CH.6 Propriétés des langages non contextuels

Dimension: px
Commencer à balayer dès la page:

Download "CH.6 Propriétés des langages non contextuels"

Transcription

1 CH.6 Propriétés des langages non contetuels 6.1 Le lemme de pompage 6.2 Les propriétés de fermeture 6.3 Les problèmes de décidabilité 6.4 Les langages non contetuels déterministes utomates ch Le lemme de pompage On a une propriété de "pompage" pour les langages non contetuels. Elle serira entre autres à montrer que certains langages ne peuent pas être engendrés par une grammaire non contetuelle. On utilise un lemme relatif au arbres binaires complets, dont la démonstration est laissée en eercice : Lemme : Dans un arbre binaire complet de hauteur k, le nombre de nœuds eternes est au plus 2 k. Si est un nœud d'un arbre, on appellera profondeur de ce nœud la hauteur du sous-arbre enraciné en. utomates ch6 2

2 Théorème (lemme de pompage) : Soit L un langage non contetuel. Il eiste un nombre n dépendant uniquement de L tel que la propriété suiante soit raie. Si z est un mot de L de longueur n, alors z se factorise en z = uy, où n, et ne sont pas tous les deu ides et, pour tout i 0, on a u i i y L. Démonstration : On suppose que L est engendré par une grammaire sous forme normale de Chomsky et que le nombre de ariables de cette grammaire est k. On a montrer que le nombre n = 2 k conient. Pour cela, soit z un mot de L et considérons son arbre de dériation. Comme la grammaire est sous forme de Chomsky, cet arbre est un arbre binaire complet, sauf pour les feuilles qui sont seuls fils de nœuds. Si on néglige les feuilles, il reste un arbre binaire complet utomates ch6 3 dont les nœuds eternes sont en même nombre que la longueur de z. Si la longueur de z est au moins 2 k, la hauteur de l'arbre est au moins k. Sur un chemin de longueur k étiqueté par des noms de ariables, un même nom doit apparaître deu fois (principe des tiroirs). Considérons les nœuds i qui sont étiquetés par un nom de ariable qui apparaît encore une fois sur un chemin partant de i. Il eiste au moins un tel i. Parmi tous les i, considérons a, celui qui a la plus petite profondeur et soit le nom attaché à a. Cela assure que, dans le sous-arbre enraciné en a, le nom de la racine est répété eactement une fois sur (au moins) un chemin issu de a et qu'aucun chemin issu de a ne contient deu nœuds ayant le même nom. Le sous-arbre enraciné en a est donc de hauteur au plus k. En conséquence, le nombre de ses nœuds eternes est au plus 2 k. La situation est la suiante : utomates ch6 4

3 S La longueur de est au plus 2 k = n. Puisque la grammaire est sous forme de Chomsky, u y chaque nœud interne a eactement deu fils. Donc et ne sont pas simultanément ides. S Enfin, le plus petit sous-arbre de racine peut être mis à la place du plus grand, produisant le mot uy. Le plus u y grand peut être raccroché au plus S petit autant de fois qu'on eut, produisant u i i y. u y S u y utomates ch6 5 Eemples : L 1 = {0 n 1 n 2 n, n 0} n'est pas non contetuel. Si c'était le cas, soit n le nombre dépendant de L 1 et considérons z = 0 n 1 n 2 n = uy. Puisque est de longueur au plus n, au moins l'une des lettres 0, 1 ou 2 n'y apparaît pas, d'où contradiction aec le fait que uy L 1. Le même raisonnement aut pour les mots ayant autant de 0, de 1 et de 2. L 2 = {a i b j a i b j, i, j 1} n'est pas non contetuel. On fait de même en eaminant z = a n b n a n b n. Le facteur ne peut alors contenir des a des deu facteurs a n, d'où la contradiction. utomates ch6 6

4 6.2 Les propriétés de fermeture On utilise la définition par grammaire ou celle par automate à pile. Théorème : Les langages non contetuels sont fermés par les opérations régulières. Démonstration : On part des grammaires G 1 et G 2 engendrant les langages L 1 et L 2. On fabrique une grammaire G engendrant L 1 L 2 en introduisant un nouel aiome pouant produire l'un ou l'autre des aiomes de G 1 et de G 2. Pour la concaténation, ce nouel aiome produit la concaténation des aiomes de G 1 et de G 2. Pour la fermeture transitie de L 1, si S 1 est son aiome, le nouel aiome S produit : S ε S 1 S. utomates ch6 7 Théorème : Les langages non contetuels sont fermés par substitution. Démonstration : Cela reient à dire que chaque terminal d'un langage deient l'aiome d'un autre langage. Ceci passe facilement au grammaires. Corollaire : Les langages non contetuels sont fermés par homomorphisme. Théorème : Les langages non contetuels sont fermés par homomorphisme inerse. Démonstration : Soit h un homomorphisme. Si L est un langage non contetuel, h -1 (L) = { : h() L}. On raisonne aec les automates à pile comme on l'aait fait pour les langages réguliers. utomates ch6 8

5 utomate à pile pour h -1 (L) h Buffer Contrôle de M Pile de M Contrôle de M' On entre un caractère a ; il est stocké dans le buffer (file). Puis celui-ci est idé caractère par caractère. Supposons que = {0,...} et Σ = {a,...}. Formellement, si L = L(M) aec M = (Q,, Γ, δ, q 0, Z 0, F), on fabrique M' = (Q', Σ, Γ, δ', [q 0, ε], Z 0, F {ε}). Les états sont un couple formé d'un état de M et d'un suffie de h(a). δ'([q, ε], a, Y) = ([q, h(a)], Y) chargement du buffer ; δ'([q, ], ε, Y) = {([p, ], γ) : (p, γ) δ(q, ε, Y)} transition ide ; δ'([q, 0], ε, Y) = {([p, ], γ) : (p, γ) δ(q, 0, Y)} transition sur 0. La reconnaissance par état final permet d'assurer que le buffer est bien ide après lecture de. ttention : Les langages non contetuels ne sont pas fermés par intersection. Ils ne le sont donc pas non plus par complémentation (identités de de Morgan). Eemple : L 1 = {0 n 1 n 2 m, n, m 0} et L 2 = {0 m 1 n 2 n, n, m 0} sont tous deu non contetuels, car produits d'un langage non contetuel et d'un langage régulier (donc non contetuel). Néanmoins, L 1 L 2 = {0 n 1 n 2 n, n 0}, dont on a u qu'il ne l'est pas. L'eplication ient de ce que, si on fait fonctionner en parallèle deu automates à pile, on a besoin de deu piles. Si l'un des deu automates est un automate fini (sans pile), le même fonctionnement se fait aec une seule pile. D'où le théorème suiant. utomates ch6 10

