8.1 Généralités sur les fonctions de plusieurs variables réelles. f : R 2 R (x, y) 1 x 2 y 2

Save this PDF as:

Dimension: px
Commencer à balayer dès la page:

Download "8.1 Généralités sur les fonctions de plusieurs variables réelles. f : R 2 R (x, y) 1 x 2 y 2"

Transcription

1 Chapitre 8 Fonctions de plusieurs variables 8.1 Généralités sur les fonctions de plusieurs variables réelles Définition. Une fonction réelle de n variables réelles est une application d une partie de R n à valeurs dans R. On note : f : R n R (x 1,..., x n ) z = f(x 1,..., x n ) f est définie en m 0 = (x 01,..., x 0n ) R n si la valeur f(x 01,..., x 0n ) existe et est un nombre réel z 0. On note D f l ensemble de définition de f. Exemple. La fonction f : R 2 R (x, y) 1 x 2 y 2 est définie pour les valeurs de x et y telles que x 2 + y 2 1. Dans un repère orthonormé, D f est le disque fermé de centre 0 et de rayon Représentation géométrique d une fonction de deux variables Soit z = f(x, y) une fonction de deux variables. Soit Oxyz un repère orthonormé de R 3. Quand le point m(x, y) décrit dans le plan xoy le domaine de définition de la fonction f, le point M de coordonnées (x, y, z) = (x, y, f(x, y)) décrit une surface S. z O M(x, y, f(x,y)) S y On dit que S a pour équation z = f(x, y). x m(x, y) D f 67

2 Un voisinage V m0 d un point m 0 R 2 est une partie de R 2 contenant un disque ou un carré ayant ce point pour centre et non réduit à ce point. Selon la distance choisie on obtient les voisinages suivants : m 0 m 0 m 0 x x 0 + y y 0 sup( x x 0, y y 0 ) (x x0 ) 2 + (y y 0 ) Limite d une fonction. Soit D f le domaine de définition de f : R 2 R, m 0 (x 0, y 0 ) D f. On dit que f admet la limite L quand m(x, y) tend vers m 0 (x 0, y 0 ), si f(x, y) est aussi voisin que l on veut de L dès que le point m est dans un voisinage convenable de m 0. On note lim f(x, y) = L ou lim f(m) = L. (x,y) (x 0,y 0 ) m m 0 Exemple. (1 + x 2 y 2 ) sin y lim (x,y) (0,0) y = lim y 0 sin y y = 1. Cette notion de limite se généralise sans difficultés aux espaces de dimensions supérieures à deux Opérations Les propriétés des limites des fonctions de plusieurs variables sont les mêmes que celles des limites des fonctions d une variable pour les sommes, produits, quotients et composées. 8.3 Fonction continue Une application f : R n R définie sur un voisinage d un point m 0 R n est continue en m 0 si lim m m 0 f(m) = f(m 0 ). Soit D un domaine non vide de R n. On dit que f est continue sur D, si elle est continue en tout point de D. Exemple. D = R 2 (x, y) f(x, y) = x + y ; f est continue en tout point de D car f(x, y) f(x 0, y 0 ) = x + y x 0 y 0 x x 0 + y y 0 tend vers 0 dès que x tend vers x 0 et y vers y 0. 68

3 8.3.1 Applications partielles Soit f : (x 1,..., x n ) R n z = f(x 1,..., x n ) R une fonction de n variables. Si l on fixe les n 1 variables x 1, x 2,..., x i 1, x i+1,..., x n on peut définir les n applications dites applications partielles : f i : x R f i (x) = f(x 1,..., x i 1, x, x i+1,..., x n ) R Dans le cas n = 2 f : R 2 R on a deux applications partielles f x : x f x (x) = f(x, y) et f y : y f y (y) = f(x, y) Par exemple, si f(x, y) = xy x 2 + y 2 f x : x f x (x) = xy x 2 + y 2. Théorème. Si f : R n R est continue en m 0 = (x 01, x 02,..., x 0n ), les n applications partielles f i de R dans R sont continues en x 0i. On remarquera que la réciproque de ce théorème est fausse, comme le prouve l exemple suivant : Exemple. Soit f(x, y) = xy (x, y) (0, 0) et f(0, 0) = 0. Au point O(0, 0) x 2 + y 2 les deux fonctions partielles f x et f y qui sont égales à 0 sont continues ; cependant f n est pas continue en O : si l on pose y = tx la limite en O est t f(0, 0) pour (t 0). 1 + t Opérations Si f et g : R n R sont continues en m 0 (x 01,..., x 0n ), alors λ R : f + g, fg, λ f, f g (si g(m 0 ) 0) sont continues en m 0. De même la composée de fonctions continues est continue. 8.4 Dérivées partielles Soit f une fonction des deux variables x, y et m 0 (x 0, y 0 ) D f. Supposons l application partielle f x : x f(x, y 0 ) définie sur un voisinage de x 0 tel que (x 0, y 0 ) D f. Si f x admet une dérivée au point x 0, on dit que cette dérivée est la dérivée partielle de f par rapport à x au point (x 0, y 0 ). On note f x ou f cette dérivée et l on a x f x (x 0, y 0 ) = f x (x 0, y 0 ) = lim x x0 f(x, y 0 ) f(x 0, y 0 ) x x 0 69

4 De même, la dérivée de la fonction f y est la dérivée partielle de f par rapport à y au point (x 0, y 0 ). On la note f y (x 0, y 0 ) = f y (x 0, y 0 ) = lim y y0 f(x 0, y) f(x 0, y 0 ) y y 0 Si f x et f y existent, on dit que f est dérivable Règle pratique Pour déterminer une dérivée partielle de f, il suffit de dériver l expression de f par rapport à la variable considérée, les autres étant considérées comme des constantes. Exemple. Soit f(x, y) = x 2 y 5. Alors, on a f x (x, y) = 2xy5, f y (x, y) = 5x2 y 4, f f (1, 2) = 64, x (1, 2) = 80 y Représentation géométrique Soit S la surface d équation z = f(x, y) et M 0 (x 0, y 0, z 0 ) le point de S de coordonnées (x 0, y 0, z 0 = f(x 0, y 0 )) dans le repère Oxyz. La section de la surface S par le plan y O z d équation x = x 0 est une courbe (C x0 ). Dans ce plan, (C x0 ) est le graphe de la fonction z = f y (y) = f(x 0, y) et f y (y 0) = f y (x 0, y 0 ) est la pente de la tangente à la courbe (C x0 ) en M 0, comme on peut le voir sur la figure cicontre. x O = x 0 z M 0 m 0 z O S Cx 0 y 0 y y Exemples de calculs Si f(x, y) = x 2 + y 2 alors Si f(x, y, z) = 3x + y 2 z 3 f x (x, y) = 2x et f y (x, y) = 2y alors f x (x, y, z) = 3, f y (x, y, z) = 2y et f z (x, y, z) = 3z2 Si f(x, y) = 2x + y x 2 + y 2 (x, y) R 2 (0, 0) f x (x, y) = 2x2 2xy + 2y 2 (x 2 + y 2 ) 2 et f y (x, y) = y2 4xy + x 2 (x 2 + y 2 ) 2 70

5 8.4.4 Dérivées successives On définit ensuite les dérivées partielles d ordre 2, si elles existent par dérivation des dérivées premières ; on les note : f x i x j = x i (f x j ) = 2 x i x j f Exemple. Pour la fonction (x, y) f(x, y) = x 2 y 5 on a f x 2(x, y) = 2y5, f xy (x, y) = 10xy4, f yx (x, y) = 10xy4, f y 2(x, y) = 20x2 y 3, f (3) x 2 y (x, y) = 10y4. Théorème de Schwarz ( H.Schwarz ) : Si f admet dans un voisinage de (x 0, y 0 ) des dérivées partielles secondes f x y continues, elles sont égales sur ce voisinage : f y x f x y = f y x Notons que le théorème de Schwarz se généralise aux fonctions de plus de deux variables et aux dérivées d ordre supérieur à deux ; par exemple : si f(x, y, z) = x 2 + xyz + xyz 3 + z 2 on a f (3) xz (x, y, z) = 6yz = f (3) (x, y, z) 2 z 2 x et 8.5 Différentielle de f L idée est de remplacer en m 0 une fonction compliquée f par une fonction plus simple qui est une application linéaire translatée en f(m 0 ) dite application linéaire tangente et qui soit la meilleure approximation linéaire de f au voisinage de m 0. On sait que les applications linéaires de R dans R et de R 2 dans R s écrivent respectivement λ a : R R λ a,b : R 2 R où les coefficients a et b sont réels. x ax (x, y) ax + by A. Fonction différentiable f : R R définie et continue sur un voisinage V x0 de x 0. f est différentiable en x 0 s il existe une application linéaire λ x0, notée f (x 0 ) : R R, telle que pour tout h R avec x 0 + h V x0 : f(x 0 + h) f(x 0 ) = f (x 0 )h + hϕ(h) avec lim h 0 ϕ(h) = 0. La valeur f (x 0 ) qui est unique peut encore s écrire : 71

