entreprise, il y a implicitement intelligence économique (tout comme il y a du marketing) : quelle produit
Optimisation Combinatoire (Méthodes approchées) II. Recherche Locale simple (Les bases)
Optimisation Combinatoire (Méthodes approchées) II. Recherche Locale simple (Les bases) Heuristique Constructive Itérativement, ajoute de nouvelles composantes à une solution partielle candidate Espace
DATA MINING SPATIAL UN PROBLEME DE DATA MINING MULTI-TABLES
DATA MINING SPATIAL UN PROBLEME DE DATA MINING MULTI-TABLES CHELGHOUM Nadjim *, ZEITOUNI * Karine * Institut Français de Recherche pour l Exploitation de la Mer (IFREMER) Laboratoire Environnement- Ressources
Une méthode de classification supervisée sans paramètre pour l apprentissage sur les grandes bases de données
Une méthode de classification supervisée sans paramètre pour l apprentissage sur les grandes bases de données Marc Boullé Orange Labs 2 avenue Pierre Marzin 22300 Lannion [email protected],
SQL Server 2012 Implémentation d'une solution de Business Intelligence (Sql Server, Analysis Services...)
Avant-propos 1. À qui s'adresse ce livre? 15 2. Pré-requis 15 3. Objectifs du livre 16 4. Notations 17 Introduction à la Business Intelligence 1. Du transactionnel au décisionnel 19 2. Business Intelligence
Apprentissage symbolique et statistique à l ère du mariage pour tous
Apprentissage symbolique et statistique à l ère du mariage pour tous Stéphane Canu asi.insa-rouen.fr/enseignants/~scanu RFIA 2014, INSA Rouen 2 juillet 2014 Apprentissage : humain vs. machine Les apprentissages
Arithmétique binaire. Chapitre. 5.1 Notions. 5.1.1 Bit. 5.1.2 Mot
Chapitre 5 Arithmétique binaire L es codes sont manipulés au quotidien sans qu on s en rende compte, et leur compréhension est quasi instinctive. Le seul fait de lire fait appel au codage alphabétique,
DESCRIPTIF DE MODULE S5 GSI
Option SIM DESCRIPTIF DE MODULE S5 GSI : Gouvernance et Systèmes d Information COORDONNATEUR DU MODULE : Département : Ce module a pour but d enseigner les méthodes, les règles et les pratiques nécessaires
Bases de données documentaires et distribuées Cours NFE04
Bases de données documentaires et distribuées Cours NFE04 Introduction a la recherche d information Auteurs : Raphaël Fournier-S niehotta, Philippe Rigaux, Nicolas Travers pré[email protected] Département
Algèbre binaire et Circuits logiques (2007-2008)
Université Mohammed V Faculté des Sciences Département de Mathématiques et Informatique Filière : SMI Algèbre binaire et Circuits logiques (27-28) Prof. Abdelhakim El Imrani Plan. Algèbre de Boole 2. Circuits
LES CARTES À POINTS : POUR UNE MEILLEURE PERCEPTION
LES CARTES À POINTS : POUR UNE MEILLEURE PERCEPTION DES NOMBRES par Jean-Luc BREGEON professeur formateur à l IUFM d Auvergne LE PROBLÈME DE LA REPRÉSENTATION DES NOMBRES On ne conçoit pas un premier enseignement
BI = Business Intelligence Master Data-Science
BI = Business Intelligence Master Data-Science UPMC 25 janvier 2015 Organisation Horaire Cours : Lundi de 13h30 à 15h30 TP : Vendredi de 13h30 à 17h45 Intervenants : Divers industriels (en cours de construction)
BIG DATA en Sciences et Industries de l Environnement
BIG DATA en Sciences et Industries de l Environnement François Royer www.datasio.com 21 mars 2012 FR Big Data Congress, Paris 2012 1/23 Transport terrestre Traçabilité Océanographie Transport aérien Télémétrie
Intelligence Artificielle et Systèmes Multi-Agents. Badr Benmammar [email protected]
Intelligence Artificielle et Systèmes Multi-Agents Badr Benmammar [email protected] Plan La première partie : L intelligence artificielle (IA) Définition de l intelligence artificielle (IA) Domaines