6 Théorème : Si L est non contetuel et R est régulier, alors L R est non contetuel. Démonstration : Si L = L(M) aec M = (Q M, Σ, Γ, δ Μ, q 0, Z 0, F M ) (reconnaissance par état final) et R = L() aec = (Q, Σ, δ Α, p 0, F ), déterministe (non indispensable ici). On fabrique M' = (Q Q M, Σ, Γ, δ, [p 0, q 0 ], Z 0, F F M ), aec δ([p, q], a, Y) = {([p', q'], γ) : δ Α (p, a) = p' et (q', γ) δ Μ (q, a, Y)} si a ε δ([p, q], ε, Y) = {([p, q'], γ) : (q', γ) δ Μ (q, ε, Y)} si a = ε. utomate à pile pour L R Contrôle de M Contrôle de Pile de M Contrôle de M' utomates ch6 11 Eemple : L = { : (a + b)*}, ensemble des carrés, ne peut pas être engendré par une grammaire non contetuelle. Si L était non contetuel, il en serait de même de L aa*bb*aa*bb*, qui aut {a i b j a i b j, i, j 1}, d'où une contradiction. Les langages non contetuels sont également fermés par d'autres opérations : quotient par un langage régulier, préfie, permutation circulaire, image-miroir. Les démonstrations sont identiques à celles utilisées pour les langages réguliers. utomates ch6 12

7 6.3 Les problèmes de décidabilité Dans le cas des langages non contetuels, un certain nombre de problèmes sont indécidables. La démonstration de l'indécidabilité est impossible ici. Elle nécessite le déeloppement de la théorie de la calculabilité. Dans le cas d'un problème concernant les langages non contetuels, le problème de leur codage est important. C'est pourquoi ces problèmes sont formulés en termes de problèmes relatifs au grammaires ou au automates à pile. Puisque le passage entre grammaires et automates à pile est algorithmique (donc effectif), on peut formuler ces problèmes au choi en termes de grammaires ou d'automates à pile. Théorème : Si G est une grammaire non contetuelle, les problèmes suiants sont décidables : 1. Le langage engendré par G est non-ide ; 2. Le langage engendré par G est infini. utomates ch6 13 Démonstration : Pour le premier problème, on applique l'algorithme d'élimination des ariables inutiles : le langage est non-ide si et seulement si l'aiome est un symbole utile. Pour le second, on peut utiliser le lemme de pompage (eercice) en montrant que le langage est infini si et seulement s'il contient un mot de longueur comprise entre n et 2n. On peut plus efficacement procéder directement : on suppose que G est sous forme de Chomsky sans ariable inutile (algorithme pour cela), puis on fabrique un graphe entre ariables dans lequel si BC est une production, on place un arc de ers B et de ers C. On montre (eercice) que le langage est infini si et seulement si ce graphe contient un cycle ou un circuit. Ce graphe contient les informations relaties à la récursiité dans la grammaire. utomates ch6 14

8 Théorème : Soit un mot en symboles terminau et G une grammaire non contetuelle ; le problème suiant est décidable : L(G). Démonstration : Mettre la grammaire sous forme normale de Greibach, puis essayer toutes les dériations possibles jusqu'à la longueur de. Il eiste des algorithmes plus efficaces (en O(n 3 )) tel que celui de Cocke, Younger et Kasami. Par contre, un certain nombre de problèmes faisant interenir des grammaires non contetuelles sont indécidables. Dans la liste, G, G 1 et G 2 désignent de telles gammaires et R est une epression régulière (ou un automate fini). utomates ch6 15 Les problèmes suiants sont indécidables : 1. L(G 1 ) L(G 2 ) = ; 2. L(G) = Σ* ; 3. L(G 1 ) = L(G 2 ) ; 4. L(G 1 ) L(G 2 ) ; 5. L(G) = R ; 6. R L(G) ; 7. Le complémentaire de L(G) est non contetuel ; 8. L(G 1 ) L(G 2 ) est non contetuel ; 9. L(G) est régulier ; 10. L(G) est inhéremment ambigu. utomates ch6 16

9 6.4 Les langages non contetuels déterministes Langages pour lesquels il eiste un automate à pile déterministe le reconnaissant. Seront abrégés en langages NCD. Seuls langages utilisables en pratique car l'analyse syntaique se fait en temps linéaire. En fait, les algorithmes de génération d'analyseurs syntaiques produisent effectiement des automates à pile déterministes. Mais ces langages sont plus délicats à manipuler que les langages non contetuels en général : ucun lemme de pompage n'est connu pour les langages NCD. Théorème : Les langages NCD sont fermés par complémentation. Démonstration : Pour faire comme pour les langages réguliers (inersion des états terminau et non terminau), il faut auparaant normaliser les automates à pile déterministes : utomates ch6 17 Si L = L(M) où M est déterministe, il eiste un automate à pile déterministe M' tels que : 1. M' lit entièrement tout mot présenté en entrée (création d'un puits) ; 2. M' n'a aucune transition ide sur un état final. Ces deu points sont assez délicats à établir complètement. utres propriétés de clôture : Théorème : Les langaes NCD sont fermés par : 1. quotient par un langage régulier ; 2. homomorphisme inerse ; 3. intersection aec un ensemble régulier. Démonstration : Le premier point est assez technique, les deu autres se font comme pour les langages non contetuels. utomates ch6 18

10 Théorème : Les langages NCD ne sont pas fermés par : 1. homomorphisme ; 2. union ; 3. concaténation ; 4. fermeture transitie ; 5. intersection. Théorème : Il eiste des langages non contetuels non déterministes. On peut en effet montrer que si L est NCD, alors MIN(L), mots de L dont aucun préfie propre n'est dans L est aussi NCD (Modifier l'automate préalablement normalisé de façon à supprimer toute transition sur un état terminal.) Si donc L = { t } était NCD, alors il en serait de même de L 1 = L (01)*(10)*(01)*(10)* = {(01) i (10) j (01) j (10) i : i, j 0, i + j 0} ; pareil pour MIN(L 1 ) = {(01) i (10) j (01) j (10) i : 0 j < i} ; utomates ch6 19 Par homomorphisme inerse, il en est de même de L 2 = {a i b j a j b i : 0 j < i} ; mais ce dernier n'est pas un langage non contetuel. Pour montrer ce point, on applique le lemme de pompage sur le mot z = a n + 1 b n a n b n + 1 ; puisque z = uy et que n, selon la place possible de, soit les eposants ne sont plus égau, soit le nombre de a et de b au centre deient trop grand. Propriétés de décidabilité. On n'a aucune caractérisation des langages NCD par leur grammaire. Le seul modèle est l'automate à pile déterministe. En effet, Théorème : Soit G une grammaire non contetuelle ; le problème L(G) est NCD est indécidable. Ce théorème est admis. utomates ch6 20

