Calcul différentiel sur R n Première partie

Dimension: px
Commencer à balayer dès la page:

Download "Calcul différentiel sur R n Première partie"

Transcription

1 Calcul différentiel sur R n Première partie Université De Metz Définitions générales On note L(R n, R m ) l espace vectoriel des applications linéaires de R n dans R m. Définition 1.1 (différentiabilité en un point ) : Soit f une application d un ouvert Ω de R n à valeur dans R m. On considère deux normes sur R n et R m que l on notera de fa on identique.. On dit que f admet au point a Ω une dérivée L 1. Si L est une application linéaire de R n dans R m 2. Et si pour tout élément h R n tel que a + h Ω on ait f(a + h) = f(a) + L.h + ε(h) h où ε(h) est une fonction de R n dans R m qui tend vers 0 l origine de R m quand h tend vers 0 l origine de R n. Notation 1.1 (notation o(h)) : On dit qu une fonction ϕ(h) de R n dans R m est négligeable devant h si On note o(h) une telle fonction. Avec cette notation on a ϕ(h) lim h 0 h = 0 f(a + h) = f(a) + L.h + o(h) (1) Cette relation est la propriété fondamentale d une fonction dérivable en a. Lemme 1.1 (arithmétique des fonctions o(h)) : 1. o(h) + o(h) = o(h) 2. o(h) = o(h) 3. Pour tout réels (λ, µ) on a λo(h) + µo(h) = o(h) 1

2 Cela résulte des propriétés des fonctions qui ont pour limite 0 Remarque 1.1 : La propriété fondamentale (1) peut s écrire de façon équivalente f(x) = f(a) + L.(x a) + o(x a) (2) Remarque 1.2 : Il faut faire attention que o(h) est un vecteur de R m. On a évidemment avec la définition de limite ϕ(h) lim = 0 h 0 h On ne peut pas «diviser» par h qui est un vecteur de R n. Remarque 1.3 : On ne peut définir la notion de dérivée que en un point d un ouvert. Cela signifie que ce point doit être contenu dans un ouvert lui-même contenu dans le domaine de définition de f Remarque 1.4 : L existence de la dérivée ne dépend pas des normes choisies, puisque toutes les normes sont équivalentes sur R n et R m. Remarque 1.5 : Puisque f(a + h) f(a) L.h = o(h) On dit que f(a) + L.h est une bonne approximation de f(a + h). Remarque 1.6 : La définition est équivalente à l existence de L L(R n, R m ) telle que où de façon équivalente f(a + h) f(a) L.h lim = 0 h 0 h f(x) f(a) L.(x a) lim = 0 x a h Notation 1.2 (de la dérivée en un point) : La dérivée sera notée de f en a sera notée Df(a) Attention c est une application linéaire. Proposition 1.1 : Si f est dérivable en a, sa dérivée est unique et f est continue en a 2

3 preuve Supposons que M (R n, R m ) est aussi telle que f(a + h) f(a) M.h = o(h) Attention o(h) de cette formule n est pas forcément la même que la fonction o(h) apparaissant dans la formule avec L. Par commodité notons (h) = f(a+ h) f(a). On a L.h = (h) + o(h) L.h M.h = o(h) o(h) = o(h) Soit x 0 un élément quelconque de R n. Par hypothèse ( ) h (L M) h a pour limite 0 quand h tend vers 0. Posons h = λx avec λ > 0. Alors ( ) ( ) ( ) h λx x (L M) = (L M) = (L M) = 1 (L M)(x) h λx x x C est une constante qui ne dépend que de x et pas de λ. Par conséquent ( ) h lim(l M) = 0 = 1 (L M)(x) λ 0 h x ce qui entraîne (L M)(x) = 0 pour tout x. On a montré L = M On a (fa + h) f(a) L.h + o(h) Comme les applications linéaires de L(R n, R m ) sont toutes continues, cette inéagalité prouve que f(a + h) f(a) tend vers 0 quand h tend vers 0. Ce qui est la définition de continuité. 1.1 Cas ou f est une application de R dans R m La dérivabilité de f en a implique l existence d une application de R dans R m. Mais on sait alors que En effet soit L(R, R m ) R m Φ : L(R, R m ) L L(1) L application Φ est clairement une application linéaire et son inverse est définie par R m 3

4 Φ 1 : R m L(R, R m ) v (t t.v) On identifie traditionnellement L(R, R m ) avec R m. Si on pense en terme de matrices alors L(R, R m ) est isomorphe aux matrices m lignes et 1 colonne, autrement dit aux vecteurs colonnes. L existence de la dérivée est donc équivalente à l existence d un vecteur v tel que f(a + h) f(a) h.v = o(h) Mais ici, dans ce cas particulier h est un réel, on peut diviser par h. La dérivabilité est donc équivalente à l existence d un vecteur v tel que lim h 0 h 0 f(a + h) f(a) h Dans ce cas et dans ce cas seulement il y a ambiguïté sur la définition de la dérivée qui peut désigner un vecteur de R m ou l application linéaire associée. Cependant cette ambiguïté n est guère gênante dans la pratique. Dans le calcul matriciel on représente un vecteur x de R n par une matrice colonne, x 1 x 2. x m c est à dire la matrice de l application linéaire L : t t.x. On a écrit les coordonnées de l image par L de la base canonique de R par L dans la base canonique de R m. On autrement dit on écrit les composantes de L.1 : x dans R m. 1.2 Matrice Jacobienne Définition 1.2 : Si on choisit une base {e i },,n de R n et une base {f j },,m de R m la matrice de Df(a) dans ces bases s appelle la matrice Jacobienne de f en a relativement aux bases {e i } et {f j }. On la note Jacf(a) Définition 1.3 : On dit que f est différentiable dans l ouvert Ω si elle différentiable en tout point de Ω. L application s appelle l application dérivée de f. = v Df : Ω L(R n, R m ) x Df(x) 4