6 On reconnait la dérivée en x 0 de f. f(x 0 + h) f(x 0 ) lim h 0 h = f (x 0 ) Si l on note dx l application h R dx(h) = h R la différentielle de f en x 0 s écrit df(x 0 ) = f (x 0 ) dx où f (x 0 ) = df dx (x 0) est la dérivée de f en x 0. Exemples. f(x) = 2x df(x) = 2dx ; f(x) = cos x df(x) = sin xdx Puisque lim h 0 hϕ(h) = 0, confondre sur V x0 la fonction f et son application linéaire tangente, revient à confondre f(x) et la partie régulière de degré 1 de son DL1 V (x 0 ). Géométriquement, au voisinage de x 0, le graphe de f est peu différent de celui de sa tangente en ( x 0, f(x 0 ) ). Autrement dit si l on pose h = x x 0, l équation de la tangente en M 0 à la courbe d équation f(x) est : y = y 0 + (x x 0 )f (x 0 ) B. Fonction différentiable. Soit f : R 2 R définie et continue sur un voisinage V m0 du point m 0 (x 0, y 0 ). f est différentiable en m 0 (x 0, y 0 ), s il existe une application linaire λ m0 : R 2 R définie par λ m0 (h, k) = ah + bk, a, b R telle que f(x 0 + h, y 0 + k) f(x 0, y 0 ) = ah + bk + h 2 + k 2 ϕ(h, k) avec lim ϕ(h, k) = 0. h 0 k 0 Pour calculer a et b, écrivons l équation précédente d abord avec k = 0 : f(x 0 + h, y 0 ) f(x 0, y 0 ) = ah + h ϕ(h, 0) f x (x 0 + h) f x (x 0 ) = ah + h ψ(h). ou encore On reconnaît la différentielle de l application partielle f x : R R de f par rapport à la variable x ; on a donc : et de même a = f x (x 0, y 0 ) = f x (x 0, y 0 ) b = f y (x 0, y 0 ) = f y (x 0, y 0 ) On appelle différentielle de f en (x 0, y 0 ), l application linéaire 72 df : R 2 R (h, k) df(h, k) = f x h + f y k.

7 En particulier, si l on note dx : R 2 R l application linéaire (h, k) dx(h, k) = h et dy : R 2 R l application linéaire (h, k) dy(h, k) = k, on a df(h, k) = f xdx(h, k) + f ydy(h, k) = (f xdx + f ydy)(h, k) (x, y) D f ou encore df = f xdx + f ydy Exemple. La fonction f : (x, y) x sin y + y 2 est différentiable sur R 2, car c est une fonction composée de fonctions qui le sont et sadifférentielle est : df = (sin y)dx + (x cosy + 2y)dy et en particulier au point (1, π/2) : df (1,π/2) = dx + πdy Le gradient. Utilisé en physique, on note grad f m0 le vecteur de R 2 dont les composantes sont (f x, f y ) ; la relation précédente s écrit alors au point m 0 comme le produit scalaire : df ( m 0 ) = grad f m0 dm si l on note dm = (dx, dy). Rappelons que f est dérivable en m 0 si ses dérivées partielles existent en m 0. Théorème. Si f est différentiable, elle est continue et admet des dérivées premières. La réciproque est vraie si les dérivées premières f x et f y sont continues. Une fonction différentiable est donc dérivable. Exemple. Soit la fonction (x, y) f(x, y) = 0 si xy 0 et 1 si xy = 0. Les dérivées partielles en (0, 0) existent et sont nulles : f est dérivable. Mais f n est pas continue en (0, 0) donc pas différentiable. La notation différentielle est particulièrement bien adaptée aux calculs des formules de dérivation des fonctions composées dont elle donne l apparence d une évidence. Examinons le cas n = 2 : Soit f : (x, y) f(x, y) une fonction définie dans un voisinage V (m 0 ) de m Supposons x et y fonctions de la variable t I. Supposons aussi f x, f y, x et y sont continues ; alors : F : t F(t) = f(x(t), y(t)) est différentiable et df = F dt = f x dx + f y dy = f x x dt + f y y dt = (f x x + f y y )dt d où F (t) = f x x + f y y. 2. Supposons maintenant x et y fonctions des variables (u, v) : F(u, v) = f(x, y) avec x et y fonctions différentiables des variables u et v. Ecrivons les différentielles de f et F : 73

8 df = F udu + F vdv = f xdx + f ydy = f x(x udu + x vdv) + f y(y udu + y vdv) = (f xx u + f yy )du + (f xx v + f yy v)dv Par identification on obtient les formules que l on retiendra : F u = f x x u + f y y u et F v = f x x v + f y y v En particulier, en coordonnées polaires x = r cosθ et y = r sin θ : F r = cosθ f x + sin θ f y F θ = r sin θ f x + r cos θ f y. Exemple. Soit f définie surr 2 par f(x, y) = xy. Posons F(r, θ) = f(r cosθ, r sin θ). On a F(r, θ) = r 2 sin θ cosθ), d où : et F r = cosθ r sin θ + sin θ r cosθ = r sin 2θ F θ = r sin θ r sin θ + r cosθ r cosθ = r2 cos 2θ. D autre part f x (x, y) = y = r sin θ et f y (x, y) = x = r cosθ F(r, θ) = xy = 1 2 r2 sin 2θ et l on vérifie bien F r = r sin 2θ et F θ = r2 cos 2θ Représentation géométrique de la différentielle. Posons d abord h = x x 0 et k = y y 0 ; comme le terme complémentaire h2 + k 2 ϕ(h, k) tend vers 0 quand (h, k) tend vers 0, dire que f est différentiable en m 0 = (x 0, y 0 ), signifie qu en ce point, f(x, y) est peu différent de sa partie linéaire donc de son développement de Taylor de degré un au voisinage du point m 0 = (x 0, y 0 ) : f(x, y) f(x 0, y 0 ) + (x x 0 )f x(x 0, y 0 ) + (y y 0 )f y(x 0, y 0 ). Géométriquement, au voisinage de M 0 (x 0, y 0, z 0 ) la surface S = {(x, y, z) z = f(x, y) ; (x, y) D f } diffère peu de son plan tangent en M 0 qui a donc pour équation : z = z 0 + (x x 0 )f x(x 0, y 0 ) + (y y 0 )f y(x 0, y 0 ) Ce plan est engendré par les vecteurs T y0 = M 0 M x = ( ) 1, 0, f x et T x0 = M 0 M y = ( ) 0, 1, f y dérivés du vecteur M 0 M = (x x 0, y y 0, f(x, y) z 0 ) par rapport aux variables x et y. Ces vecteurs sont tangents en M 0 aux courbes coordonnées C x0 et C y0 comme on l a vu en