11 Théorème : Si M est un automate à pile déterministe, et R une epression régulière, les problèmes suiants sont décidables : 1. L(M) = R ; 2. R L(M) ; 3. L(M) = Σ* ; 4. L(M) est régulier. Démonstration : Trois premiers points faciles, quatrième difficile. Théorème : Si M et M' sont deu automates à pile déterministes, les problèmes suiants sont indécidables : 1. L(M) L(M') = ; 2. L(M) L(M') ; 3. L(M) L(M') est un langage NCD ; 4. L(M) L(M') est un langage non contetuel ; 5. L(M) L(M') est un langage NCD. utomates ch6 21 Théorème : Si M et M' sont deu automates à pile déterministes, le problème suiant est décidable : L(M) = L(M'). La démonstration en est récente. L'algorithme n'est pas (pas encore?) praticable. Enfin, l'importance pratique des langages NCD est contenue dans le théorème suiant : Théorème : Un langage L est analysable par une technique ascendante LR si et seulement si il est L est non contetuel déterministe et préfie (c'est-à-dire L = MIN(L)). Démonstration : un sens résulte de l'algorithme de construction d'un analyseur syntaique (cf. cours de traduction). L'autre sens résulte de ce que la construction automate - grammaire produit une grammaire LR(0) lorsque l'automate est déterministe. utomates ch6 22

Algèbre binaire et Circuits logiques (2007-2008)

Algèbre binaire et Circuits logiques (2007-2008) Université Mohammed V Faculté des Sciences Département de Mathématiques et Informatique Filière : SMI Algèbre binaire et Circuits logiques (27-28) Prof. Abdelhakim El Imrani Plan. Algèbre de Boole 2. Circuits

Plus en détail

Chap 4: Analyse syntaxique. Prof. M.D. RAHMANI Compilation SMI- S5 2013/14 1

Chap 4: Analyse syntaxique. Prof. M.D. RAHMANI Compilation SMI- S5 2013/14 1 Chap 4: Analyse syntaxique 1 III- L'analyse syntaxique: 1- Le rôle d'un analyseur syntaxique 2- Grammaires non contextuelles 3- Ecriture d'une grammaire 4- Les méthodes d'analyse 5- L'analyse LL(1) 6-

Plus en détail

D'UN THÉORÈME NOUVEAU

D'UN THÉORÈME NOUVEAU DÉMONSTRATION D'UN THÉORÈME NOUVEAU CONCERNANT LES NOMBRES PREMIERS 1. (Nouveaux Mémoires de l'académie royale des Sciences et Belles-Lettres de Berlin, année 1771.) 1. Je viens de trouver, dans un excellent

Plus en détail

LE PROBLEME DU PLUS COURT CHEMIN

LE PROBLEME DU PLUS COURT CHEMIN LE PROBLEME DU PLUS COURT CHEMIN Dans cette leçon nous définissons le modèle de plus court chemin, présentons des exemples d'application et proposons un algorithme de résolution dans le cas où les longueurs

Plus en détail

Travaux pratiques. Compression en codage de Huffman. 1.3. Organisation d un projet de programmation

Travaux pratiques. Compression en codage de Huffman. 1.3. Organisation d un projet de programmation Université de Savoie Module ETRS711 Travaux pratiques Compression en codage de Huffman 1. Organisation du projet 1.1. Objectifs Le but de ce projet est d'écrire un programme permettant de compresser des

Plus en détail

Limites finies en un point

Limites finies en un point 8 Limites finies en un point Pour ce chapitre, sauf précision contraire, I désigne une partie non vide de R et f une fonction définie sur I et à valeurs réelles ou complees. Là encore, les fonctions usuelles,

Plus en détail

Vers l'ordinateur quantique

Vers l'ordinateur quantique Cours A&G Vers l'ordinateur quantique Données innies On a vu dans les chapîtres précédents qu'un automate permet de représenter de manière nie (et même compacte) une innité de données. En eet, un automate

Plus en détail

Informatique Théorique : Théorie des Langages, Analyse Lexicale, Analyse Syntaxique Jean-Pierre Jouannaud Professeur

Informatique Théorique : Théorie des Langages, Analyse Lexicale, Analyse Syntaxique Jean-Pierre Jouannaud Professeur Université Paris-Sud Licence d Informatique Informatique Théorique : Théorie des Langages, Analyse Lexicale, Analyse Syntaxique Jean-Pierre Jouannaud Professeur Adresse de l auteur : LIX École Polytechnique

Plus en détail

Fondements de l informatique Logique, modèles, et calculs

Fondements de l informatique Logique, modèles, et calculs Fondements de l informatique Logique, modèles, et calculs Cours INF423 de l Ecole Polytechnique Olivier Bournez Version du 20 septembre 2013 2 Table des matières 1 Introduction 9 1.1 Concepts mathématiques........................

Plus en détail

DÉRIVÉES. I Nombre dérivé - Tangente. Exercice 01 (voir réponses et correction) ( voir animation )

DÉRIVÉES. I Nombre dérivé - Tangente. Exercice 01 (voir réponses et correction) ( voir animation ) DÉRIVÉES I Nombre dérivé - Tangente Eercice 0 ( voir animation ) On considère la fonction f définie par f() = - 2 + 6 pour [-4 ; 4]. ) Tracer la représentation graphique (C) de f dans un repère d'unité

Plus en détail

Exo7. Calculs de déterminants. Fiche corrigée par Arnaud Bodin. Exercice 1 Calculer les déterminants des matrices suivantes : Exercice 2.

