* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours.

Save this PDF as:

Dimension: px
Commencer à balayer dès la page:

Download "* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours."

Transcription

1 Eo7 Fonctions de plusieurs variables Eercices de Jean-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-francefr * très facile ** facile *** difficulté moenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours Eercice 1 **T Etudier l eistence et la valeur éventuelle d une limite en 0,0 des fonctions suivantes : sin [00555] Eercice *** On pose f, : [ 1,1] R t t + t puis F, = sup t [ 1,1] f, t Etudier la continuité de F sur R [005554] Eercice ***T 0 si, = 0,0 Déterminer la classe de f sur R où f, = si, 0,0 + [005555] Eercice 4 ***T Soit f : R R 0 si = 0, sin si 0 1 Etudier la continuité de f Etudier l eistence et la valeur éventuelle de dérivées partielles d ordre 1 et On montrera en particulier que et sont définies en 0,0 mais n ont pas la même valeur [005556] Eercice 5 *** Le laplacien d une application g de R dans R, de classe C sur R est g = g + g Déterminer une fontion de classe C sur un intervalle I de R à préciser à valeurs dans R telle que la fonction 1

2 g, = f cos ch soit non constante et ait un laplacien nul sur un sous-ensemble de R le plus grand possible une fonction de Laplacien nul est dite harmonique [005557] Eercice 6 **T Trouver les etrema locau de 1 f : R R, f : R R, [005558] Eercice 7 *** Maimum du produit des distances au cotés d un triangle ABC du plan d un point M intérieur à ce triangle on admettra que ce maimum eiste [005559] Eercice 8 ** Soit a un réel strictement positif donné Trouver le minimum de f, = + a + + a [005560] Eercice 9 ** Trouver toutes les applications ϕ de R dans R de classe C telle que l application f de U =, R / 0} dans R qui à, associe ϕ vérifie : = [005561] Eercice 10 ** Trouver toutes les applications f de R dans R vérifiant 1 = 0 en utilisant le changement de variables u = + et v = + + = + sur D =, R / > 0} en passant en polaires [00556] Retrouver cette fiche et d autres eercices de maths sur eo7emathfr

3 Correction de l eercice 1 On note f la fonction considérée 1 Pour 0, f, + = + + f n a de limite réelle en 0, Quand tend vers 0, + tend vers 0 puis lim f, =, 0,0 >0, = + Pour 0, f,0 = 0 = 0 puis lim f, = 0 Mais aussi, pour 0, f, = = 1 +0, 0,0 + =0 puis lim f, = 1, 0,0 Donc si f a une limite réelle, cette limite doit être égale à 0 et à 1 ce qui est = impossible f n a pas de limite réelle en 0,0 Pour tout, R, + = 0 et donc 1 + Par suite, pour, 0,0, f, = = Comme lim, 0, = 0, on a aussi lim, 0,0 f, = 0 4 lim, 0,0 sin = 1 et lim, 0, = 1 Donc lim, 0,0 f, = 1 5 Pour, R, + = et donc pour, 0,0, f, = Comme lim, 0,0 + = 0, on a aussi lim, 0,0 f, = 0 6 Pour, R, = = + et donc pour, 0,0, f, = Comme lim, 0,0 + = 0, on a aussi lim, 0,0 f, = 0 Correction de l eercice Déterminons tout d abord F, pour, R Pour R, F, = Ma f 0, 1, f 0, 1} = Ma, } = Si 0, F, = Ma f, 1, f,, f, 1 } } } = Ma +,, 4 = Ma +, 4 Plus précisément, si > 0, on a + > 0 et 4 0 Donc F, = + ce qui reste vrai quand = 0 Si < 0, + 4 = = + 4 < 0 et donc F, = 4 + si 0, R, F, = 4 si < 0 En vertu de théorèmes générau, F est continue sur, R, > 0} et, R, < 0} Soit 0 0 lim F, = + 0 = F0, 0 et donc F n est pas continue en 0, 0 Enfin, lim F, =, 0, 0, 0,0 <0, = 0 <0, = 1 0 = F0,0 et donc F n est pas continue en 0,0 4 F est continue sur R \ 0,, R} et est discontinue en tout 0,, R

4 Correction de l eercice Pour, R, + = 0 = = 0 et donc f est définie sur R f est de classe C sur R \ 0,0} en tant que quotient de fonctions de classe C sur R \ 0,0} dont le dénominateur ne s annule pas sur R \ 0,0} Pour, 0,0, f, + = Comme lim +, 0,0 = 0, on en déduit que lim f, =, 0,0, 0,0 0 = f 0,0 Ainsi, f est continue en 0,0 et donc sur R Eistence de 0,0 Pour 0, f,0 f 0,0 0 = = 0, f,0 f 0,0 et donc lim 0 0 = 0 Ainsi, f admet une dérivée partielle par rapport à sa première variable en 0,0 et 0,0 = 0 Pour, 0,0,, = + = Finalement, f admet sur R une dérivée partielle par rapport à sa première variable définie par 0 si, = 0,0, R,, = si, 0,0 + Pour, R, f, = f, Par suite,, R,, =, En effet, pour 0, 0 donné dans R f 0, f 0, 0 0 = f, 0+ f 0, 0 0 = f, 0 f 0, , 0 Donc, f admet sur R une dérivée partielle par rapport à sa deuième variable définie par, R,, =, = Continuité de et en 0,0 Pour, 0,0,, 0,0 = si, = 0, si, 0, = Comme tend vers 0 quand, tend vers 0,0,, 0,0 tend vers 0 quand, tend vers 0,0 On en déduit que l application est continue en 0,0 et donc sur R Enfin, puisque, R,, =,, est continue sur R f est donc au moins de classe C 1 sur R Pour 0,,0 0,0 0 = 4 = 1 et donc lim,0 0, = 1 Donc 0,0 eiste et 0,0 = 1 Pour 0,,0 0,0 0 = 4 4 = 1 et donc lim,0 0,0 0 0 = 1 Donc 0,0 eiste et 0,0 = 1 0,0 0,0 et donc f n est pas de classe C sur R d après le théorème de SCHWARZ f est de classe C 1 eactement sur R Correction de l eercice 4 1 Posons =,/ 0} f est continue sur R \ en vertu de théorèmes générau Soit 0 R 4