9 z z Ty 0 M 0 Tx 0 Cy 0 S O = x 0 O y 0 Cx 0 y x m 0 y Exemple. Soit f : R 2 R définie par f(x, y) = x 2 + y 2 2xy. Au point (1,0) sa différentielle est df = f f (1, 0) dx + (1, 0) dy = 2 dx 2 dy x y L équation du plan tangent en (1, 0, 1) à la surface S définie par f s écrit donc z 1 = 2(x 1) 2(y 0) ou encore z = 2x 2y 1. Conclusion : Au voisinage de M 0 on pourra confondre la surface S et son plan tangent et en conséquence, pour les valeurs voisines de (1, 0) par exemple (0.99, 0.025) calculer f(0.99, 0.025) à l aide de l expression plus simple 2x 2y 1 : f(0.99, 0.025) 1 + 2( 0.01) 2(0.025) = Application du calcul différentiel au calcul des valeurs approchées des fonctions Exemples. 1 o Soit un rectangle de hauteur h et de base b. Son aire est mesurée par la fonction S = f(b, h) = bh. Si la base b varie de db et si la hauteur h varie de dh, calculons la variation algébrique d aire δs à l aide de la différentielle δs ds = f f db + dh = h db + bdh. b h On peut interpréter sur la figure ci-après ds comme la somme des aires des rectangles hachurés. ds est bien ainsi la partie principale de δs ; le terme complémentaire db dh mesure l aire grisée du petit rectangle, négligeable par rapport à ds car d ordre 2. Remarquer l abus de notation db au lieu de δb et dh au lieu de δh. b db h dh 75

10 Exemple de valeurs. b, db, h, dh en mètre, ds, dbdh, δs en m 2. b db h dh ds db dh δs 10 0, 1 2 0, 01 0, 3 0, 001 0, , , 02 0, 28 0, , , 1 6 0, 1 2, 1 0, 01 2, 11 2 o Soit un cylindre de h = 10 m de haut et de r = 5 m de rayon. On augmente h de 10 cm et l on diminue r de 1 cm. Calculons la variation de volume : V = πr 2 h = f(r, h) dv = V V dr + r h dh = 2π rh dr + π r 2 dh En mètre dr = 0.01 m ; dh = 0.1 m, d où δv 4.71 m 3. Remarque. L accroissement exact δv est égal à dv diminué du volume d un cylindre creux de hauteur dh et d épaisseur dr, soit environ 2π r dh dr 0, 031m 3 négligeable par rapport à δv. r dr h dh Calcul d erreur Soit a le résultat de la mesure de la grandeur A. Si α est la valeur exacte de A, la différence δa = a α est appelée erreur absolue de la mesure ; elle résulte de causes diverses : erreurs systématiques ou accidentelles. L erreur absolue sur a n étant pas connue, on doit se contenter d en rechercher une limite supérieure a appelée incertitude absolue telle que δa a ; on a donc : a a α a + a ou encore α = a ± a. On se rend mieux compte de l approximation d une mesure en comparant l erreur à la grandeur mesurée. On appelle erreur relative le rapport δa/α de l erreur absolue à la valeur exacte ; δa et α n étant pas connues, on doit, là encore, se contenter d une limite supérieure appelée incertitude relative que l on calcule en remplaçant δa par a et en prenant pour α la valeur approchée a. Exemple. α = ± m donc a/α a/a 0.001/2 = L incertitude relative caractérise la précision de la mesure. Dans l exemple précédent, la précision est de 5 dix-millièmes. On cherche maintenant à calculer l erreur sur une grandeur X dépendant de plusieurs paramètres A, B, C indépendants les uns des autres : 76 X = f(a, B, C).

11 On ne connaît en réalité que des valeurs approchées a, b, c et les incertitudes absolues : a, b, c sur ces valeurs ; une valeur approchée de X est donc x = f(a, b, c). A partir de la différentielle de f en (a, b, c) soit en valeur absolue dx = f a da + f b db + f c dc dx f a da + f b db + f c dc f a a + f b b + f c c on obtient l incertitude absolue sur x puis l incertitude relative sur x x = f a a + f b b + f c c, x x = f a a x + f b b x + f c c x. Exemple. Connaissant la formule T = 2π l/g donnant la période du pendule simple, on peut calculer l accélération de la pesanteur g = γ(l, T) = 4π 2 l/t 2 dont la différentielle est : d où l incertitude absolue et l incertitude relative dg = γ γ 4π2 dl + dt = l T T dl 8π2 l 2 T dt 3 g = 4π2 T 2 ( l + 2l ) T T g g = l l + 2 T T avec l = 1 m, l = m, T = 2 s, T = 0.01 s, on obtient g g = = 1.05 % et g = π2 = 9.87 ms 2, ce qui donne une incertitude absolue de g = 0.10 et g = 9.87 ± 0.1 ms 2. Remarque. On trouve assez fréquemment en Physique des fonctions positives à variables séparables f(a, b, c) = ϕ 1 (a)ϕ 2 (b)ϕ 3 (c). La fonction logarithme permet alors de simplifier le calcul de l incertitude relative ln f = ln ϕ 1 + ln ϕ 2 + ln ϕ 3, d où en différentiant et si ϕ 1, ϕ 2, ϕ 3 > 0, alors on a df f = dϕ 1 ϕ 1 + dϕ 2 ϕ 2 + dϕ 3 ϕ 3 f f = ϕ 1 ϕ 1 + ϕ 2 ϕ 2 + ϕ 3 ϕ 3. 77

12 8.7 Formes différentielles Soit U un ouvert de R 2, A et B deux fonctions de U dans R. L expression s appelle une forme différentielle sur U. ω = Adx + Bdy Définition. Une forme différentielle ω sur U qui est la différentielle d une fonction f (i.e ω = df) est une forme différentielle exacte sur U et f est une primitive de ω. Exemple. La forme différentielle ω = xdx + ydy est exacte sur U = R 2 et f : (x, y) f(c, y) = 1 2 (x2 + y 2 ) est une primitive de ω. Les formes différentielles ne sont donc pas toujours exactes ; si c est le cas, A = f f et B = et si de plus A et B sont continûment dérivables (on dit de x y classe C 1 ), on a d après le théorème de Schwarz A y = B x. Définition. Si A et B sont C 1 sur U et si A y = B, on dit que la forme différentielle x ω = Adx + Bdy est fermée sur U. Une forme différentielle de classe C 1 exacte sur U est donc fermée sur U. Qu en est-il de la réciproque? Le théorème suivant dû à H.POINCARÉ ( ) donne une condition suffisante de réciprocité : Théorème de Poincaré. Soit U un ouvert de R 2 et ω = Adx + Bdy une forme différentielle de classe C 1 sur U. Si U est étoilé et si ω est fermée sur U, alors ω est exacte sur U. Définition. Soit A un point de U ; on dit que U est étoilé par rapport à A si le segment [AM] appartient à U M U. On dit que U est étoilé si et seulement s il existe A U tel que U soit étoilé par rapport à A. Les boules de R n, les pavés de R n, les domaines d une seule pièce et sans trou (on dit simplement connexe) du plan R 2 sont étoilés. Exemple de calcul. Soit la forme différentielle ω = (3x 2 + 2y)dx + (2x + 2y)dy sur U = R 2 étoilé par rapport au point O(0,0) : 78

13 A(x, y) = 3x 2 + 2y, B(x, y) = 2x + 2y et A et B sont des fonctions continues, dérivables et à dérivées continues i.e. C 1 sur R 2. On vérifie bien la condition d égalité des dérivées croisées : A y = 2 = B x sur R2, du théorème de Poincaré : puisque ω est fermée elle est exacte sur R 2. Intégrons ω c est-à-dire cherchons f de classe C 2 sur R 2 telle que df = ω ; on a d abord : A = f x = 3x2 + 2y que l on intégre par rapport à x : f(x, y) = x 3 + 2xy + ϕ(y) où la fonction ϕ est C 1 et constante par rapport à x ; dérivons par rapport à y et identifions à B : f y = 2x + ϕ (y) = 2x + 2y d où ϕ (y) = 2y et ϕ(y) = y 2 + K (K R). Finalement : f(x, y) = x 3 + 2xy + y 2 + K (K R). Le théorème de Poincaré, qui s étend à la dimension trois ou plus est fréquemment utilisé en physique. Par exemple, le champ de pesanteur (P, Q, R) dérive d un potentiel scalaire ; les conditions d égalité des dérivées croisées sur ω = Pdx+Qdy+Rdz s écrivent P y = Q x Q z = R y et R x = P z On dit que le rotationnel du champ (P, Q, R) est nul. 79