Exo7. Calculs de déterminants. Fiche corrigée par Arnaud Bodin. Exercice 1 Calculer les déterminants des matrices suivantes : Exercice 2. Eo7 Calculs de déterminants Fiche corrigée par Arnaud Bodin Eercice Calculer les déterminants des matrices suivantes : Correction Vidéo ( ) 0 6 7 3 4 5 8 4 5 6 0 3 4 5 5 6 7 0 3 5 4 3 0 3 0 0 3 0 0 0 3

Plus en détail

Exo7. Limites de fonctions. 1 Théorie. 2 Calculs

Exo7. Limites de fonctions. 1 Théorie. 2 Calculs Eo7 Limites de fonctions Théorie Eercice Montrer que toute fonction périodique et non constante n admet pas de ite en + Montrer que toute fonction croissante et majorée admet une ite finie en + Indication

Plus en détail

Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme

Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme Chapitre 3 Quelques fonctions usuelles 1 Fonctions logarithme et eponentielle 1.1 La fonction logarithme Définition 1.1 La fonction 7! 1/ est continue sur ]0, +1[. Elle admet donc des primitives sur cet

Plus en détail

2. RAPPEL DES TECHNIQUES DE CALCUL DANS R

2. RAPPEL DES TECHNIQUES DE CALCUL DANS R 2. RAPPEL DES TECHNIQUES DE CALCUL DANS R Dans la mesure où les résultats de ce chapitre devraient normalement être bien connus, il n'est rappelé que les formules les plus intéressantes; les justications

Plus en détail

Comparaison de fonctions Développements limités. Chapitre 10

Comparaison de fonctions Développements limités. Chapitre 10 PCSI - 4/5 www.ericreynaud.fr Chapitre Points importants 3 Questions de cours 6 Eercices corrigés Plan du cours 4 Eercices types 7 Devoir maison 5 Eercices Chap Et s il ne fallait retenir que si points?

Plus en détail

Représentation d un entier en base b

Représentation d un entier en base b Représentation d un entier en base b 13 octobre 2012 1 Prérequis Les bases de la programmation en langage sont supposées avoir été travaillées L écriture en base b d un entier est ainsi défini à partir

Plus en détail

Introduction à l étude des Corps Finis

Introduction à l étude des Corps Finis Introduction à l étude des Corps Finis Robert Rolland (Résumé) 1 Introduction La structure de corps fini intervient dans divers domaines des mathématiques, en particulier dans la théorie de Galois sur

Plus en détail

Dérivation : cours. Dérivation dans R

Dérivation : cours. Dérivation dans R TS Dérivation dans R Dans tout le capitre, f désigne une fonction définie sur un intervalle I de R (non vide et non réduit à un élément) et à valeurs dans R. Petits rappels de première Téorème-définition

Plus en détail

Calculabilité Cours 3 : Problèmes non-calculables. http://www.irisa.fr/lande/pichardie/l3/log/

Calculabilité Cours 3 : Problèmes non-calculables. http://www.irisa.fr/lande/pichardie/l3/log/ Calculabilité Cours 3 : Problèmes non-calculables http://www.irisa.fr/lande/pichardie/l3/log/ Problèmes et classes de décidabilité Problèmes et classes de décidabilité Nous nous intéressons aux problèmes

Plus en détail

Projet d informatique M1BI : Compression et décompression de texte. 1 Généralités sur la compression/décompression de texte

Projet d informatique M1BI : Compression et décompression de texte. 1 Généralités sur la compression/décompression de texte Projet d informatique M1BI : Compression et décompression de texte Le but de ce projet est de coder un programme réalisant de la compression et décompression de texte. On se proposera de coder deux algorithmes

Plus en détail

Développements limités, équivalents et calculs de limites

Développements limités, équivalents et calculs de limites Développements ités, équivalents et calculs de ites Eercice. Déterminer le développement ité en 0 à l ordre n des fonctions suivantes :. f() e (+) 3 n. g() sin() +ln(+) n 3 3. h() e sh() n 4. i() sin(

Plus en détail

Chapitre 6. Fonction réelle d une variable réelle

Chapitre 6. Fonction réelle d une variable réelle Chapitre 6 Fonction réelle d une variable réelle 6. Généralités et plan d étude Une application de I dans R est une correspondance entre les éléments de I et ceu de R telle que tout élément de I admette

Plus en détail

Cours d introduction à l informatique. Partie 2 : Comment écrire un algorithme? Qu est-ce qu une variable? Expressions et instructions

Cours d introduction à l informatique. Partie 2 : Comment écrire un algorithme? Qu est-ce qu une variable? Expressions et instructions Cours d introduction à l informatique Partie 2 : Comment écrire un algorithme? Qu est-ce qu une variable? Expressions et instructions Qu est-ce qu un Une recette de cuisine algorithme? Protocole expérimental

Plus en détail

CHAPITRE VIII : Les circuits avec résistances ohmiques

CHAPITRE VIII : Les circuits avec résistances ohmiques CHAPITRE VIII : Les circuits avec résistances ohmiques VIII. 1 Ce chapitre porte sur les courants et les différences de potentiel dans les circuits. VIII.1 : Les résistances en série et en parallèle On

Plus en détail

6. Les différents types de démonstrations

6. Les différents types de démonstrations LES DIFFÉRENTS TYPES DE DÉMONSTRATIONS 33 6. Les différents types de démonstrations 6.1. Un peu de logique En mathématiques, une démonstration est un raisonnement qui permet, à partir de certains axiomes,

Plus en détail

Raisonnement par récurrence Suites numériques

Raisonnement par récurrence Suites numériques Chapitre 1 Raisonnement par récurrence Suites numériques Terminale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Raisonnement par récurrence. Limite finie ou infinie d une suite.

Plus en détail

O, i, ) ln x. (ln x)2

O, i, ) ln x. (ln x)2 EXERCICE 5 points Commun à tous les candidats Le plan complee est muni d un repère orthonormal O, i, j Étude d une fonction f On considère la fonction f définie sur l intervalle ]0; + [ par : f = ln On

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable Eo7 Fonctions de plusieurs variables Eercices de Jean-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-francefr * très facile ** facile *** difficulté moenne **** difficile ***** très difficile I

Plus en détail

FctsAffines.nb 1. Mathématiques, 1-ère année Edition 2007-2008. Fonctions affines

FctsAffines.nb 1. Mathématiques, 1-ère année Edition 2007-2008. Fonctions affines FctsAffines.nb 1 Mathématiques, 1-ère année Edition 2007-2008 Fonctions affines Supports de cours de mathématiques de degré secondaire II, lien hpertete vers la page mère http://www.deleze.name/marcel/sec2/inde.html

Plus en détail

SIGNAUX NUMERIQUES ET MODULATIONS NUMERIQUES

SIGNAUX NUMERIQUES ET MODULATIONS NUMERIQUES SIGNAUX NUMERIQUES ET MODULATIONS NUMERIQUES ----------------------------------------------------------------------------------------------------------------- LES SIGNAUX NUMERIQUES Un signal numérique

Plus en détail

Proposition. Si G est un groupe simple d ordre 60 alors G est isomorphe à A 5.