5 Comme 0 si = 0 f, f 0,0 = sin si 0 lim, 0,0 = 0, lim f, f 0,0 = 0 et donc f est continue en 0,0 Finalement,, 0,0 f est continue sur R f est de classe C sur R \ En particulier, d après le théorème de SCHWARZ,, R \, puis et enfin Eistence de 0,0 Pour 0,, = cos et, = sin cos,, = sin, f, = cos sin,, = sin cos sin f,0 f 0,0 0 = 0 et donc f,0 f 0,0 0 = sur pour 0 On en déduit que 0 0,0 eiste et 0,0 = 0 En résumé, f admet une dérivée partielle par rapport à sa première variable sur R définie par 0 si = 0, R,, = cos si 0 Eistence de 0,0 Soit 0 R Pour 0, f 0, f 0,0 0 si = 0 0 = sin 0 si 0 et donc f 0, f 0,0 0 0 On en déduit que 0 0,0 eiste et 0,0 = 0 En résumé, f admet une dérivée partielle par rapport à sa deuième variable sur R définie par 0 si = 0, R,, = sin cos si 0 Eistence de 0,0 Pour 0, et donc f,0 0,0 0 = 0,0 0,0 0 tend vers 0 quand tend vers 0 On en déduit que 0,0 eiste et 0,0 = 0 Eistence de 0,0 Pour 0, 0, 0,0 0 = cos 0 = 1 et donc 0, 0,0 0 tend vers 1 quand tend vers 0 On en déduit que 0,0 eiste et 5

6 0,0 = 1 Correction de l eercice 5 Pour, R, cos ch cos [ 1,1] Plus précisément, quand décrit R, ch 0 décrit [ 1,1] et donc quand, décrit R, cos ch décrit [ 1,1] On suppose déjà que f est de classe C sur [ 1,1] L application g est alors de classe C sur R et pour, R, sin, = ch f cos ch puis g, = 4cos ch f cos ch + 4sin ch f cos ch Ensuite, cossh, = ch f cos ch puis Mais alors g, = 4cos ch f cos ch cossh 4sh ch g, = 8cosch + 8cossh ch Par suite, = 8cos ch = 8cos ch 4 = ch f cos ch f cos ch cos ch f f cos ch + 4cos sh ch 4 f cos ch cos f + 4sin ch + 4cos sh ch ch cos ch + 4cos ch 1 ch 4 + 4ch 4cos ch 4 cos ch + 1 cos ch cos f ch cos f ch f cos ch g = 0, R, cos cos ch f + 1 cos cos ch ch f = 0 ch t [ 1,1], t f t + 1 t f t = 0 t [ 1,1],1 t f t = 0 λ R, t [ 1,1], 1 t f t = λ Le choi λ 0 ne fournit pas de solution sur [ 1,1] Donc λ = 0 puis f = 0 puis f constante ce qui est eclu Donc, on ne peut pas poursuivre sur [ 1,1] On cherche dorénavant f de classe C sur ] 1,1[ de sorte que g est de classe C sur R \ kπ,0, k Z } f solution λ R, t ] 1,1[, 1 t f t = λ λ R / t ] 1,1[, f t = λ,µ R R/ t ] 1,1[, f t = λ argtht + µ λ 1 t cos f ch Correction de l eercice 6 1 f est de classe C 1 sur R qui est un ouvert de R Donc si f admet un etremum local en un point 0, 0 de R, 0, 0 est un point critique de f Or, pour, R, 6

7 , = 0, = = = 0 = 1 = 4 Donc si f admet un etremum local, c est nécessairement en 1, 4 avec f 1, 4 f, = = = = = f 1, 4 = 7 D autre part, Donc f admet un minimum local en 1, 4 égal à 7 et ce minimum local est un minimum global D autre part, f n admet pas de maimum local f est de classe C 1 sur R qui est un ouvert de R Donc si f admet un etremum local en un point 0, 0 de R, 0, 0 est un point critique de f Or, pour, R,, = 0, = = = 0 = 9 = 0, 0,0,1,1, 1, 1 Les points critiques de f sont 0,0, 1,1 et 1, 1 Maintenant, pour, R, f, = f, Ceci permet de restreindre l étude au deu points 0,0 et 1,1 Pour R, f,0 = 4 > 0 sur R et f, = = + < 0 sur ],0[ ]0, [ Donc f change de signe dans tous voisinage de 0,0 et puisque f 0,0 = 0, f n admet pas d etremum local en 0,0 Pour h,k R, f 1 + h,1 + k f 1,1 = 1 + h k h1 + k + = 6h + 6k 4hk + 4h + 4k + h 4 + k 4 6h + 6k h + k + 4h + 4k + h 4 + k 4 = 4h + 4h + h 4 + 4k + 4k + k 4 = h h k k f admet donc un minimum global en 1,1 et en 1, 1 égal à Correction de l eercice 7 Soit M un point intérieur au triangle ABC On pose a = BC, b = CA et c = AB On note,, z et A les aires respectives des triangles MBC, MCA, MAB et ABC On a dm,bcdm,cadmab = airembc a airemca airemab b c = 8z abc = 8 abca On doit donc déterminer le maimum de la fonction f, = A quand, décrit le triangle ouvert T =, R, > 0, > 0, + < A } On admet que f admet un maimum global sur le triangle fermé T =, R, 0, 0, + A } cela résulte d un théorème de math Spé : «une fonction numérique continue sur un compact admet un minimum et un maimum» Ce maimum est atteint dans l intérieur T de T car f est nulle au bord de T et strictement positive à l intérieur de T Puisque f est de classe C 1 sur T qui est un ouvert de R, f atteint son maimum sur T en un point critique de f Or, pour, T,, = 0, = 0 A = 0 A = 0 + = A + = A = = A A = 0 A = 0 7

8 Le maimum cherché est donc égal à 8 abc A A A A A est obtenu quand M est le centre de gravité du triangle ABC = 8A 7abc On peut montrer que ce maimum Correction de l eercice 8 Soient R un repère orthonormé de R muni de sa structure euclidienne canonique puis M, A et B les points de coordonnées respectives,, 0,a et a,0 dans R Pour, R, f, = MA + MB AB = a avec égalité si et seulement si M [AB] Donc Le minimum de f sur R eiste et vaut a Correction de l eercice 9 Soit ϕ une application de classe C sur R puis f l application définie sur U par, U, f, = ϕ vérifie : = = ϕ = ϕ = 1 ϕ + ϕ 1 ϕ = 1 ϕ Puis, quand, décrit U, décrit R car 1 décrit déjà R ϕ + 4 ϕ 1 ϕ, U,,, =, U, ϕ + 1 ϕ = t R, tϕ t + t 1ϕ t = t λ R/ t R, t 1ϕ t = t + λ Maintenant, t + λ ne s annule pas en ±1, l égalité fournit une fonction ϕ telle que ϕ n a pas une limite réelle en ±1 Une telle solution n est pas de classe C sur R Donc nécessairement λ = 1 puis, U,,, = t R, t 1ϕ t = t 1 t R \ 1,1}, ϕ t = 1 t R, ϕ t = 1 par continuité de ϕ en ± 1 λ R/ t R, ϕt = t + λ Correction de l eercice 10 1 u = + = u v v = + = u + v L application, u,v est un C1 -difféomorphisme de R sur lui-même Pour u,v R, posons alors gu,v = f u v,u + v = f, de sorte que, R, 8