14 Exercices 8.1. Déterminer le domaine de définition de chacune des fonctions de R 2 dans R définies par : a. f 1 (x, y) = xy b. f x 2 + y 2 2 (x, y) = x2 + y 2 x c. f 3 (x, y) = x2 + y 2 x 2 y 2 d. f 4 (x, y) = ln y x 2 + y Déterminer le domaine de définition de la fonction f : R 2 R définie par f(x, y) = sin x sin y x y et trouver une fonction g égale à f sur D f qui soit continue sur R Soit la fonction f : R 2 R ; (x, y) f(x, y) = ln 3 x 2 y y 2. (a) Déterminer le domaine D de dérivabilité de f et le représenter graphiquement. (b) Calculer les dérivées partielles et la différentielle de f sur D Pour chacune des fonctions suivantes, calculer f x, f y et df. a. f 1 (x, y) = Arc tan(x 2 y) b. f 2 (x, y) = xy + x y 8.5. Les formes différentielles suivantes sont-elles exactes? Si oui les intégrer sur le domaine convenable : xdy y dx a. ω =. y 2 b. cos(xy 2 )dx + 2 cos(xy)dy Soit la surface S de E 3 d équation z = x 2 y. Déterminer deux vecteurs tangents à S non colinéaires en (1, 1, 0) ainsi qu une équation du plan tangent en ce point La mesure de deux côtés d un triangle est 150 m et 200 m à 0,2 m près ; l angle intérieur est de 60 ± 1. Quelle est l erreur maximum possible sur le calcul de l aire du triangle? 8.8. Soit x(r, θ) = e 2r cosθ et y(r, θ) = e 3r sin θ. Calculer r x, r y, θ θ et x y. 80

15 8.9. On veut résoudre l équation (E) z x z y = 2. Pour ce faire, on effectue le changement de variables : u = x y ; v = x + y et l on pose Z(u, v) = z(x(u, v), y(u, v)). Montrer que Z = 1 ; en déduire les solutions de (E). u Pour f(x, y) = e x cos y calculer f = 2 f x f y Soit f(x, y) = 1/ x 2 + y 2 + z 2. Montrer que f = (Extrait DeugB A) Soit f : R 3 R la fonction définie par f(x, y, z) = xy 2 z/3. (a) (b) Calculer df(x, y, z), puis f/f. En déduire l incertitude z/z en fonction de f/f, x/x et y/y. Application : Un cône de révolution a un volume V = 1789 ±2 cm 3 et pour rayon r = 10 ± 0, 05 cm. Sachant que le volume du cône est proportionnel à l aire de sa base et à sa hauteur et que π = 3, 14 ± 0, 01, calculer l incertitude relative h/h sur la mesure de la hauteur du cône. Donner un encadrement de h (Extrait DeugB A) (a) Soit la fonction f de R 3 dans R définie par l équation f(x, y, z) = z x y x. (b) (i) Déterminer le domaine de définition de f et le représenter dans un repère orthonormé. (ii) Calculer la différentielle de f en (x, y, z). Pour calculer la densité D d un liquide L, on pèse successivement un flacon vide, puis rempli d eau et enfin rempli du liquide L. On obtient les mesures suivantes en grammes et dans l ordre : x = 12.5 ± 0.1 y = 17.5 ± 0.1 z = 16.3 ± 0.1 Donner un encadrement de la valeur de D. 81

16 8.14. (Extrait SV105) a. Soit la fonction f : R 2 R définie par : f(x, y) = x2 y a 1. Déterminer le domaine de définition D f de f et le représenter graphiquement. a 2. Calculer la différentielle de f. b. La puissance dissipée dans une résistance électrique est P = E 2 /R avec E = 220 ± 5 V et R = 8 ± 0.2 Ω Déterminer à l aide du calcul différentiel un encadrement de la valeur de P. Si E décroit de 5V et R de 0.2Ω, quelle est l incidence sur P? (Extrait SV105) a. Soit la fonction f : R 3 R définie par : f(x, y, z) = K x3 yz 2 (K R) a 1. Déterminer le domaine de définition D f de f. a 2. Calculer la différentielle de f. a 3. Calculer l incertitude relative f f. b. D après la troisième loi de Képler la période T et le demi-grand axe de mesure a de l orbite d une planète autour du Soleil de masse M sont reliés par la relation T 2 a = 4π2 3 G M. Déterminer la masse M du Soleil, puis l incertitude relative et l incertitude absolue sur M. c. Application numérique : On donne T = ± 10 8 Jours, a = ( ± )10 11 m et G = (6.673 ± 0.005)10 11 m 3 kg 1 s 2. Donner un encadrement de la valeur de M. G est une constante universelle qui s exprime en fonction du mètre, du kilogramme et de la seconde (Extrait SV105) Soit la fonction f de R 3 dans R définie par f(x, y, z) = (x 3 ) y 2 + z 2. a. Déterminer le domaine de définition D f de f. b. Lorsqu elles sont définies, calculer les dérivées partielles ainsi que la différentielle df(x, y, z) de f au point (x, y, z). c. On donne a = 2 ± 0.1, b = 3 ± 0.1, c = 4 ± 0.1. Calculer f(2, 3, 4) ainsi que df(2, 3, 4). En déduire un encadrement de f(a, b, c). d. A l aide de la différentielle df(2, 3, 4) calculer la valeur approximative qu elle donne du nombre : ( )

OM 1 Outils mathématiques : fonction de plusieurs variables

OM 1 Outils mathématiques : fonction de plusieurs variables Outils mathématiques : fonction de plusieurs variables PCSI 2013 2014 Certaines partie de ce chapitre ne seront utiles qu à partir de l année prochaine, mais une grande partie nous servira dès cette année.

Plus en détail

L2 MIEE 2012-2013 VAR Université de Rennes 1

L2 MIEE 2012-2013 VAR Université de Rennes 1 . Sous-ensembles de R n et fonctions (suite) 1 Nappes paramétrées Si f une fonction de deux variables, son graphe est une surface incluse dans R 3 : {(x, y, f(x, y)) / (x, y) R 2 }. Une telle surface s

Plus en détail

Cours de Mécanique du point matériel

Cours de Mécanique du point matériel Cours de Mécanique du point matériel SMPC1 Module 1 : Mécanique 1 Session : Automne 2014 Prof. M. EL BAZ Cours de Mécanique du Point matériel Chapitre 1 : Complément Mathématique SMPC1 Chapitre 1: Rappels

Plus en détail

Dérivées d ordres supérieurs. Application à l étude d extrema.

Dérivées d ordres supérieurs. Application à l étude d extrema. Chapitre 5 Dérivées d ordres supérieurs. Application à l étude d extrema. On s intéresse dans ce chapitre aux dérivées d ordre ou plus d une fonction de plusieurs variables. Comme pour une fonction d une

Plus en détail

Notes du cours MTH1101 Calcul I Partie II: fonctions de plusieurs variables

Notes du cours MTH1101 Calcul I Partie II: fonctions de plusieurs variables Notes du cours MTH1101 Calcul I Partie II: fonctions de plusieurs variables Guy Desaulniers Département de mathématiques et de génie industriel École Polytechnique de Montréal Automne 2014 Table des matières

Plus en détail

Calcul différentiel sur R n Première partie

Calcul différentiel sur R n Première partie Calcul différentiel sur R n Première partie Université De Metz 2006-2007 1 Définitions générales On note L(R n, R m ) l espace vectoriel des applications linéaires de R n dans R m. Définition 1.1 (différentiabilité

Plus en détail

Cahier de vacances - Préparation à la Première S

Cahier de vacances - Préparation à la Première S Cahier de vacances - Préparation à la Première S Ce cahier est destiné à vous permettre d aborder le plus sereinement possible la classe de Première S. Je vous conseille de le travailler pendant les 0

Plus en détail

Différentiabilité ; Fonctions de plusieurs variables réelles

Différentiabilité ; Fonctions de plusieurs variables réelles Différentiabilité ; Fonctions de plusieurs variables réelles Denis Vekemans R n est muni de l une des trois normes usuelles. 1,. 2 ou.. x 1 = i i n Toutes les normes de R n sont équivalentes. x i ; x 2