Proposition. Si G est un groupe simple d ordre 60 alors G est isomorphe à A 5. DÉVELOPPEMENT 32 A 5 EST LE SEUL GROUPE SIMPLE D ORDRE 60 Proposition. Si G est un groupe simple d ordre 60 alors G est isomorphe à A 5. Démonstration. On considère un groupe G d ordre 60 = 2 2 3 5 et

Plus en détail

Planche n o 22. Fonctions de plusieurs variables. Corrigé

Planche n o 22. Fonctions de plusieurs variables. Corrigé Planche n o Fonctions de plusieurs variables Corrigé n o : f est définie sur R \ {, } Pour, f, = Quand tend vers, le couple, tend vers le couple, et f, tend vers Donc, si f a une limite réelle en, cette

Plus en détail

FONCTION EXPONENTIELLE ( ) 2 = 0.

FONCTION EXPONENTIELLE ( ) 2 = 0. FONCTION EXPONENTIELLE I. Définition Théorème : Il eiste une unique fonction f dérivable sur R telle que f ' = f et f (0) =. Démonstration de l'unicité (eigible BAC) : L'eistence est admise - Démontrons

Plus en détail

Exprimer ce coefficient de proportionnalité sous forme de pourcentage : 3,5 %

Exprimer ce coefficient de proportionnalité sous forme de pourcentage : 3,5 % 23 CALCUL DE L INTÉRÊT Tau d intérêt Paul et Rémi ont reçu pour Noël, respectivement, 20 et 80. Ils placent cet argent dans une banque, au même tau. Au bout d une année, ce placement leur rapportera une

Plus en détail

Chapitre 2 Les ondes progressives périodiques

Chapitre 2 Les ondes progressives périodiques DERNIÈRE IMPRESSION LE er août 203 à 7:04 Chapitre 2 Les ondes progressives périodiques Table des matières Onde périodique 2 2 Les ondes sinusoïdales 3 3 Les ondes acoustiques 4 3. Les sons audibles.............................

Plus en détail

Algorithmes d'apprentissage

Algorithmes d'apprentissage Algorithmes d'apprentissage 1 Agents qui apprennent à partir d'exemples La problématique : prise de décision automatisée à partir d'un ensemble d'exemples Diagnostic médical Réponse à une demande de prêt

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours.

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours. Eo7 Fonctions de plusieurs variables Eercices de Jean-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-francefr * très facile ** facile *** difficulté moenne **** difficile ***** très difficile I

Plus en détail

ARBRES BINAIRES DE RECHERCHE

ARBRES BINAIRES DE RECHERCHE ARBRES BINAIRES DE RECHERCHE Table de symboles Recherche : opération fondamentale données : éléments avec clés Type abstrait d une table de symboles (symbol table) ou dictionnaire Objets : ensembles d

Plus en détail

LES OUTILS D ALIMENTATION DU REFERENTIEL DE DB-MAIN

LES OUTILS D ALIMENTATION DU REFERENTIEL DE DB-MAIN LES OUTILS D ALIMENTATION DU REFERENTIEL DE DB-MAIN Les contenues de ce document sont la propriété exclusive de la société REVER. Ils ne sont transmis qu à titre d information et ne peuvent en aucun cas

Plus en détail

Continuité et dérivabilité d une fonction

Continuité et dérivabilité d une fonction DERNIÈRE IMPRESSIN LE 7 novembre 014 à 10:3 Continuité et dérivabilité d une fonction Table des matières 1 Continuité d une fonction 1.1 Limite finie en un point.......................... 1. Continuité

Plus en détail

Exercices Alternatifs. Une fonction continue mais dérivable nulle part

Exercices Alternatifs. Une fonction continue mais dérivable nulle part Eercices Alternatifs Une fonction continue mais dérivable nulle part c 22 Frédéric Le Rou (copleft LDL : Licence pour Documents Libres). Sources et figures: applications-continues-non-derivables/. Version

Plus en détail

Exercices Alternatifs. Une fonction continue mais dérivable nulle part

Exercices Alternatifs. Une fonction continue mais dérivable nulle part Eercices Alternatifs Une fonction continue mais dérivable nulle part c 22 Frédéric Le Rou (copyleft LDL : Licence pour Documents Libres). Sources et figures: applications-continues-non-derivables/. Version

Plus en détail

Introduction à la théorie des graphes. Solutions des exercices

Introduction à la théorie des graphes. Solutions des exercices CAHIERS DE LA CRM Introduction à la théorie des graphes Solutions des exercices Didier Müller CAHIER N O 6 COMMISSION ROMANDE DE MATHÉMATIQUE 1 Graphes non orientés Exercice 1 On obtient le graphe biparti

Plus en détail

SINE QUA NON. Découverte et Prise en main du logiciel Utilisation de bases

SINE QUA NON. Découverte et Prise en main du logiciel Utilisation de bases SINE QUA NON Découverte et Prise en main du logiciel Utilisation de bases Sine qua non est un logiciel «traceur de courbes planes» mais il possède aussi bien d autres fonctionnalités que nous verrons tout

Plus en détail

La médiatrice d un segment

La médiatrice d un segment EXTRT DE CURS DE THS DE 4E 1 La médiatrice d un segment, la bissectrice d un angle La médiatrice d un segment Définition : La médiatrice d un segment est l ae de smétrie de ce segment ; c'est-à-dire que

Plus en détail

Chapitre 5 : Flot maximal dans un graphe

Chapitre 5 : Flot maximal dans un graphe Graphes et RO TELECOM Nancy A Chapitre 5 : Flot maximal dans un graphe J.-F. Scheid 1 Plan du chapitre I. Définitions 1 Graphe Graphe valué 3 Représentation d un graphe (matrice d incidence, matrice d

Plus en détail

chapitre 4 Nombres de Catalan

chapitre 4 Nombres de Catalan chapitre 4 Nombres de Catalan I Dénitions Dénition 1 La suite de Catalan (C n ) n est la suite dénie par C 0 = 1 et, pour tout n N, C n+1 = C k C n k. Exemple 2 On trouve rapidement C 0 = 1, C 1 = 1, C

Plus en détail

Développer, factoriser pour résoudre

Développer, factoriser pour résoudre Développer, factoriser pour résoudre Avec le vocabulaire Associer à chaque epression un terme A B A différence produit A+ B A B inverse quotient A B A opposé somme Écrire la somme de et du carré de + Écrire

Plus en détail

LE PROCESSUS ( la machine) la fonction f. ( On lit : «fonction f qui à x associe f (x)» )

LE PROCESSUS ( la machine) la fonction f. ( On lit : «fonction f qui à x associe f (x)» ) SYNTHESE ( THEME ) FONCTIONS () : NOTIONS de FONCTIONS FONCTION LINEAIRE () : REPRESENTATIONS GRAPHIQUES * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

Plus en détail

Modèles de Calcul. Yassine Lakhnech. 2007/08 Université Joseph Fourier Lab.: VERIMAG. Yassine.Lakhnech@imag.fr. Modèles de Calcul Start p.