9 f, = g +, + = gu,v f est de classe C 1 sur R si et seulement si g est de classe C 1 sur R et,, = g +, + u = v u,v + u Par suite, = u,v + u v u,v g +, + u v u,v v u,v + u u,v + u v u,v = u u,v v u,v, R,,, = 0 u,v R, u u,v = 0 F : R R de classe C 1 telle que u,v R, gu,v = Fv F : R R de classe C 1 telle que, R, f, = F + On pose r = + et θ = arctan de sorte que = r cosθ et = r sinθ On pose f, = f r cosθ,r sinθ = gr,θ On sait que r r θ = cosθ, = sinθ, = sinθ r, θ = cosθ r + = r cosθ cosθ r sinθ + r sinθ sinθ r θ r + cosθ = r r θ r, puis, D, f, +, = + r > 0, r r,θ = r r > 0, r r r,θ = 1 ] ϕ de classe C 1 sur π, π [ ] / r,θ ]0,+ [ π, π [, gr,θ = r + ϕθ ] ϕ de classe C 1 sur π, π [ /, D, f, = + + ϕ arctan ψ de classe C 1 sur R/, D, f, = + + ψ 9

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable Eo7 Fonctions de plusieurs variables Eercices de Jean-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-francefr * très facile ** facile *** difficulté moenne **** difficile ***** très difficile I

Plus en détail

Planche n o 22. Fonctions de plusieurs variables. Corrigé

Planche n o 22. Fonctions de plusieurs variables. Corrigé Planche n o Fonctions de plusieurs variables Corrigé n o : f est définie sur R \ {, } Pour, f, = Quand tend vers, le couple, tend vers le couple, et f, tend vers Donc, si f a une limite réelle en, cette

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours Exo7 Continuité (étude globale). Diverses fonctions Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france.fr * très facile ** facile *** difficulté moyenne **** difficile *****

Plus en détail

Limites finies en un point

Limites finies en un point 8 Limites finies en un point Pour ce chapitre, sauf précision contraire, I désigne une partie non vide de R et f une fonction définie sur I et à valeurs réelles ou complees. Là encore, les fonctions usuelles,

Plus en détail

Exo7. Limites de fonctions. 1 Théorie. 2 Calculs

Exo7. Limites de fonctions. 1 Théorie. 2 Calculs Eo7 Limites de fonctions Théorie Eercice Montrer que toute fonction périodique et non constante n admet pas de ite en + Montrer que toute fonction croissante et majorée admet une ite finie en + Indication

Plus en détail

+ 1. Qu est ce que cela donne pour notre calcul de 1,01? On pose x = 1,01 donc f (x) 1 + 1 0,01

+ 1. Qu est ce que cela donne pour notre calcul de 1,01? On pose x = 1,01 donc f (x) 1 + 1 0,01 Eo7 Dérivée d une fonction Vidéo partie. Définition Vidéo partie. Calculs Vidéo partie 3. Etremum local, théorème de Rolle Vidéo partie 4. Théorème des accroissements finis Eercices Fonctions dérivables

Plus en détail

Planche n o 36. Fonctions de deux variables. Corrigé

Planche n o 36. Fonctions de deux variables. Corrigé Planche n o 6 Fonctions de deu variables Corrigé n o 1 : On note f la fonction considérée 1 Pour 0, f, = 1 0 Quand tend vers 0, tend vers 0 puis f, = f n a de ite réelle en 0, 0, 0,0 >0, = Pour 0, f, 0

Plus en détail

Développements limités, équivalents et calculs de limites

Développements limités, équivalents et calculs de limites Développements ités, équivalents et calculs de ites Eercice. Déterminer le développement ité en 0 à l ordre n des fonctions suivantes :. f() e (+) 3 n. g() sin() +ln(+) n 3 3. h() e sh() n 4. i() sin(

Plus en détail

O, i, ) ln x. (ln x)2

O, i, ) ln x. (ln x)2 EXERCICE 5 points Commun à tous les candidats Le plan complee est muni d un repère orthonormal O, i, j Étude d une fonction f On considère la fonction f définie sur l intervalle ]0; + [ par : f = ln On

Plus en détail

Fonctions de référence Variation des fonctions associées

Fonctions de référence Variation des fonctions associées DERNIÈRE IMPRESSION LE 9 juin 05 à 8:33 Fonctions de référence Variation des fonctions associées Table des matières Fonction numérique. Définition.................................. Ensemble de définition...........................3

Plus en détail

[http://mp.cpgedupuydelome.fr] édité le 29 décembre 2015 Enoncés 1. a) x arctan x. a) x x x b) x (ch x) x c) x ln x

[http://mp.cpgedupuydelome.fr] édité le 29 décembre 2015 Enoncés 1. a) x arctan x. a) x x x b) x (ch x) x c) x ln x [ttp://mp.cpgedupuydelome.fr] édité le 29 décembre 205 Enoncés Dérivation Dérivabilité Eercice [ 0354 ] [Correction] Étudier la dérivabilité des fonctions suivantes : a) 2 3 b) 2 ) arccos 2 ) Eercice 2

Plus en détail

Comparaison de fonctions Développements limités. Chapitre 10

Comparaison de fonctions Développements limités. Chapitre 10 PCSI - 4/5 www.ericreynaud.fr Chapitre Points importants 3 Questions de cours 6 Eercices corrigés Plan du cours 4 Eercices types 7 Devoir maison 5 Eercices Chap Et s il ne fallait retenir que si points?

Plus en détail

Exo7. Formes quadratiques. Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france.fr

Exo7. Formes quadratiques. Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france.fr Exo Formes quadratiques Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france.fr * très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

Plus en détail

Cours de mathématiques. Chapitre 4 : Dérivabilité. Terminale S1. Année scolaire 2008-2009 mise à jour 22 novembre 2008. Fig.