Plus en détail

Fonctions de plusieurs variables

Fonctions de plusieurs variables Module : Analyse 03 Chapitre 00 : Fonctions de plusieurs variables Généralités et Rappels des notions topologiques dans : Qu est- ce que?: Mathématiquement, n étant un entier non nul, on définit comme

Plus en détail

Chapitre 6. Fonction réelle d une variable réelle

Chapitre 6. Fonction réelle d une variable réelle Chapitre 6 Fonction réelle d une variable réelle 6. Généralités et plan d étude Une application de I dans R est une correspondance entre les éléments de I et ceu de R telle que tout élément de I admette

Plus en détail

Cours Fonctions de deux variables

Cours Fonctions de deux variables Cours Fonctions de deux variables par Pierre Veuillez 1 Support théorique 1.1 Représentation Plan et espace : Grâce à un repère cartésien ( ) O, i, j du plan, les couples (x, y) de R 2 peuvent être représenté

Plus en détail

Cours d Analyse. Fonctions de plusieurs variables

Cours d Analyse. Fonctions de plusieurs variables Cours d Analyse Fonctions de plusieurs variables Licence 1ère année 2007/2008 Nicolas Prioux Université de Marne-la-Vallée Table des matières 1 Notions de géométrie dans l espace et fonctions à deux variables........

Plus en détail

Notes du cours MTH1101N Calcul I Partie II: fonctions de plusieurs variables

Notes du cours MTH1101N Calcul I Partie II: fonctions de plusieurs variables Notes du cours MTH1101N Calcul I Partie II: fonctions de plusieurs variables Fausto Errico Département de mathématiques et de génie industriel École Polytechnique de Montréal Automne 2012 Table des matières

Plus en détail

Fonctions de deux variables. Mai 2011

Fonctions de deux variables. Mai 2011 Fonctions de deux variables Dédou Mai 2011 D une à deux variables Les fonctions modèlisent de l information dépendant d un paramètre. On a aussi besoin de modéliser de l information dépendant de plusieurs

Plus en détail

FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4)

FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4) FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4) Bernard Le Stum Université de Rennes 1 Version du 13 mars 2009 Table des matières 1 Fonctions partielles, courbes de niveau 1 2 Limites et continuité

Plus en détail

1 Fonctions de plusieurs variables

1 Fonctions de plusieurs variables Université de Paris X Nanterre U.F.R. Segmi Année 006-007 Licence Economie-Gestion première année Cours de Mathématiques II. Chapitre 1 Fonctions de plusieurs variables Ce chapitre est conscré aux fonctions

Plus en détail

Cours fonctions, expressions algébriques

Cours fonctions, expressions algébriques I. Expressions algébriques, équations a) Développement factorisation Développer Développer un produit, c est l écrire sous forme d une somme. Réduire une somme, c est l écrire avec le moins de termes possibles.

Plus en détail

Université de Nantes Année 2009-2010 Faculté des Sciences et des Techniques Département de Mathématiques. Topologie et calculs différentiel Liste n 5

Université de Nantes Année 2009-2010 Faculté des Sciences et des Techniques Département de Mathématiques. Topologie et calculs différentiel Liste n 5 Université de Nantes Année 009-010 Faculté des Sciences et des Techniques Département de Mathématiques Topologie et calculs différentiel Liste n 5 Applications Différentiables Exercice 1. Soit f : R n

Plus en détail

Nombre dérivé et tangente

Nombre dérivé et tangente Nombre dérivé et tangente I) Interprétation graphique 1) Taux de variation d une fonction en un point. Soit une fonction définie sur un intervalle I contenant le nombre réel a, soit (C) sa courbe représentative

Plus en détail

Electrocinétique et magnétostatique

Electrocinétique et magnétostatique Chapitre 3 Electrocinétique et magnétostatique 3.1 Electrocinétique - Vecteur densité de courant Un courant électrique correspond à des charges électriques mobiles. On appelle vecteur densité de courant

Plus en détail

Dérivation : cours. Dérivation dans R

Dérivation : cours. Dérivation dans R TS Dérivation dans R Dans tout le capitre, f désigne une fonction définie sur un intervalle I de R (non vide et non réduit à un élément) et à valeurs dans R. Petits rappels de première Téorème-définition

Plus en détail

Produit scalaire dans l Espace

Produit scalaire dans l Espace Produit scalaire dans l Espace Christophe ROSSIGNOL Année scolaire 014/015 Table des matières 1 Produit scalaire du plan 1.1 Différentes expressions du produit scalaire............................... 1.

Plus en détail

Méthodes de quadrature. Polytech Paris-UPMC. - p. 1/48

Méthodes de quadrature. Polytech Paris-UPMC. - p. 1/48 Méthodes de Polytech Paris-UPMC - p. 1/48 Polynôme d interpolation de Preuve et polynôme de Calcul de l erreur d interpolation Étude de la formule d erreur Autres méthodes - p. 2/48 Polynôme d interpolation

Plus en détail

un repère orthonormé de l espace.

un repère orthonormé de l espace. Terminale S GEOMETRIE Ch 13 DANS L ESPACE. Soit ( O ; i, j, k ) un repère orthonormé de l espace. I) Droites et plans dans l espace : Propriété 1 : Soient A et B deux points de l espace. AB est l ensemble

Plus en détail

Planche n o 22. Fonctions de plusieurs variables. Corrigé

Planche n o 22. Fonctions de plusieurs variables. Corrigé Planche n o Fonctions de plusieurs variables Corrigé n o : f est définie sur R \ {, } Pour, f, = Quand tend vers, le couple, tend vers le couple, et f, tend vers Donc, si f a une limite réelle en, cette

Plus en détail

Théorème du point fixe - Théorème de l inversion locale

Théorème du point fixe - Théorème de l inversion locale Chapitre 7 Théorème du point fixe - Théorème de l inversion locale Dans ce chapitre et le suivant, on montre deux applications importantes de la notion de différentiabilité : le théorème de l inversion

Plus en détail

Intégrales curvilignes.

Intégrales curvilignes. Chapitre 1 Intégrales curvilignes. 1.1 Généralités 1.1.1 Courbes paramétrées dans le plan. Motivations, exemples. L exemple basique de courbe est la trajectoire décrite par un objet assimilée à un point

Plus en détail

Outils Mathématiques 4

Outils Mathématiques 4 Université de Rennes1 Année 5/6 Outils Mathématiques 4 Intégrales de surfaces résumé 1 Surfaces paramétrées éfinition 1.1 Une surface paramétrée dans l espace, est la donnée de trois fonctions de classes

Plus en détail

Continuité d une fonction de plusieurs variables

Continuité d une fonction de plusieurs variables Chapitre 2 Continuité d une fonction de plusieurs variables Maintenant qu on a défini la notion de limite pour des suites dans R n, la notion de continuité s étend sans problème à des fonctions de plusieurs

Plus en détail

Cours FPV - Semaine 3 : Recherche d Extrema et Formes Différentielles

Cours FPV - Semaine 3 : Recherche d Extrema et Formes Différentielles Cours FPV - Semaine 3 : Recherche d Extrema et Formes Différentielles Frédéric Messine Introduction Dans ce chapitre, nous allons étudier une application de la dérivation des fonctions de plusieurs variables

Plus en détail

Vecteurs Géométrie dans le plan Exercices corrigés

Vecteurs Géométrie dans le plan Exercices corrigés Vecteurs Géométrie dans le plan Exercices corrigés Sont abordés dans cette fiche : Exercice 1 : notion de vecteur, transformation de points par translation et vecteurs égaux Exercice 2 : parallélogramme

Plus en détail

Activités numériques

Activités numériques Sujet et correction Stéphane PASQUET, 25 juillet 2008 2008 Activités numériques Exercice On donne le programme de calcul suivant : Choisir un nombre. a) Multiplier ce nombre pas 3. b) Ajouter le carré

Plus en détail

Continuité et dérivabilité d une fonction

Continuité et dérivabilité d une fonction DERNIÈRE IMPRESSIN LE 7 novembre 014 à 10:3 Continuité et dérivabilité d une fonction Table des matières 1 Continuité d une fonction 1.1 Limite finie en un point.......................... 1. Continuité

Plus en détail

Chapitre 2 Le problème de l unicité des solutions

Chapitre 2 Le problème de l unicité des solutions Université Joseph Fourier UE MAT 127 Mathématiques année 2011-2012 Chapitre 2 Le problème de l unicité des solutions Ce que nous verrons dans ce chapitre : un exemple d équation différentielle y = f(y)

Plus en détail

Démonstrations exigibles au bac

Démonstrations exigibles au bac Démonstrations exigibles au bac On donne ici les 11 démonstrations de cours répertoriées comme exigibles dans le programme officiel. Toutes ces démonstrations peuvent donner lieu à une «restitution organisée

Plus en détail

Comparaison de fonctions Développements limités. Chapitre 10

Comparaison de fonctions Développements limités. Chapitre 10 PCSI - 4/5 www.ericreynaud.fr Chapitre Points importants 3 Questions de cours 6 Eercices corrigés Plan du cours 4 Eercices types 7 Devoir maison 5 Eercices Chap Et s il ne fallait retenir que si points?