Modèles de Calcul. Yassine Lakhnech. 2007/08 Université Joseph Fourier Lab.: VERIMAG. Yassine.Lakhnech@imag.fr. Modèles de Calcul Start p. Modèles de Calcul Yassine Lakhnech Yassine.Lakhnech@imag.fr 2007/08 Université Joseph Fourier Lab.: VERIMAG Modèles de Calcul Start p.1/81 Équipe pédagogique Cours : Saddek Bensalem et Yassine Lakhnech

Plus en détail

Recherche dans un tableau

Recherche dans un tableau Chapitre 3 Recherche dans un tableau 3.1 Introduction 3.1.1 Tranche On appelle tranche de tableau, la donnée d'un tableau t et de deux indices a et b. On note cette tranche t.(a..b). Exemple 3.1 : 3 6

Plus en détail

La demande Du consommateur. Contrainte budgétaire Préférences Choix optimal

La demande Du consommateur. Contrainte budgétaire Préférences Choix optimal La demande Du consommateur Contrainte budgétaire Préférences Choix optimal Plan du cours Préambule : Rationalité du consommateur I II III IV V La contrainte budgétaire Les préférences Le choix optimal

Plus en détail

1.1 Rappels sur le produit cartésien... 1. 1.2 Relations... 3. 1.3 Graphes dirigés... 8. 1.4 Arbres... 12. 1.5 Exercices... 19. 2.1 Motivation...

1.1 Rappels sur le produit cartésien... 1. 1.2 Relations... 3. 1.3 Graphes dirigés... 8. 1.4 Arbres... 12. 1.5 Exercices... 19. 2.1 Motivation... Table des matières 1 Relations et graphes 1 1.1 Rappels sur le produit cartésien.................... 1 1.2 Relations.................................. 3 1.3 Graphes dirigés..............................

Plus en détail

Définitions. Numéro à préciser. (Durée : )

Définitions. Numéro à préciser. (Durée : ) Numéro à préciser (Durée : ) On étudie dans ce problème l ordre lexicographique pour les mots sur un alphabet fini et plusieurs constructions des cycles de De Bruijn. Les trois parties sont largement indépendantes.

Plus en détail

Théorie des Langages

Théorie des Langages Théorie des Langages Analyse syntaxique descendante Claude Moulin Université de Technologie de Compiègne Printemps 2010 Sommaire 1 Principe 2 Premiers 3 Suivants 4 Analyse 5 Grammaire LL(1) Exemple : Grammaire

Plus en détail

INF 232: Langages et Automates. Travaux Dirigés. Université Joseph Fourier, Université Grenoble 1 Licence Sciences et Technologies

INF 232: Langages et Automates. Travaux Dirigés. Université Joseph Fourier, Université Grenoble 1 Licence Sciences et Technologies INF 232: Langages et Automates Travaux Dirigés Université Joseph Fourier, Université Grenoble 1 Licence Sciences et Technologies Année Académique 2013-2014 Année Académique 2013-2014 UNIVERSITÉ JOSEPH

Plus en détail

Théorie des Graphes Cours 3: Forêts et Arbres II / Modélisation

Théorie des Graphes Cours 3: Forêts et Arbres II / Modélisation IFIPS S7 - informatique Université Paris-Sud 11 1er semestre 2009/2010 Théorie des Graphes Cours 3: Forêts et Arbres II / 1 Forêts et arbres II Théorème 1.1. Les assertions suivantes sont équivalentes

Plus en détail

Complexité. Licence Informatique - Semestre 2 - Algorithmique et Programmation

Complexité. Licence Informatique - Semestre 2 - Algorithmique et Programmation Complexité Objectifs des calculs de complexité : - pouvoir prévoir le temps d'exécution d'un algorithme - pouvoir comparer deux algorithmes réalisant le même traitement Exemples : - si on lance le calcul

Plus en détail

Date : 18.11.2013 Tangram en carré page

Date : 18.11.2013 Tangram en carré page Date : 18.11.2013 Tangram en carré page Titre : Tangram en carré Numéro de la dernière page : 14 Degrés : 1 e 4 e du Collège Durée : 90 minutes Résumé : Le jeu de Tangram (appelé en chinois les sept planches

Plus en détail

Problèmes de Mathématiques Filtres et ultrafiltres

Problèmes de Mathématiques Filtres et ultrafiltres Énoncé Soit E un ensemble non vide. On dit qu un sous-ensemble F de P(E) est un filtre sur E si (P 0 ) F. (P 1 ) (X, Y ) F 2, X Y F. (P 2 ) X F, Y P(E) : X Y Y F. (P 3 ) / F. Première Partie 1. Que dire

Plus en détail

SOMMAIRE. Travailler avec les requêtes... 3

SOMMAIRE. Travailler avec les requêtes... 3 Access Les requêtes SOMMAIRE Travailler avec les requêtes... 3 A) Créer une requête sélection en mode QBE... 3 B) Exécuter une requête à partir du mode Modifier (QBE)... 3 C) Passer du mode Feuille de

Plus en détail

Algorithmes de recherche

Algorithmes de recherche Algorithmes de recherche 1 Résolution de problèmes par recherche On représente un problème par un espace d'états (arbre/graphe). Chaque état est une conguration possible du problème. Résoudre le problème

Plus en détail

Programmation par contraintes. Laurent Beaudou

Programmation par contraintes. Laurent Beaudou Programmation par contraintes Laurent Beaudou On se trouve où? Un problème, une solution : la solution est-elle une solution du problème? simulation, vérification 2 On se trouve où? Un problème, une solution