Cours de mathématiques. Chapitre 4 : Dérivabilité. Terminale S1. Année scolaire 2008-2009 mise à jour 22 novembre 2008. Fig. Cours de matématiques Terminale S1 Capitre 4 : Dérivabilité Année scolaire 008-009 mise à jour novembre 008 Fig. 1 Jean Dausset Fig. alliday Fig. 3 Joann Radon Il y a des gens connus et des gens importants-idée

Plus en détail

Cours Mathématiques PACES UHP-Nancy

Cours Mathématiques PACES UHP-Nancy Cours Mathématiques PACES UHP-Nancy V. Latocha PACES UHP septembre 2010 remerciements à D. Schmitt et V. Ries V. Latocha (PACES UHP) Cours mathématiques Paces septembre 2010 1 / 48 1 Fonctions d une variable

Plus en détail

Devoir surveillé n 1 : correction

Devoir surveillé n 1 : correction E1A-E1B 013-01 Devoir surveillé n 1 : correction Samedi 8 septembre Durée : 3 heures. La calculatrice est interdite. On attachera une grande importance à la qualité de la rédaction. Les questions du début

Plus en détail

Chapitre 6. Fonction réelle d une variable réelle

Chapitre 6. Fonction réelle d une variable réelle Chapitre 6 Fonction réelle d une variable réelle 6. Généralités et plan d étude Une application de I dans R est une correspondance entre les éléments de I et ceu de R telle que tout élément de I admette

Plus en détail

Démonstrations exigibles au bac

Démonstrations exigibles au bac Démonstrations exigibles au bac On donne ici les 11 démonstrations de cours répertoriées comme exigibles dans le programme officiel. Toutes ces démonstrations peuvent donner lieu à une «restitution organisée

Plus en détail

L2 MIEE 2012-2013 VAR Université de Rennes 1

L2 MIEE 2012-2013 VAR Université de Rennes 1 . Sous-ensembles de R n et fonctions (suite) 1 Nappes paramétrées Si f une fonction de deux variables, son graphe est une surface incluse dans R 3 : {(x, y, f(x, y)) / (x, y) R 2 }. Une telle surface s

Plus en détail

ÉCOLE NATIONALE DE L AVIATION CIVILE Session 2007

ÉCOLE NATIONALE DE L AVIATION CIVILE Session 2007 ÉCOLE NATIONALE DE L AVIATION CIVILE Session 27 CONCOURS DE RECRUTEMENT D ÉLÈVES INGÉNIEURS DU CONTRÔLE DE LA NAVIGATION AÉRIENNE Épreuve commune obligatoire de MATHÉMATIQUES Durée : 4 Heures Coefficient

Plus en détail

FONCTIONS. I Généralités sur les fonctions. Définitions. Remarque. Exercice 01. Remarque

FONCTIONS. I Généralités sur les fonctions. Définitions. Remarque. Exercice 01. Remarque FNCTINS I Généralités sur les fonctions Définitions Soit D une partie de l'ensemble IR. n définit une fonction f de D dans IR, en associant à chaque réel de D, un réel et un seul noté f() et que l'on appelle

Plus en détail

MEÉF 1 - Mathématiques DS2-5 octobre 2015 Analyse - Géométrie

MEÉF 1 - Mathématiques DS2-5 octobre 2015 Analyse - Géométrie MEÉF - Mathématiques DS2-5 octobre 25 Analyse - Géométrie Eercice Soit E un K-espace vectoriel (K étant le corps R ou C). Deu normes N et N 2 sur E sont dites équivalentes s il eiste deu constantes réelles

Plus en détail

Optimisation des fonctions de plusieurs variables

Optimisation des fonctions de plusieurs variables Optimisation des fonctions de plusieurs variables Hervé Hocquard Université de Bordeaux, France 8 avril 2013 Extrema locaux et globaux Définition On étudie le comportement d une fonction de plusieurs variables

Plus en détail

CONCOURS GÉNÉRAL DES LYCÉES SESSION DE 2009 COMPOSITION DE MATHÉMATIQUES. (Classe terminale S)

CONCOURS GÉNÉRAL DES LYCÉES SESSION DE 2009 COMPOSITION DE MATHÉMATIQUES. (Classe terminale S) MA 09 CONCOURS GÉNÉRAL DES LYCÉES SESSION DE 009 COMPOSITION DE MATHÉMATIQUES (Classe terminale S) DURÉE : 5 heures La calculatrice de poche est autorisée, conformément à la réglementation. La clarté et

Plus en détail

Le corps R des nombres réels

Le corps R des nombres réels Le corps R des nombres réels. Construction de R à l aide des suites de Cauchy de nombres rationnels On explique brièvement dans ce paragraphe comment construire le corps R des nombres réels à partir du

Plus en détail

un repère orthonormé de l espace.

un repère orthonormé de l espace. Terminale S GEOMETRIE Ch 13 DANS L ESPACE. Soit ( O ; i, j, k ) un repère orthonormé de l espace. I) Droites et plans dans l espace : Propriété 1 : Soient A et B deux points de l espace. AB est l ensemble

Plus en détail

Continuité d une fonction de plusieurs variables

Continuité d une fonction de plusieurs variables Chapitre 2 Continuité d une fonction de plusieurs variables Maintenant qu on a défini la notion de limite pour des suites dans R n, la notion de continuité s étend sans problème à des fonctions de plusieurs

Plus en détail

Calculs préliminaires.

Calculs préliminaires. MINES-PONTS 005. Filière MP. MATHÉMATIQES 1. Corrigé de JL. Lamard jean-louis.lamard@prepas.org) Calculs préliminaires. Notons que si f H alors f)e / est bien intégrable sur R car continue positive et

Plus en détail

EXERCICE 4 (7 points ) (Commun à tous les candidats)

EXERCICE 4 (7 points ) (Commun à tous les candidats) EXERCICE 4 (7 points ) (Commun à tous les candidats) On cherche à modéliser de deux façons différentes l évolution du nombre, exprimé en millions, de foyers français possédant un téléviseur à écran plat

Plus en détail

Première partie. Deuxième partie

Première partie. Deuxième partie PC 96-97 correction épreuve X97 Première partie. f étant convexe sur l intervalle [t, t 2 ], sa courbe représentative est en dessous la corde joignant les points (t, f(t )) et (t 2, f(t 2 )). Comme f(t

Plus en détail

L usage de la calculatrice n est pas autorisé.