Plus en détail

Primitives Cours maths Terminale S

Primitives Cours maths Terminale S Primitives Cours maths Terminale S Dans ce module est introduite la notion de primitive d une fonction sur un intervalle. On définit cette notion puis on montre qu une fonction admet une infinité de primitives

Plus en détail

TROISIÈME LOI DE KÉPLER : VÉRIFICATIONS ET APPLICATIONS DANS LE SYSTÈME SOLAIRE

TROISIÈME LOI DE KÉPLER : VÉRIFICATIONS ET APPLICATIONS DANS LE SYSTÈME SOLAIRE Gabriel Scherer TS3 TROISIÈME LOI DE KÉPLER : VÉRIFICATIONS ET APPLICATIONS DANS LE SYSTÈME SOLAIRE TPP4.odt 1/6 Rappels : 1 U.A. = 1,497.10 11 m Constante de gravitation universelle G = 6,67.10 11 u.s.i.

Plus en détail

Agrégation interne de Mathématiques. Session 2009. Deuxième épreuve écrite. (et CAERPA)

Agrégation interne de Mathématiques. Session 2009. Deuxième épreuve écrite. (et CAERPA) Agrégation interne de Mathématiques (et CAEPA Session 2009 Deuxième épreuve écrite 2 NOTATIONS ET PÉLIMINAIES On désigne par le corps des nombres réels et par C le corps des nombres complexes. Si f est

Plus en détail

Fonctions homographiques

Fonctions homographiques Fonctions homographiques On donne ci-dessous deux définitions des fonctions homographiques, et on montre que ces deux définitions sont équivalentes. On décrit la courbe représentative d une fonction homographique.

Plus en détail

Nombre dérivé, interprétations géométrique et cinématique

Nombre dérivé, interprétations géométrique et cinématique CHAPITRE 4 DÉRIVATION ET PRIMITIVATION Nombre dérivé, interprétations géométrique et cinématique 08. Nombre dérivé Soit f une fonction numérique, définie sur un intervalle ou une réunion d intervalles,

Plus en détail

Résumé de cours sur les coniques. Lycée Brizeux - PCSI B. Année 2010-2011

Résumé de cours sur les coniques. Lycée Brizeux - PCSI B. Année 2010-2011 Résumé de cours sur les coniques. Lycée Brizeux - PCSI B. Année 010-011 novembre 010 I Définition d une conique en terme d équation cartésienne On se place dans le repère orthonormé direct (0, i, j ).

Plus en détail

Représentation géométrique d un nombre complexe

Représentation géométrique d un nombre complexe CHAPITRE 1 NOMBRES COMPLEXES 1 Représentation géométrique d un nombre complexe 1. Ensemble des nombres complexes Soit i le nombre tel que i = 1 L ensemble des nombres complexes est l ensemble des nombres

Plus en détail

Résume du cours de Mécanique Analytique

Résume du cours de Mécanique Analytique Résume du cours de Mécanique Analytique jean-eloi.lombard@epfl.ch 22 janvier 2009 Table des matières 1 Équations de Lagrange 1 1.1 Calcul des variations....................... 3 1.2 Principe de moindre

Plus en détail

Correction du Baccalauréat S Amérique du Nord mai 2007

Correction du Baccalauréat S Amérique du Nord mai 2007 Correction du Baccalauréat S Amérique du Nord mai 7 EXERCICE points. Le plan (P) a une pour équation cartésienne : x+y z+ =. Les coordonnées de H vérifient cette équation donc H appartient à (P) et A n

Plus en détail

La fonction logarithme népérien

La fonction logarithme népérien La fonction logarithme népérien La fonction exponentielle est continue strictement croissante sur R à valeurs dans ]0; + [. Elle définit donc une bijection de R sur ]0; + [, c est-à-dire que quel que soit

Plus en détail

Aire sous une courbe et calcul de primitives

Aire sous une courbe et calcul de primitives Aire sous une courbe et calcul de primitives Le calcul de primitives d une fonction et celui de l aire de la surface bordée par le graphique de cette fonction sont intimement liés. Les exemples qui suivent

Plus en détail

ADMISSION AU COLLEGE UNIVERSITAIRE Samedi 1 mars 2014 MATHEMATIQUES durée de l épreuve : 3h coefficient 2

ADMISSION AU COLLEGE UNIVERSITAIRE Samedi 1 mars 2014 MATHEMATIQUES durée de l épreuve : 3h coefficient 2 ADMISSION AU COLLEGE UNIVERSITAIRE Samedi 1 mars 2014 MATHEMATIQUES durée de l épreuve : 3h coefficient 2 Le sujet est numéroté de 1 à 5. L annexe 1 est à rendre avec la copie. L exercice Vrai-Faux est

Plus en détail

Les Conditions aux limites

Les Conditions aux limites Chapitre 5 Les Conditions aux limites Lorsque nous désirons appliquer les équations de base de l EM à des problèmes d exploration géophysique, il est essentiel, pour pouvoir résoudre les équations différentielles,

Plus en détail

I. Polynômes de Tchebychev

I. Polynômes de Tchebychev Première épreuve CCP filière MP I. Polynômes de Tchebychev ( ) 1.a) Tout réel θ vérifie cos(nθ) = Re ((cos θ + i sin θ) n ) = Re Cn k (cos θ) n k i k (sin θ) k Or i k est réel quand k est pair et imaginaire

Plus en détail

Suites et Convergence

Suites et Convergence Suites et Convergence Une suite c est se donner une valeur (sans ambigüité) pour chaque N sauf peutêtre les premiers n. Donc une suite est une fonction : I R où I = N: = N. Notation : On note ( ) I R pour

Plus en détail

Continuité en un point

Continuité en un point DOCUMENT 4 Continuité en un point En général, D f désigne l ensemble de définition de la fonction f et on supposera toujours que cet ensemble est inclus dans R. Toutes les fonctions considérées sont à

Plus en détail

Oscillations libres des systèmes à deux degrés de liberté

Oscillations libres des systèmes à deux degrés de liberté Chapitre 4 Oscillations libres des systèmes à deux degrés de liberté 4.1 Introduction Les systèmes qui nécessitent deux coordonnées indépendantes pour spécifier leurs positions sont appelés systèmes à

Plus en détail

Equations Différentielles

Equations Différentielles Cours optionnel S4 - Maths Renforcées 1 Equations Différentielles I- Définitions élémentaires. On appelle Equation Différentielle Ordinaire (EDO) toute équation (E) du type (E) : y (n) (t) = F (t; y(t);

Plus en détail

Première partie. Deuxième partie

Première partie. Deuxième partie PC 96-97 correction épreuve X97 Première partie. f étant convexe sur l intervalle [t, t 2 ], sa courbe représentative est en dessous la corde joignant les points (t, f(t )) et (t 2, f(t 2 )). Comme f(t

Plus en détail

Chapitre I. Calcul vectoriel. Nous nous placerons dorénavant toujours dans une base orthonormée directe.