Algèbre 40 Analyse 26 14 Stat. 1 - IES : Probabilités discrètes et calcul intégral 29,5 6 Stat. 2 - IES : Probabilités générales 54 8 UE1-02 M-E-IS
1er semestre UE1-01 E Algèbre 40 Analyse 26 14 Stat. 1 - IES : Probabilités discrètes et calcul intégral 29,5 6 Stat. 2 - IES : Probabilités générales 54 8 UE1-02 M-E-IS Introduction au système SAS 25,5
Les technologies du Big Data
Les technologies du Big Data PRÉSENTÉ AU 40 E CONGRÈS DE L ASSOCIATION DES ÉCONOMISTES QUÉBÉCOIS PAR TOM LANDRY, CONSEILLER SENIOR LE 20 MAI 2015 WWW.CRIM.CA TECHNOLOGIES: DES DONNÉES JUSQU'À L UTILISATEUR
Programme détaillé BTS INFORMATIQUE DE GESTION DIPLÔME D ETAT. Objectifs de la formation. Les métiers. Durée de la formation
Objectifs de la formation Les inscriptions sont réservées aux élèves de niveau BAC ou plus, et sont ouvertes dans la mesure des places disponibles. Le Brevet de Technicien Supérieur d Informatique de Gestion
Langage SQL (1) 4 septembre 2007. IUT Orléans. Introduction Le langage SQL : données Le langage SQL : requêtes
Langage SQL (1) Sébastien Limet Denys Duchier IUT Orléans 4 septembre 2007 Notions de base qu est-ce qu une base de données? SGBD différents type de bases de données quelques systèmes existants Définition
Introduction à MATLAB R
Introduction à MATLAB R Romain Tavenard 10 septembre 2009 MATLAB R est un environnement de calcul numérique propriétaire orienté vers le calcul matriciel. Il se compose d un langage de programmation, d
Université Paris-Dauphine Département Mathématiques et Informatique de la Décision et des Organisations
Université Paris-Dauphine Département Mathématiques et Informatique de la Décision et des Organisations Mention : Domaine : Informatique des Organisations Mathématiques et Informatique de la Décisions
CESI Bases de données
CESI Bases de données Introduction septembre 2006 Bertrand LIAUDET EPF - BASE DE DONNÉES - septembre 2005 - page 1 PRÉSENTATION GÉNÉRALE 1. Objectifs généraux L objectif de ce document est de faire comprendre
Déroulement. Evaluation. Préambule. Définition. Définition. Algorithmes et structures de données 28/09/2009
Déroulement Algorithmes et structures de données Cours 1 et 2 Patrick Reuter http://www.labri.fr/~preuter/asd2009 CM mercredi de 8h00 à 9h00 (Amphi Bât. E, 3 ème étage) ED - Groupe 3 : mercredi, 10h30
Modélisation du comportement habituel de la personne en smarthome
Modélisation du comportement habituel de la personne en smarthome Arnaud Paris, Selma Arbaoui, Nathalie Cislo, Adnen El-Amraoui, Nacim Ramdani Université d Orléans, INSA-CVL, Laboratoire PRISME 26 mai
THOT - Extraction de données et de schémas d un SGBD
THOT - Extraction de données et de schémas d un SGBD Pierre-Jean DOUSSET (France), Benoît ALBAREIL (France) [email protected], [email protected] Mots clefs : Fouille d information, base de données, système
Ebauche Rapport finale
Ebauche Rapport finale Sommaire : 1 - Introduction au C.D.N. 2 - Définition de la problématique 3 - Etat de l'art : Présentatio de 3 Topologies streaming p2p 1) INTRODUCTION au C.D.N. La croissance rapide
1 er Avril 2015 Data Science & Big Data Etat de l art Donner plus d intelligence aux données
1 er Avril 2015 Data Science & Big Data Etat de l art Donner plus d intelligence aux données Votre interlocuteur Didier Gaultier Directeur Data Science Business & Decision Professeur de Statistique à l
Cours de bases de données. Philippe Rigaux
Cours de bases de données Philippe Rigaux 13 juin 2001 2 TABLE DES MATIÈRES 3 Table des matières 1 Introduction 7 2 Présentation générale 9 2.1 Données, Bases de données et SGBD.............................