Plus en détail

Problème 1 : applications du plan affine

Problème 1 : applications du plan affine Problème 1 : applications du plan affine Notations On désigne par GL 2 (R) l ensemble des matrices 2 2 inversibles à coefficients réels. Soit un plan affine P muni d un repère (O, I, J). Les coordonnées

Plus en détail

Arbres binaires de recherche

Arbres binaires de recherche 1 arbre des comparaisons 2 recherche dichotomique l'arbre est recalculé à chaque recherche 2 5 3 4 7 9 1 6 1 2 3 4 5 6 7 9 10 conserver la structure d'arbre au lieu de la reconstruire arbre binaire de

Plus en détail

PROBLEMES D'ORDONNANCEMENT AVEC RESSOURCES

PROBLEMES D'ORDONNANCEMENT AVEC RESSOURCES Leçon 11 PROBLEMES D'ORDONNANCEMENT AVEC RESSOURCES Dans cette leçon, nous retrouvons le problème d ordonnancement déjà vu mais en ajoutant la prise en compte de contraintes portant sur les ressources.

Plus en détail

2 Grad Info Soir Langage C++ Juin 2007. Projet BANQUE

2 Grad Info Soir Langage C++ Juin 2007. Projet BANQUE 2 Grad Info Soir Langage C++ Juin 2007 Projet BANQUE 1. Explications L'examen comprend un projet à réaliser à domicile et à documenter : - structure des données, - objets utilisés, - relations de dépendance

Plus en détail

Calcul de développements de Puiseux et application au calcul du groupe de monodromie d'une courbe algébrique plane

Calcul de développements de Puiseux et application au calcul du groupe de monodromie d'une courbe algébrique plane Calcul de développements de Puiseux et application au calcul du groupe de monodromie d'une courbe algébrique plane Poteaux Adrien XLIM-DMI, UMR-CNRS 6172 Université de Limoges Soutenance de thèse 15 octobre

Plus en détail

Logiciel de Base. I. Représentation des nombres

Logiciel de Base. I. Représentation des nombres Logiciel de Base (A1-06/07) Léon Mugwaneza ESIL/Dépt. Informatique (bureau A118) mugwaneza@univmed.fr I. Représentation des nombres Codage et représentation de l'information Information externe formats

Plus en détail

Capacité d un canal Second Théorème de Shannon. Théorie de l information 1/34

Capacité d un canal Second Théorème de Shannon. Théorie de l information 1/34 Capacité d un canal Second Théorème de Shannon Théorie de l information 1/34 Plan du cours 1. Canaux discrets sans mémoire, exemples ; 2. Capacité ; 3. Canaux symétriques ; 4. Codage de canal ; 5. Second

Plus en détail

Cours d Analyse. Fonctions de plusieurs variables

Cours d Analyse. Fonctions de plusieurs variables Cours d Analyse Fonctions de plusieurs variables Licence 1ère année 2007/2008 Nicolas Prioux Université de Marne-la-Vallée Table des matières 1 Notions de géométrie dans l espace et fonctions à deux variables........

Plus en détail

Ebauche Rapport finale

Ebauche Rapport finale Ebauche Rapport finale Sommaire : 1 - Introduction au C.D.N. 2 - Définition de la problématique 3 - Etat de l'art : Présentatio de 3 Topologies streaming p2p 1) INTRODUCTION au C.D.N. La croissance rapide

Plus en détail

Cours 02 : Problème général de la programmation linéaire

Cours 02 : Problème général de la programmation linéaire Cours 02 : Problème général de la programmation linéaire Cours 02 : Problème général de la Programmation Linéaire. 5 . Introduction Un programme linéaire s'écrit sous la forme suivante. MinZ(ou maxw) =

Plus en détail

De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que

De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que Introduction. On suppose connus les ensembles N (des entiers naturels), Z des entiers relatifs et Q (des nombres rationnels). On s est rendu compte, depuis l antiquité, que l on ne peut pas tout mesurer

Plus en détail

Les structures de données. Rajae El Ouazzani

Les structures de données. Rajae El Ouazzani Les structures de données Rajae El Ouazzani Les arbres 2 1- Définition de l arborescence Une arborescence est une collection de nœuds reliés entre eux par des arcs. La collection peut être vide, cad l

Plus en détail

DOCM 2013 http://docm.math.ca/ Solutions officielles. 1 2 10 + 1 2 9 + 1 2 8 = n 2 10.

DOCM 2013 http://docm.math.ca/ Solutions officielles. 1 2 10 + 1 2 9 + 1 2 8 = n 2 10. A1 Trouvez l entier positif n qui satisfait l équation suivante: Solution 1 2 10 + 1 2 9 + 1 2 8 = n 2 10. En additionnant les termes du côté gauche de l équation en les mettant sur le même dénominateur

Plus en détail

Trépier avec règle, ressort à boudin, chronomètre, 5 masses de 50 g.

Trépier avec règle, ressort à boudin, chronomètre, 5 masses de 50 g. PHYSQ 130: Hooke 1 LOI DE HOOKE: CAS DU RESSORT 1 Introduction La loi de Hooke est fondamentale dans l étude du mouvement oscillatoire. Elle est utilisée, entre autres, dans les théories décrivant les

Plus en détail

La mesure de Lebesgue sur la droite réelle

La mesure de Lebesgue sur la droite réelle Chapitre 1 La mesure de Lebesgue sur la droite réelle 1.1 Ensemble mesurable au sens de Lebesgue 1.1.1 Mesure extérieure Définition 1.1.1. Un intervalle est une partie convexe de R. L ensemble vide et

Plus en détail

OPTIMISATION À UNE VARIABLE

OPTIMISATION À UNE VARIABLE OPTIMISATION À UNE VARIABLE Sommaire 1. Optimum locaux d'une fonction... 1 1.1. Maximum local... 1 1.2. Minimum local... 1 1.3. Points stationnaires et points critiques... 2 1.4. Recherche d'un optimum

Plus en détail

Cours de Master Recherche

Cours de Master Recherche Cours de Master Recherche Spécialité CODE : Résolution de problèmes combinatoires Christine Solnon LIRIS, UMR 5205 CNRS / Université Lyon 1 2007 Rappel du plan du cours 16 heures de cours 1 - Introduction

Plus en détail

Grandes lignes ASTRÉE. Logiciels critiques. Outils de certification classiques. Inspection manuelle. Definition. Test

Grandes lignes ASTRÉE. Logiciels critiques. Outils de certification classiques. Inspection manuelle. Definition. Test Grandes lignes Analyseur Statique de logiciels Temps RÉel Embarqués École Polytechnique École Normale Supérieure Mercredi 18 juillet 2005 1 Présentation d 2 Cadre théorique de l interprétation abstraite

Plus en détail

Pourquoi l apprentissage?