Chapitre I. Calcul vectoriel. Nous nous placerons dorénavant toujours dans une base orthonormée directe. Chapitre I INTRODUCTION ATHÉATIQUE I.A. I.A.1. Calcul vectoriel Produit vectoriel Plaçons-nous dans un espace vectoriel euclidien à trois dimensions. En faisant subir des rotations identiques aux trois

Plus en détail

Fonction polynôme du second degré : Forme canonique

Fonction polynôme du second degré : Forme canonique Fonction polynôme du second degré : Forme canonique I) Introduction. Soit g(x) = a(x - s)²+h. Toute fonction polynôme du second degré peut s écrire sous cette forme. Le passage de la forme développée à

Plus en détail

Fonctions - Continuité Cours maths Terminale S

Fonctions - Continuité Cours maths Terminale S Fonctions - Continuité Cours maths Terminale S Dans ce module, introduction d une nouvelle notion qu est la continuité d une fonction en un point. En repartant de la définition et de l illustration graphique

Plus en détail

Développements limités, équivalents et calculs de limites

Développements limités, équivalents et calculs de limites Développements ités, équivalents et calculs de ites Eercice. Déterminer le développement ité en 0 à l ordre n des fonctions suivantes :. f() e (+) 3 n. g() sin() +ln(+) n 3 3. h() e sh() n 4. i() sin(

Plus en détail

Brevet Amérique du sud novembre 2011

Brevet Amérique du sud novembre 2011 ACTIVITÉS NUMÉRIQUES (12 POINTS) Exercice 1 Cet exercice est un exercice à choix multiples (QCM). Pour chaque question, une seule réponse est exacte. Une réponse correcte rapportera 1 point. L absence

Plus en détail

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer Pour commencer Exercice 1 - Ensembles de définition - Première année - 1. Le logarithme est défini si x + y > 0. On trouve donc le demi-plan supérieur délimité par la droite d équation x + y = 0.. 1 xy

Plus en détail

1 radian. De même, la longueur d un arc de cercle de rayon R et dont l angle au centre a pour mesure α radians est α R. R AB =R.

1 radian. De même, la longueur d un arc de cercle de rayon R et dont l angle au centre a pour mesure α radians est α R. R AB =R. Angles orientés Trigonométrie I. Préliminaires. Le radian Définition B R AB =R C O radian R A Soit C un cercle de centre O. Dire que l angle géométrique AOB a pour mesure radian signifie que la longueur

Plus en détail

Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre

Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre IUFM du Limousin 2009-10 PLC1 Mathématiques S. Vinatier Rappels de cours Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre 1 Fonctions de plusieurs variables

Plus en détail

2 Fonctions affines : définitions et propriétés fondamentales

2 Fonctions affines : définitions et propriétés fondamentales Chapitre 3 : Fonctions affines Dans tout ce chapitre, le plan est muni d un repère. 1 Rappels sur les équations de droite Une droite qui n est pas verticale a une unique équation du type y = ax + b, qu

Plus en détail

CHAPITRE 6 Les vecteurs

CHAPITRE 6 Les vecteurs A/ Vecteurs Cours de Mathématiques Classe de Seconde Chapitre 6 Les Vecteurs CHAPITRE 6 Les vecteurs 1) Définition et exemples a) Définition Soient deux points A et B. On appelle vecteur AB "la flèche"

Plus en détail

Chapitre 1 : Évolution COURS

Chapitre 1 : Évolution COURS Chapitre 1 : Évolution COURS OBJECTIFS DU CHAPITRE Savoir déterminer le taux d évolution, le coefficient multiplicateur et l indice en base d une évolution. Connaître les liens entre ces notions et savoir

Plus en détail

Cours de mathématiques : Equation du second degré

Cours de mathématiques : Equation du second degré Cours de mathématiques : Equation du second degré I ) Formes de l'équation du second degré. L'équation du deuxiéme degré à une inconnue est celle où l'inconnue est élévé à la puissance de 2, sans y etre

Plus en détail

Optimisation des fonctions de plusieurs variables

Optimisation des fonctions de plusieurs variables Optimisation des fonctions de plusieurs variables Hervé Hocquard Université de Bordeaux, France 8 avril 2013 Extrema locaux et globaux Définition On étudie le comportement d une fonction de plusieurs variables

Plus en détail

CHAPITRE 10. Jacobien, changement de coordonnées.

CHAPITRE 10. Jacobien, changement de coordonnées. CHAPITRE 10 Jacobien, changement de coordonnées ans ce chapitre, nous allons premièrement rappeler la définition du déterminant d une matrice Nous nous limiterons au cas des matrices d ordre 2 2et3 3,

Plus en détail

RAPPELS DE MATHEMATIQUES. ORTHOPHONIE Première année. Dr MF DAURES

RAPPELS DE MATHEMATIQUES. ORTHOPHONIE Première année. Dr MF DAURES RAPPELS DE MATHEMATIQUES ORTHOPHONIE Première année 27 28 Dr MF DAURES 1 RAPPELS DE MATHEMATIQUES I - LES FONCTIONS A - Caractéristiques générales des fonctions B - La fonction dérivée C - La fonction

Plus en détail

Exo7. Développements limités. 1 Calculs. 2 Applications. Corrections d Arnaud Bodin.

Exo7. Développements limités. 1 Calculs. 2 Applications. Corrections d Arnaud Bodin. Exo7 Développements ités Corrections d Arnaud Bodin. Calculs Exercice Donner le développement ité en 0 des fonctions :. cosx expx à l ordre 2. ln + x)) 2 à l ordre 4 shx x. x à l ordre 6 4. exp sinx) )

Plus en détail

2. MATRICES ET APPLICATIONS LINÉAIRES

2. MATRICES ET APPLICATIONS LINÉAIRES 2. MATRICES ET APPLICATIONS LINÉAIRES 2.1 Définition Une matrice n m est un tableau rectangulaire de nombres (réels en général) à n lignes et m colonnes ; n et m sont les dimensions de la matrice. Notation.

Plus en détail

Module et argument d un nombre complexe. Interprétation géométrique, lignes de niveau associées. Applications

Module et argument d un nombre complexe. Interprétation géométrique, lignes de niveau associées. Applications Module et argument d un nombre complexe. Interprétation géométrique, lignes de niveau associées. Applications Introduction : Cette leçon s inscrit dans la continuité de la précédente. On supposera connu

Plus en détail

Courant électrique et distributions de courants

Courant électrique et distributions de courants Cours d électromagnétisme Courant électrique et distributions de courants 1 Courant électrique 1.1 Définition du courant électrique On appelle courant électrique tout mouvement d ensemble des particules

Plus en détail

Exercice 1 Trouver l équation du plan tangent pour chaque surface ci-dessous, au point (x 0,y 0,z 0 ) donné :

Exercice 1 Trouver l équation du plan tangent pour chaque surface ci-dessous, au point (x 0,y 0,z 0 ) donné : Enoncés : Stephan de Bièvre Corrections : Johannes Huebschmann Exo7 Plans tangents à un graphe, différentiabilité Exercice 1 Trouver l équation du plan tangent pour chaque surface ci-dessous, au point

Plus en détail

BREVET BLANC de MATHEMATIQUES n 1 Janvier 2012 - durée : 2 heures

BREVET BLANC de MATHEMATIQUES n 1 Janvier 2012 - durée : 2 heures BREVET BLANC de MATHEMATIQUES n 1 Janvier 2012 - durée : 2 heures Les calculatrices sont autorisées. L orthographe, le soin et la présentation sont notés sur 4 points. Activités numériques (12 points)

Plus en détail

Introduction aux inégalités

Introduction aux inégalités Introduction aux inégalités -cours- Razvan Barbulescu ENS, 8 février 0 Inégalité des moyennes Faisons d abord la liste des propritétés simples des inégalités: a a et b b a + b a + b ; s 0 et a a sa sa

Plus en détail

Intégrales doubles et triples - M

Intégrales doubles et triples - M Intégrales s et - fournie@mip.ups-tlse.fr 1/27 - Intégrales (rappel) Rappels Approximation éfinition : Intégrale définie Soit f définie continue sur I = [a, b] telle que f (x) > 3 2.5 2 1.5 1.5.5 1 1.5