L usage de la calculatrice n est pas autorisé. e3a Concours ENSAM - ESTP - EUCLIDE - ARCHIMÈDE Épreuve de Mathématiques A durée 4 heures MP L usage de la calculatrice n est pas autorisé. Si, au cours de l épreuve, un candidat repère ce qui lui semble

Plus en détail

Représentation géométrique d un nombre complexe

Représentation géométrique d un nombre complexe CHAPITRE 1 NOMBRES COMPLEXES 1 Représentation géométrique d un nombre complexe 1. Ensemble des nombres complexes Soit i le nombre tel que i = 1 L ensemble des nombres complexes est l ensemble des nombres

Plus en détail

Fonctions homographiques

Fonctions homographiques Fonctions homographiques On donne ci-dessous deux définitions des fonctions homographiques, et on montre que ces deux définitions sont équivalentes. On décrit la courbe représentative d une fonction homographique.

Plus en détail

CHAPITRE 5 : LIMITE ET ORDRE ASYMPTOTES

CHAPITRE 5 : LIMITE ET ORDRE ASYMPTOTES CHAPITRE 5 : LIMITE ET ORDRE ASYMPTOTES La lettre grecque α désigne soit, soit, soit a un réel fini ( a R ) Le plan est muni d un repère ( O; i ; j), et on note C f la courbe représentative de la fonction

Plus en détail

Planche n o 19. Fonctions de plusieurs variables. Corrigé

Planche n o 19. Fonctions de plusieurs variables. Corrigé Planche n o 19 Fonctions de plusieurs variables Corrigé Exercice n o 1 1 f est définie sur R \{(0,0} Pour x 0, f(x,0 = 0 Quand x tend vers 0, le couple (x,0 tend vers le couple (0,0 et f(x,0 tend vers

Plus en détail

I. Polynômes de Tchebychev

I. Polynômes de Tchebychev Première épreuve CCP filière MP I. Polynômes de Tchebychev ( ) 1.a) Tout réel θ vérifie cos(nθ) = Re ((cos θ + i sin θ) n ) = Re Cn k (cos θ) n k i k (sin θ) k Or i k est réel quand k est pair et imaginaire

Plus en détail

Second degré : Résumé de cours et méthodes

Second degré : Résumé de cours et méthodes Second degré : Résumé de cours et méthodes 1 Définitions : DÉFINITIN n appelle trinôme du second degré toute fonction f définie sur R par f () = a + b + c (a,b et c réels avec a 0). Remarque : Par abus

Plus en détail

Fonctions de plusieurs variables

Fonctions de plusieurs variables Module : Analyse 03 Chapitre 00 : Fonctions de plusieurs variables Généralités et Rappels des notions topologiques dans : Qu est- ce que?: Mathématiquement, n étant un entier non nul, on définit comme

Plus en détail

Dérivées d ordres supérieurs. Application à l étude d extrema.

Dérivées d ordres supérieurs. Application à l étude d extrema. Chapitre 5 Dérivées d ordres supérieurs. Application à l étude d extrema. On s intéresse dans ce chapitre aux dérivées d ordre ou plus d une fonction de plusieurs variables. Comme pour une fonction d une

Plus en détail

Problème 1 : applications du plan affine

Problème 1 : applications du plan affine Problème 1 : applications du plan affine Notations On désigne par GL 2 (R) l ensemble des matrices 2 2 inversibles à coefficients réels. Soit un plan affine P muni d un repère (O, I, J). Les coordonnées

Plus en détail

Fonctions hyperboliques et applications réciproques

Fonctions hyperboliques et applications réciproques Chapitre III Fonctions hyperboliques et applications réciproques A Fonctions hyperboliques directes A. Sinus hyperbolique et cosinus hyperbolique On va définir de nouvelles fonctions inspirées notamment

Plus en détail

Nombres complexes Forme trigonométrique d un complexe Exercices corrigés

Nombres complexes Forme trigonométrique d un complexe Exercices corrigés Nombres complexes Forme trigonométrique d un complexe Exercices corrigés Sont abordés dans cette fiche : Exercice 1 : affixe d un point, représentation d un point-image dans le plan complexe, argument

Plus en détail

TS - Cours sur le logarithme népérien

TS - Cours sur le logarithme népérien Lcée Europole - R. Vidonne 1 TS - Cours sur le logarithme népérien Fonction carrée et racine carrée Considérons les fonctions f : R + R + g : R + R + 2 Dans un repère orthonormal, les courbes C f et C

Plus en détail

MATHÉMATIQUES TERMINALE ES A. YALLOUZ. Ce polycopié conforme au programme 2002, regroupe les documents distribués aux élèves en cours d année.

MATHÉMATIQUES TERMINALE ES A. YALLOUZ. Ce polycopié conforme au programme 2002, regroupe les documents distribués aux élèves en cours d année. MATHÉMATIQUES TERMINALE ES A. YALLOUZ Ce polcopié conforme au programme 00, regroupe les documents distribués au élèves en cours d année. Année 0-0 Année 0-0 T le ES A. YALLOUZ (MATH@ES) TABLE DES MATIÈRES

Plus en détail

BACCALAUREAT GENERAL

BACCALAUREAT GENERAL ACCALAUREAT GENERAL Session 2009 MATHÉMATIQUES - Série ES - Enseignement de Spécialité Liban EXERCICE 1 1) 2) C 3) C 4) A Explication 1. Chacun des logarithmes existe si et seulement si x > 4 et x > 2

Plus en détail

Chapitre I : Continuité et dérivabilité des fonctions réelles

Chapitre I : Continuité et dérivabilité des fonctions réelles ENIHP1 mathématiques continuité et dérivabilité p 1/10 Chapitre I : Continuité et dérivabilité des fonctions réelles Le cours sera illustré à l'aide du logiciel de calcul formel gratuit Maima. Les commandes

Plus en détail

Séquence 6. Fonctions dérivées. Sommaire

Séquence 6. Fonctions dérivées. Sommaire Séquence 6 Fonctions dérivées Sommaire Pré-requis Définition Dérivées des fonctions usuelles Dérivation et opérations algébriques Applications de la dérivation Synthèse de la séquence Eercices d approfondissement

Plus en détail

Probabilités Loi exponentielle Exercices corrigés

Probabilités Loi exponentielle Exercices corrigés Probabilités Loi exponentielle Exercices corrigés Sont abordés dans cette fiche : (cliquez sur l exercice pour un accès direct) Exercice 1 : densité de probabilité Exercice 2 : loi exponentielle de paramètre

Plus en détail

Résumé de cours sur les coniques. Lycée Brizeux - PCSI B. Année 2010-2011

Résumé de cours sur les coniques. Lycée Brizeux - PCSI B. Année 2010-2011 Résumé de cours sur les coniques. Lycée Brizeux - PCSI B. Année 010-011 novembre 010 I Définition d une conique en terme d équation cartésienne On se place dans le repère orthonormé direct (0, i, j ).