Conception de réseaux de télécommunications : optimisation et expérimentations
Conception de réseaux de télécommunications : optimisation et expérimentations Jean-François Lalande Directeurs de thèse: Jean-Claude Bermond - Michel Syska Université de Nice-Sophia Antipolis Mascotte,
Algorithmes de recherche
Algorithmes de recherche 1 Résolution de problèmes par recherche On représente un problème par un espace d'états (arbre/graphe). Chaque état est une conguration possible du problème. Résoudre le problème
CH.6 Propriétés des langages non contextuels
CH.6 Propriétés des langages non contetuels 6.1 Le lemme de pompage 6.2 Les propriétés de fermeture 6.3 Les problèmes de décidabilité 6.4 Les langages non contetuels déterministes utomates ch6 1 6.1 Le
TABLE DES MATIÈRES. PRINCIPES D EXPÉRIMENTATION Planification des expériences et analyse de leurs résultats. Pierre Dagnelie
PRINCIPES D EXPÉRIMENTATION Planification des expériences et analyse de leurs résultats Pierre Dagnelie TABLE DES MATIÈRES 2012 Presses agronomiques de Gembloux [email protected] www.pressesagro.be
Optimisation et programmation mathématique. Professeur Michel de Mathelin. Cours intégré : 20 h
Télécom Physique Strasbourg Master IRIV Optimisation et programmation mathématique Professeur Michel de Mathelin Cours intégré : 20 h Programme du cours d optimisation Introduction Chapitre I: Rappels
Introduction à Business Objects. J. Akoka I. Wattiau
Introduction à Business Objects J. Akoka I. Wattiau Introduction Un outil d'aide à la décision accès aux informations stockées dans les bases de données et les progiciels interrogation génération d'états
Programmation par contraintes. Laurent Beaudou
Programmation par contraintes Laurent Beaudou On se trouve où? Un problème, une solution : la solution est-elle une solution du problème? simulation, vérification 2 On se trouve où? Un problème, une solution
Principes d implémentation des métaheuristiques
Chapitre 2 Principes d implémentation des métaheuristiques Éric D. Taillard 1 2.1 Introduction Les métaheuristiques ont changé radicalement l élaboration d heuristiques : alors que l on commençait par
Introduction aux Systèmes Interactifs d!aide à la Décision (SIAD) 2009 Bernard ESPINASSE Professeur à l'université d'aix-marseille
Introduction aux Systèmes Interactifs d!aide à la Décision (SIAD) 2009 Bernard ESPINASSE Professeur à l'université d'aix-marseille 1. Typologie des dans l!entreprise 2. Modélisation des processus décisionnels
Cours Base de données relationnelles. M. Boughanem, IUP STRI
Cours Base de données relationnelles 1 Plan 1. Notions de base 2. Modèle relationnel 3. SQL 2 Notions de base (1) Définition intuitive : une base de données est un ensemble d informations, (fichiers),
Jade. Projet Intelligence Artificielle «Devine à quoi je pense»
Jade Projet Intelligence Artificielle «Devine à quoi je pense» Réalisé par Djénéba Djikiné, Alexandre Bernard et Julien Lafont EPSI CSII2-2011 TABLE DES MATIÈRES 1. Analyse du besoin a. Cahier des charges
MABioVis. Bio-informatique et la
MABioVis Modèles et Algorithmes pour la Bio-informatique et la Visualisation Visite ENS Cachan 5 janvier 2011 MABioVis G GUY MELANÇON (PR UFR Maths Info / EPI GRAVITE) (là, maintenant) - MABioVis DAVID
Pentaho : Comparatif fonctionnel entre la version Communautaire (gratuite) et la version Entreprise (payante) Table des matières
Pentaho : Comparatif fonctionnel entre la version Communautaire (gratuite) et la version Entreprise (payante) Table des matières 1 2 3 4 PRÉSENTATION DE PENTAHO...2 LISTING DES COMPOSANTS DE LA PLATE-FORME...4
Introduction à l Informatique Décisionnelle - Business Intelligence (7)
Introduction à l Informatique Décisionnelle - Business Intelligence (7) Bernard ESPINASSE Professeur à Aix-Marseille Université (AMU) Ecole Polytechnique Universitaire de Marseille Septembre 2013 Emergence
Logique binaire. Aujourd'hui, l'algèbre de Boole trouve de nombreuses applications en informatique et dans la conception des circuits électroniques.
Logique binaire I. L'algèbre de Boole L'algèbre de Boole est la partie des mathématiques, de la logique et de l'électronique qui s'intéresse aux opérations et aux fonctions sur les variables logiques.
Mécanicien(ne) Automaticien(ne)
3 ème degré Technique de qualification Options : Mécanicien Automaticien Electricien Automaticien Mécanicien(ne) Automaticien(ne) Présentation générale Le métier Le «Mécanicien automaticien», tel que défini