Pourquoi l apprentissage? Pourquoi l apprentissage? Les SE sont basés sur la possibilité d extraire la connaissance d un expert sous forme de règles. Dépend fortement de la capacité à extraire et formaliser ces connaissances. Apprentissage

Plus en détail

ÉPREUVE COMMUNE DE TIPE 2008 - Partie D

ÉPREUVE COMMUNE DE TIPE 2008 - Partie D ÉPREUVE COMMUNE DE TIPE 2008 - Partie D TITRE : Les Fonctions de Hachage Temps de préparation :.. 2 h 15 minutes Temps de présentation devant le jury :.10 minutes Entretien avec le jury :..10 minutes GUIDE

Plus en détail

Résolution de systèmes linéaires par des méthodes directes

Résolution de systèmes linéaires par des méthodes directes Résolution de systèmes linéaires par des méthodes directes J. Erhel Janvier 2014 1 Inverse d une matrice carrée et systèmes linéaires Ce paragraphe a pour objet les matrices carrées et les systèmes linéaires.

Plus en détail

L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ

L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ INTRODUCTION Données : n individus observés sur p variables quantitatives. L A.C.P. permet d eplorer les liaisons entre variables et

Plus en détail

www.h-k.fr/publications/objectif-agregation

www.h-k.fr/publications/objectif-agregation «Sur C, tout est connexe!» www.h-k.fr/publications/objectif-agregation L idée de cette note est de montrer que, contrairement à ce qui se passe sur R, «sur C, tout est connexe». Cet abus de langage se

Plus en détail

VIII- Circuits séquentiels. Mémoires

VIII- Circuits séquentiels. Mémoires 1 VIII- Circuits séquentiels. Mémoires Maintenant le temps va intervenir. Nous avions déjà indiqué que la traversée d une porte ne se faisait pas instantanément et qu il fallait en tenir compte, notamment

Plus en détail

Model checking temporisé

Model checking temporisé Model checking temporisé Béatrice Bérard LAMSADE Université Paris-Dauphine & CNRS berard@lamsade.dauphine.fr ETR 07, 5 septembre 2007 1/44 Nécessité de vérifier des systèmes... 2/44 Nécessité de vérifier

Plus en détail

Amplificateur à deux étages : gains, résistances "vues", droites de charges, distorsion harmonique

Amplificateur à deux étages : gains, résistances vues, droites de charges, distorsion harmonique Problème 6 Amplificateur à deux étages : gains, résistances "ues", droites de charges, distorsion harmonique Le circuit analysé dans ce problème est un exemple représentatif d'amplificateur réalisé à composants

Plus en détail

Chapitre 3. Mesures stationnaires. et théorèmes de convergence

Chapitre 3. Mesures stationnaires. et théorèmes de convergence Chapitre 3 Mesures stationnaires et théorèmes de convergence Christiane Cocozza-Thivent, Université de Marne-la-Vallée p.1 I. Mesures stationnaires Christiane Cocozza-Thivent, Université de Marne-la-Vallée

Plus en détail

Fonctions homographiques

Fonctions homographiques Seconde-Fonctions homographiques-cours Mai 0 Fonctions homographiques Introduction Voir le TP Géogébra. La fonction inverse. Définition Considérons la fonction f définie par f() =. Alors :. f est définie

Plus en détail

Seconde et première Exercices de révision sur les probabilités Corrigé

Seconde et première Exercices de révision sur les probabilités Corrigé I_ L'univers. _ On lance simultanément deux dés indiscernables donc il n'y a pas d'ordre. Il y a répétition, les dbles. On note une issue en écrivant le plus grand chiffre puis le plus petit. 32 signifie

Plus en détail

Les indices à surplus constant

Les indices à surplus constant Les indices à surplus constant Une tentative de généralisation des indices à utilité constante On cherche ici en s inspirant des indices à utilité constante à définir un indice de prix de référence adapté

Plus en détail

Représentation des Nombres

Représentation des Nombres Chapitre 5 Représentation des Nombres 5. Representation des entiers 5.. Principe des représentations en base b Base L entier écrit 344 correspond a 3 mille + 4 cent + dix + 4. Plus généralement a n a n...

Plus en détail

Cours d électricité. Circuits électriques en courant constant. Mathieu Bardoux. 1 re année

Cours d électricité. Circuits électriques en courant constant. Mathieu Bardoux. 1 re année Cours d électricité Circuits électriques en courant constant Mathieu Bardoux mathieu.bardoux@univ-littoral.fr IUT Saint-Omer / Dunkerque Département Génie Thermique et Énergie 1 re année Objectifs du chapitre

Plus en détail

Cours de mathématiques Première année. Exo7

Cours de mathématiques Première année. Exo7 Cours de mathématiques Première année Eo7 2 Eo7 Sommaire Logique et raisonnements 9 Logique 9 2 Raisonnements 4 2 Ensembles et applications 9 Ensembles 20 2 Applications 23 3 Injection, surjection, bijection

Plus en détail

Les droites (d 1 ) et (d 2 ) sont sécantes en A Le point A est le point d intersection des 2 droites

Les droites (d 1 ) et (d 2 ) sont sécantes en A Le point A est le point d intersection des 2 droites I Droites perpendiculaires Lorsque deux droites se coupent, on dit qu elles sont sécantes Les droites (d 1 ) et (d 2 ) sont sécantes en A Le point A est le point d intersection des 2 droites Lorsque deux

Plus en détail

Quelques Algorithmes simples

Quelques Algorithmes simples Quelques Algorithmes simples Irène Guessarian ig@liafa.jussieu.fr 10 janvier 2012 Je remercie Patrick Cegielski de son aide efficace pour la programmation Java ; la section sur le codage de Huffman a été

Plus en détail

par Denis-Charles Cisinski & Georges Maltsiniotis

par Denis-Charles Cisinski & Georges Maltsiniotis LA CATÉGORIE Θ DE JOYAL EST UNE CATÉGORIE TEST par Denis-Charles Cisinski & Georges Maltsiniotis Résumé. Le but principal de cet article est de prouver que la catégorie cellulaire Θ de Joyal est une catégorie

Plus en détail