Plus en détail

Chapitre 9 Les équations différentielles

Chapitre 9 Les équations différentielles Chapitre 9 Les équations différentielles A) Généralités Une équation différentielle est une équation dont l inconnue est une fonction et dans laquelle apparaissent une ou plusieurs dérivées de cette fonction.

Plus en détail

Exercices - Calcul d intégrales : corrigé. Intégration par parties - Changements de variable

Exercices - Calcul d intégrales : corrigé. Intégration par parties - Changements de variable Intégration par parties - Changements de variable Eercice - Changements de variables - Niveau - L/Math Sup -. La fonction t t est une bijection de classe C de, 4] sur, ]. On peut donc poser u t. Lorsque

Plus en détail

Commun à tous les candidats

Commun à tous les candidats EXERCICE 3 (9 points ) Commun à tous les candidats On s intéresse à des courbes servant de modèle à la distribution de la masse salariale d une entreprise. Les fonctions f associées définies sur l intervalle

Plus en détail

Cours d Analyse. Fonctions de plusieurs variables

Cours d Analyse. Fonctions de plusieurs variables Cours d Analyse Fonctions de plusieurs variables Licence 1ère année 2007/2008 Nicolas Prioux Université de Marne-la-Vallée Table des matières 1 Notions de géométrie dans l espace et fonctions à deux variables........

Plus en détail

Fonctions - Continuité Cours maths Terminale S

Fonctions - Continuité Cours maths Terminale S Fonctions - Continuité Cours maths Terminale S Dans ce module, introduction d une nouvelle notion qu est la continuité d une fonction en un point. En repartant de la définition et de l illustration graphique

Plus en détail

ADMISSION AU COLLEGE UNIVERSITAIRE Samedi 1 mars 2014 MATHEMATIQUES durée de l épreuve : 3h coefficient 2

ADMISSION AU COLLEGE UNIVERSITAIRE Samedi 1 mars 2014 MATHEMATIQUES durée de l épreuve : 3h coefficient 2 ADMISSION AU COLLEGE UNIVERSITAIRE Samedi 1 mars 2014 MATHEMATIQUES durée de l épreuve : 3h coefficient 2 Le sujet est numéroté de 1 à 5. L annexe 1 est à rendre avec la copie. L exercice Vrai-Faux est

Plus en détail

Applications des nombres complexes à la géométrie

Applications des nombres complexes à la géométrie Chapitre 6 Applications des nombres complexes à la géométrie 6.1 Le plan complexe Le corps C des nombres complexes est un espace vectoriel de dimension 2 sur R. Il est donc muni d une structure naturelle

Plus en détail

Université de Nantes Année 2009-2010 Faculté des Sciences et des Techniques Département de Mathématiques. Topologie et calculs différentiel Liste n 5

Université de Nantes Année 2009-2010 Faculté des Sciences et des Techniques Département de Mathématiques. Topologie et calculs différentiel Liste n 5 Université de Nantes Année 009-010 Faculté des Sciences et des Techniques Département de Mathématiques Topologie et calculs différentiel Liste n 5 Applications Différentiables Exercice 1. Soit f : R n

Plus en détail

CCP PSI - 2010 Mathématiques 1 : un corrigé

CCP PSI - 2010 Mathématiques 1 : un corrigé CCP PSI - 00 Mathématiques : un corrigé Première partie. Définition d une structure euclidienne sur R n [X]... B est clairement symétrique et linéaire par rapport à sa seconde variable. De plus B(P, P

Plus en détail

Nombre dérivé et tangente

Nombre dérivé et tangente Nombre dérivé et tangente I) Interprétation graphique 1) Taux de variation d une fonction en un point. Soit une fonction définie sur un intervalle I contenant le nombre réel a, soit (C) sa courbe représentative

Plus en détail

1S Modèles de rédaction Enoncés

1S Modèles de rédaction Enoncés Par l équipe des professeurs de 1S du lycée Parc de Vilgénis 1S Modèles de rédaction Enoncés Produit scalaire & Corrigés Exercice 1 : définition du produit scalaire Soit ABC un triangle tel que AB, AC

Plus en détail

(Un) Corrigé du partiel Lundi 19 mars 2007. u u1 = Au = 1 2) 1 t forment une base des solutions de ce système,

(Un) Corrigé du partiel Lundi 19 mars 2007. u u1 = Au = 1 2) 1 t forment une base des solutions de ce système, Université Paris 7 Denis Diderot UFR de Mathématiques Licence L3 Equations différentielles 2006-2007 P. Perrin (Un) Corrigé du partiel Lundi 9 mars 2007 Eercice. On considère le système différentiel linéaire

Plus en détail

Produit scalaire dans l Espace

Produit scalaire dans l Espace Produit scalaire dans l Espace Christophe ROSSIGNOL Année scolaire 014/015 Table des matières 1 Produit scalaire du plan 1.1 Différentes expressions du produit scalaire............................... 1.

Plus en détail

Outils d analyse fonctionnelle Cours 5 Théorie spectrale

Outils d analyse fonctionnelle Cours 5 Théorie spectrale Outils d analyse fonctionnelle Cours 5 Théorie spectrale 22 septembre 2015 Généralités Dans tout ce qui suit V désigne un espace de Hilbert réel muni d un produit scalaire x, y. Définition Soit A une application

Plus en détail

Chapitre 01 : Intégrales généralisées. Objectifs : En première année, on a étudié l intégrale d une fonction définie et continue sur un intervalle

Chapitre 01 : Intégrales généralisées. Objectifs : En première année, on a étudié l intégrale d une fonction définie et continue sur un intervalle Chapitre 01 : Intégrales généralisées Objectifs : En première année, on a étudié l intégrale d une fonction définie et continue sur un intervalle fermé borné de Dans ce chapitre, on va étudier le cas d

Plus en détail

Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme

Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme Chapitre 3 Quelques fonctions usuelles 1 Fonctions logarithme et eponentielle 1.1 La fonction logarithme Définition 1.1 La fonction 7! 1/ est continue sur ]0, +1[. Elle admet donc des primitives sur cet

Plus en détail

Fonction réciproque d une fonction strictement monotone sur un intervalle de Y. Etude de la continuité, de la dérivabilité. Exemples.