Plus en détail

Leçon N 1 : Taux d évolution et indices

Leçon N 1 : Taux d évolution et indices Leçon N : Taux d évolution et indices En premier un peu de calcul : Si nous cherchons t [0 ;+ [ tel que x 2 = 0,25, nous trouvons une solution unique x = 0, 25 = 0,5. Nous allons utiliser cette année une

Plus en détail

9. Équations différentielles

9. Équations différentielles 63 9. Équations différentielles 9.1. Introduction Une équation différentielle est une relation entre une ou plusieurs fonctions inconnues et leurs dérivées. L'ordre d'une équation différentielle correspond

Plus en détail

La fonction exponentielle

La fonction exponentielle La fonction exponentielle L expression «croissance exponentielle» est passée dans le langage courant et désigne sans distinction toute variation «hyper rapide» d un phénomène. Ce vocabulaire est cependant

Plus en détail

TD2 Fonctions mesurables Corrigé

TD2 Fonctions mesurables Corrigé Intégration et probabilités 2012-2013 TD2 Fonctions mesurables Corrigé 0 Exercice qui avait été préparé chez soi Exercice 1. Soit (Ω, F, µ) un espace mesuré tel que µ (Ω) = 1. Soient A, B P (Ω) deux sousensembles

Plus en détail

Exo7. Sujets de l année 2008-2009. 1 Partiel. Enoncés et corrections : Sandra Delaunay. Exercice 1 Soit A une matrice 2 2 à coefficients réels.

Exo7. Sujets de l année 2008-2009. 1 Partiel. Enoncés et corrections : Sandra Delaunay. Exercice 1 Soit A une matrice 2 2 à coefficients réels. Enoncés et corrections : Sandra Delaunay Exo7 Sujets de l année 28-29 1 Partiel Exercice 1 Soit A une matrice 2 2 à coefficients réels. On suppose a + c = b + d = 1 et a b 1. ( ) a b c d 1. Soient (x 1,x

Plus en détail

CH12 : Solide en mouvement de translation

CH12 : Solide en mouvement de translation BTS électrotechnique 1 ère année - Sciences physiques appliquées CH12 : Solide en mouvement de translation Motorisation des systèmes Enjeu : Problématique : En tant que technicien supérieur, il vous revient

Plus en détail

Mathématiques Exercices pour le soutien

Mathématiques Exercices pour le soutien Mathématiques 5-6 Exercices pour le soutien Ma9 UVSQ Exercice. Exercice 6. Calculer les dérivées des fonctions suivantes : f : x 3x g : x 4 x +x h : x x x+ k : x (3x +) 9 m : x 3 x +4 j : x 5(x )(x ) l

Plus en détail

Angles orientés et trigonométrie

Angles orientés et trigonométrie Chapitre Angles orientés et trigonométrie Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Trigonométrie Cercle trigonométrique. Radian. Mesure d un angle orienté, mesure principale.

Plus en détail

Université de Cergy-Pontoise 2008-2009 Calcul Diff S6 M. Topologie

Université de Cergy-Pontoise 2008-2009 Calcul Diff S6 M. Topologie Université de Cergy-Pontoise 2008-2009 Calcul Diff S6 M Topologie 1 Espaces métriques 1.1 Distance Dans toute cette partie E représente un ensemble qui n est pas forcément un espace vectoriel. Définition

Plus en détail

Probabilités Loi exponentielle Exercices corrigés

Probabilités Loi exponentielle Exercices corrigés Probabilités Loi exponentielle Exercices corrigés Sont abordés dans cette fiche : (cliquez sur l exercice pour un accès direct) Exercice 1 : densité de probabilité Exercice 2 : loi exponentielle de paramètre

Plus en détail

Chafa Azzedine - Faculté de Physique U.S.T.H.B 1

Chafa Azzedine - Faculté de Physique U.S.T.H.B 1 Chafa Azzedine - Faculté de Physique U.S.T.H.B 1 Définition: La cinématique est une branche de la mécanique qui étudie les mouements des corps dans l espace en fonction du temps indépendamment des causes

Plus en détail

Soutien illimité 7j/7 en maths: Coach, profs, exercices & annales, cours. Sujet de Bac 2013 Maths S Obligatoire & Spécialité - Liban

Soutien illimité 7j/7 en maths: Coach, profs, exercices & annales, cours. Sujet de Bac 2013 Maths S Obligatoire & Spécialité - Liban Sujet de Bac 2013 Maths S Obligatoire & Spécialité - Liban EXERCICE 1 : 4 Points Cet exercice est un questionnaire à choix multiples. Aucune justification n est demandée. Pour chacune des questions, une

Plus en détail

Programme de Mathématique Préparation Maths-Physique. Analyse et Géométrie Différentielle. Première Année

Programme de Mathématique Préparation Maths-Physique. Analyse et Géométrie Différentielle. Première Année Programme de Mathématique Préparation Maths-Physique Analyse et Géométrie Différentielle Première Année I NOMBRES REELS ET COMPLEXES, SUITES ET FONCTIONS 1 Nombres réels et complexes 2 Suites de nombres

Plus en détail

I Exercices I-1 1... I-1 2... I-1 3... I-2 4... I-2 5... I-2 6... I-2 7... I-3 8... I-3 9... I-4

I Exercices I-1 1... I-1 2... I-1 3... I-2 4... I-2 5... I-2 6... I-2 7... I-3 8... I-3 9... I-4 Chapitre Convexité TABLE DES MATIÈRES page -1 Chapitre Convexité Table des matières I Exercices I-1 1................................................ I-1................................................

Plus en détail

Fonctions de référence Variation des fonctions associées

Fonctions de référence Variation des fonctions associées DERNIÈRE IMPRESSION LE 9 juin 05 à 8:33 Fonctions de référence Variation des fonctions associées Table des matières Fonction numérique. Définition.................................. Ensemble de définition...........................3

Plus en détail

t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre :

t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre : Terminale STSS 2 012 2 013 Pourcentages Synthèse 1) Définition : Calculer t % d'un nombre, c'est multiplier ce nombre par t 100. 2) Exemples de calcul : a) Calcul d un pourcentage : Un article coûtant

Plus en détail

L usage de la calculatrice n est pas autorisé.

L usage de la calculatrice n est pas autorisé. e3a Concours ENSAM - ESTP - EUCLIDE - ARCHIMÈDE Épreuve de Mathématiques A durée 4 heures MP L usage de la calculatrice n est pas autorisé. Si, au cours de l épreuve, un candidat repère ce qui lui semble

Plus en détail

Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme

Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme Chapitre 3 Quelques fonctions usuelles 1 Fonctions logarithme et eponentielle 1.1 La fonction logarithme Définition 1.1 La fonction 7! 1/ est continue sur ]0, +1[. Elle admet donc des primitives sur cet

Plus en détail

x 8 = 0 3x - 6 = 2x + 2 3x² 6 = 2x² + 2

x 8 = 0 3x - 6 = 2x + 2 3x² 6 = 2x² + 2 Partie numérique : 16 points Exercice n 1 (4 points) : Pour chaque ligne du tableau ci-dessous, 3 réponses sont proposées, mais une seule est exacte. Aucune justification n'est demandée. Écrire le numéro

Plus en détail

Fonctions de plusieurs variables

Fonctions de plusieurs variables Maths MP Exercices Fonctions de plusieurs variables Les indications ne sont ici que pour être consultées après le T (pour les exercices non traités). Avant et pendant le T, tenez bon et n allez pas les

Plus en détail

BJ - RELATIONS BINAIRES

BJ - RELATIONS BINAIRES BJ - RELATIONS BINAIRES Définitions Soit A et B deux ensembles non vides, et G une partie de A B. On dit qu un élément x de A est relié à un élément y de B par une relation binaire de graphe G, si le couple

Plus en détail

Corrigé de l examen partiel du 19 novembre 2011

Corrigé de l examen partiel du 19 novembre 2011 Université Paris Diderot Langage Mathématique (LM1) Département Sciences Exactes 2011-2012 Corrigé de l examen partiel du 19 novembre 2011 Durée : 3 heures Exercice 1 Dans les expressions suivantes, les

Plus en détail