Fonction réciproque d une fonction strictement monotone sur un intervalle de Y. Etude de la continuité, de la dérivabilité. Exemples. Fonction réciproque d une fonction strictement monotone sur un intervalle de Y. Etude de la continuité, de la dérivabilité. Exemples. Introduction : On suppose connues les notions d injectivité, surjectivité,

Plus en détail

Continuité en un point

Continuité en un point DOCUMENT 4 Continuité en un point En général, D f désigne l ensemble de définition de la fonction f et on supposera toujours que cet ensemble est inclus dans R. Toutes les fonctions considérées sont à

Plus en détail

Continuité et dérivabilité d une fonction

Continuité et dérivabilité d une fonction DERNIÈRE IMPRESSIN LE 7 novembre 014 à 10:3 Continuité et dérivabilité d une fonction Table des matières 1 Continuité d une fonction 1.1 Limite finie en un point.......................... 1. Continuité

Plus en détail

Cours de terminale S Suites numériques

Cours de terminale S Suites numériques Cours de terminale S Suites numériques V. B. et S. B. Lycée des EK 13 septembre 2014 Introduction Principe de récurrence Exemple En Mathématiques, un certain nombre de propriétés dépendent d un entier

Plus en détail

CH1 : Langages de la continuité Limites

CH1 : Langages de la continuité Limites CH : Langages de la continuité Limites I. Continuité- Théorème des valeurs intermédiaires. Définition : Soit f une fonction définie sur un intervalle I de R. Lorsque la courbe représentative de f ne présente

Plus en détail

Primitives Cours maths Terminale S

Primitives Cours maths Terminale S Primitives Cours maths Terminale S Dans ce module est introduite la notion de primitive d une fonction sur un intervalle. On définit cette notion puis on montre qu une fonction admet une infinité de primitives

Plus en détail

CHAPITRE 7 Fonction carré et fonction inverse

CHAPITRE 7 Fonction carré et fonction inverse CHAPITRE 7 Fonction carré et fonction inverse A) La fonction "carré" : f() = ² ) Domaine de définition Elle est définie sur ℝ complet (on peut toujours multiplier deu nombres entre eu). 2) Sens de variation

Plus en détail

Partie I - Valeurs propres de AB et BA

Partie I - Valeurs propres de AB et BA SESSION 9 Concours commun Centrale MATHÉMATIQUES. FILIERE PSI Partie I - Valeurs propres de AB et BA I.A - Cas de la valeur propre. I.A.) Sp(AB) Ker(AB) {} AB / G L n (R) det(ab) =. I.A.) Sp(AB) det(ab)

Plus en détail

Développement décimal d un réel

Développement décimal d un réel 4 Développement décimal d un réel On rappelle que le corps R des nombres réels est archimédien, ce qui permet d y définir la fonction partie entière. En utilisant cette partie entière on verra dans ce

Plus en détail

Cahier de vacances - Préparation à la Première S

Cahier de vacances - Préparation à la Première S Cahier de vacances - Préparation à la Première S Ce cahier est destiné à vous permettre d aborder le plus sereinement possible la classe de Première S. Je vous conseille de le travailler pendant les 0

Plus en détail

2. MATRICES ET APPLICATIONS LINÉAIRES

2. MATRICES ET APPLICATIONS LINÉAIRES 2. MATRICES ET APPLICATIONS LINÉAIRES 2.1 Définition Une matrice n m est un tableau rectangulaire de nombres (réels en général) à n lignes et m colonnes ; n et m sont les dimensions de la matrice. Notation.

Plus en détail

GÉNÉRALITÉS SUR LES FONCTIONS

GÉNÉRALITÉS SUR LES FONCTIONS . Qu'est-ce qu'une fonction? Vocabulaire GÉNÉRALITÉS SUR LES FONCTIONS Définition Notion de fonction À chaque fois que l'on associe à une quantité une (autre) quantité, on dit que que l'on définit une

Plus en détail

Cours de Mécanique du point matériel

Cours de Mécanique du point matériel Cours de Mécanique du point matériel SMPC1 Module 1 : Mécanique 1 Session : Automne 2014 Prof. M. EL BAZ Cours de Mécanique du Point matériel Chapitre 1 : Complément Mathématique SMPC1 Chapitre 1: Rappels

Plus en détail

TD2 Fonctions mesurables Corrigé

TD2 Fonctions mesurables Corrigé Intégration et probabilités 2012-2013 TD2 Fonctions mesurables Corrigé 0 Exercice qui avait été préparé chez soi Exercice 1. Soit (Ω, F, µ) un espace mesuré tel que µ (Ω) = 1. Soient A, B P (Ω) deux sousensembles

Plus en détail

Développements limités. Notion de développement limité

Développements limités. Notion de développement limité MT12 - ch2 Page 1/8 Développements limités Dans tout ce chapitre, I désigne un intervalle de R non vide et non réduit à un point. I Notion de développement limité Dans tout ce paragraphe, a désigne un

Plus en détail

Exo7. Calculs de déterminants. Fiche corrigée par Arnaud Bodin. Exercice 1 Calculer les déterminants des matrices suivantes : Exercice 2.

Exo7. Calculs de déterminants. Fiche corrigée par Arnaud Bodin. Exercice 1 Calculer les déterminants des matrices suivantes : Exercice 2. Eo7 Calculs de déterminants Fiche corrigée par Arnaud Bodin Eercice Calculer les déterminants des matrices suivantes : Correction Vidéo ( ) 0 6 7 3 4 5 8 4 5 6 0 3 4 5 5 6 7 0 3 5 4 3 0 3 0 0 3 0 0 0 3

Plus en détail

Dérivation : cours. Dérivation dans R

Dérivation : cours. Dérivation dans R TS Dérivation dans R Dans tout le capitre, f désigne une fonction définie sur un intervalle I de R (non vide et non réduit à un élément) et à valeurs dans R. Petits rappels de première Téorème-définition

Plus en détail

Licence de Sciences et Technologies. Fiche de cours 1 - Nombres réels.

Licence de Sciences et Technologies. Fiche de cours 1 - Nombres réels. Licence de Sciences et Technologies EM21 - Analyse Fiche de cours 1 - Nombres réels. On connaît les ensembles suivants, tous munis d une addition, d une multiplication, et d une relation d ordre compatibles

Plus en détail

f continue en x 0 lim Remarque On dit que f est continue sur un intervalle a; bœ si f est continue en tout point x 0 de a; bœ. sont continues sur R.

f continue en x 0 lim Remarque On dit que f est continue sur un intervalle a; bœ si f est continue en tout point x 0 de a; bœ. sont continues sur R. CHAPITRE I Fonctions d une variable réelle. Limites Soit f une fonction définie sur R : et soit R. f W R! R 7! f./ Définition. Limite finie en un point) On dit que f admet ` pour ite lorsque tend vers

Plus en détail

Exo7. Développements limités. 1 Calculs. 2 Applications. Corrections d Arnaud Bodin.

Exo7. Développements limités. 1 Calculs. 2 Applications. Corrections d Arnaud Bodin. Exo7 Développements ités Corrections d Arnaud Bodin. Calculs Exercice Donner le développement ité en 0 des fonctions :. cosx expx à l ordre 2. ln + x)) 2 à l ordre 4 shx x. x à l ordre 6 4. exp sinx) )

Plus en détail

Partie I : Manipulation d inégalités. n k. k=0. (1 + a) n 1 + na. 27. Indication : On pourra utiliser les fonctions f(x) = (x+b+c)3.

Partie I : Manipulation d inégalités. n k. k=0. (1 + a) n 1 + na. 27. Indication : On pourra utiliser les fonctions f(x) = (x+b+c)3. Mathématiques Devoirs de Vacances MPSI/PCSI août 5 Partie I : Manipulation d inégalités Eercice Soit m un réel Déterminer l'ensemble E des réels tels que e + e l'ensemble E des réels tels que (m + + m

Plus en détail

Fonction polynôme du second degré : Forme canonique

Fonction polynôme du second degré : Forme canonique Fonction polynôme du second degré : Forme canonique I) Introduction. Soit g(x) = a(x - s)²+h. Toute fonction polynôme du second degré peut s écrire sous cette forme. Le passage de la forme développée à

Plus en détail

La fonction carré Cours

La fonction carré Cours La fonction carré Cours CHAPITRE 1 : Définition CHAPITRE 2 : Sens de variation CHAPITRE 3 : Parité et symétrie CHAPITRE 4 : Représentation graphique CHAPITRE 5 : Equation du type CHAPITRE 6 : Inéquation

Plus en détail

L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ

L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ INTRODUCTION Données : n individus observés sur p variables quantitatives. L A.C.P. permet d eplorer les liaisons entre variables et

Plus en détail

1 radian. De même, la longueur d un arc de cercle de rayon R et dont l angle au centre a pour mesure α radians est α R. R AB =R.

1 radian. De même, la longueur d un arc de cercle de rayon R et dont l angle au centre a pour mesure α radians est α R. R AB =R. Angles orientés Trigonométrie I. Préliminaires. Le radian Définition B R AB =R C O radian R A Soit C un cercle de centre O. Dire que l angle géométrique AOB a pour mesure radian signifie que la longueur

Plus en détail

Terminale ES Correction du bac blanc de Mathématiques (version spécialité).

Terminale ES Correction du bac blanc de Mathématiques (version spécialité). Terminale ES Correction du bac blanc de Mathématiques (version spécialité). Lycée Jacques Monod février 05 Exercice : Voici les graphiques des questions. et.. A 4 A Graphique Question. Graphique Question..

Plus en détail

Agrégation interne de Mathématiques. Session 2009. Deuxième épreuve écrite. (et CAERPA)

Agrégation interne de Mathématiques. Session 2009. Deuxième épreuve écrite. (et CAERPA) Agrégation interne de Mathématiques (et CAEPA Session 2009 Deuxième épreuve écrite 2 NOTATIONS ET PÉLIMINAIES On désigne par le corps des nombres réels et par C le corps des nombres complexes. Si f est

Plus en détail

LE PRODUIT SCALAIRE ( En première S )

LE PRODUIT SCALAIRE ( En première S ) LE PRODUIT SCALAIRE ( En première S ) Dernière mise à jour : Jeudi 4 Janvier 007 Vincent OBATON, Enseignant au lycée Stendhal de Grenoble ( Année 006-007 ) 1 Table des matières 1 Grille d autoévaluation

Plus en détail

Chapitre 5 Le logarithme néperien

Chapitre 5 Le logarithme néperien A) La fonction ln(x) Chapitre 5 Le logarithme néperien ) Définition Nous avons vu que nous ne savions pas exprimer la primitive de la fonction inverse avec des fonctions connues. Alors inventons cette

Plus en détail

Théorème du point fixe - Théorème de l inversion locale

Théorème du point fixe - Théorème de l inversion locale Chapitre 7 Théorème du point fixe - Théorème de l inversion locale Dans ce chapitre et le suivant, on montre deux applications importantes de la notion de différentiabilité : le théorème de l inversion

Plus en détail

Définition d une suite récurrente à l aide de la fonction ln

Définition d une suite récurrente à l aide de la fonction ln Définition d une suite récurrente à l aide de la fonction ln Thèmes. fonction ln, théorème des valeurs intermédiares, suite définie par récurrence : majoration, minoration, monotonie, convergence, eistence.

Plus en détail

BJ - RELATIONS BINAIRES

BJ - RELATIONS BINAIRES BJ - RELATIONS BINAIRES Définitions Soit A et B deux ensembles non vides, et G une partie de A B. On dit qu un élément x de A est relié à un élément y de B par une relation binaire de graphe G, si le couple

Plus en détail

3. La suite ( un)a pour terme général un

3. La suite ( un)a pour terme général un NOM : Terminale ES Devoir n vendredi 9 octobre 0 Eercice : sur.5 points Des questions indépendantes. Résoudre l équation ² + 4 = 0. Calculer la dérivée de f dans chacun des cas suivants : a) f ( ) 4 8

Plus en détail

Fonction inverse Fonctions homographiques

Fonction inverse Fonctions homographiques Fonction inverse Fonctions homographiques Année scolaire 203/204 Table des matières Fonction inverse 2. Définition Parité............................................ 2.2 Variations Courbe représentative...................................

Plus en détail

Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre

Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre IUFM du Limousin 2009-10 PLC1 Mathématiques S. Vinatier Rappels de cours Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre 1 Fonctions de plusieurs variables

Plus en détail