5 2 Règles de dérivation Théorème 2.1 : 1. Si f est une application constante, f est dérivable et Df(x) = 0 pour tout x R n 2. Si f = L est une application linéaire alors DL(x) = L pour tout x R n. 3. La dérivée d une fonction affine f(x) = Lx + v est Df(x) = L 4. La dérivation est opération linéaire { D(f + g)(a) = Df(a) + Dg(a) D(λf)(a) = λdf(a) 5. Si f de R n dans R m est définie ses applications composantes par f = (f 1, f 2,, f m ) pour que f soit différentiable en a, il faut et il suffit que chaque f i soit différentiable en a et l on a Df(a) = (Df 1 (a), Df 2 (a),, Df m (a)) 2.1 Dérivée d une application bilinéaire Lemme 2.1 : Soit B une application bilinéaire de R n R m dans R p. Alors B est continue en tout point (x, y) de R n R m et il existe M > 0 tel que B(x, y) M x y preuve On va le démontrer pour la norme puisque sur les espaces vectoriels de dimension finie toutes les normes sont équivalentes. Soit {e i },,n et {f j },,m les bases canoniques de E = R n et F = R m muni de la norme. En utilisant les propriétés de bilinéarité l on a B(x, y) = i=n j=m j=1 x i y j B(e i, f j ) En notant M = max B(e i, f j ) et en utilisant l inégalité triangulaire on a i,j B(x, y) M x y On peut quitte à augmenter M obtenir M > 0 5

6 Théorème 2.2 : Soit B une application bilinéaire de R n R m dans R p. Alors B est dérivable en tout point de R n R m dans R p et DB(a 1, a 2 ).(h 1, h 2 ) = B(a 1, h 2 ) + B(h 1, a 2 ) preuve On pose a = (a 1, a 2 ) E F et h = (h 1, h 2 ). On va calculer B(a 1 +h 1, a 2 +h 2 ). On a B(a 1 + h 1, a 2 + h 2 ) = B(a 1, a 2 ) + B(a 1, h 2 ) + B(a 2, h 2 ) + B(h 1, h 2 ) Il est facile de voir (exercice ) que l application L a1,a 2 de E F dans G = R p est linéaire. On a donc (h 1, h 2 ) L a1,a 2 (h 1, h 2 ) = B(a 1, h 2 ) + B(a 2, h 2 ) B(a + h) = B(a) + L a (h) + B(h) Il reste à montrer que B(h) = o(h). Cela provient du lemme. On choisit par exemple sur E F la norme (x, y) = x + y. C est une norme sur E F (voir exercices). Alors h 1 B(h 1, h 2 ) h 1 + h 2 M h 1 h 2 h 1 + h 2 M h 2 On a utilisé h 1. Maintenant quand h 0 on a bien h 1 + h Ce qui montre B(h) = o(h). 2.2 Dérivée du carré scalaire 2 2 On a la relation x + h 2 2 = x + h x + h = x x h + h 2 2 On a évidemment h 2 2 = o(h), la dérivée est donc l application linéaire 2 x soit D ( 2 2) (x) : h 2 x h 6

7 3 Théorème de dérivation des fonctions composées Théorème 3.1 : Si f est différentiable en a de E = R n dans F = R m et si g est différentiable en f(a) de F dans G = R p alors g f est différentiable en a de E dans G et l on a D(g f)(a) = Dg(f(a)) Df(a) Ce théorème est connu dans la littérature anglo-saxonne comme le «chain rule theorem». preuve Posons b = f(a). Puisque f et g sont différentiable en a respectivement en b on a les relations et f(x) = f(a) + Df(a).(x a) + o(x a) g(y) = g(b) + Dg(b).(y b) + o(y b) Calculons g f(x) g f(a). On utilise la dernière relation en posant y = f(x) et b = f(a) g (f(x)) g (f(a)) = Dg(f(a)). (f(x) f(a)) + o (f(x) f(a)) On remplace (f(x) f(a)) par sa valeur donnée par la première relation, et on tient compte du fait que Dg(f(a)) est linéaire : g (f(x)) g (f(a)) = Dg(f(a)).Df(a).(x a) + Dg(a). (o(x a)) + o (f(x) f(a)) Comme les applications Df(a) et Dg(f(a)) sont linéaires il existe des constantes M 1 et M 2 telles que On a donc l inégalité Df(x).x M 1 x Dg(f(a)).y M 2 y Dg(a). (o(x a)) M 2 o(x a) Ce qui prouve Dg(a). (o(x a)) = o(x a). D après la première relation on a f(x) f(a) = Df(a).(x a) + o(x a) et donc par majoration f(x) f(a) x a M 1 x a x a + o(x a) x a Ceci prouve que f(x) f(a) x a est bornée quand x a. Mais comme on peut écrire 7

8 o ( f(x) f(a) ) o ( f(x) f(a) ) f(x) f(a) = x a f(x) f(a) x a Comme f est continue, si x a alors f(x) f(a), la dernière inégalité est donc quand x a est majorée par le produit d une quantité bornée par une quantité qui tend vers 0. On a donc montré Par conséquent o ( f(x) f(a) ) = o(x a) Dg(a). (o(x a)) + o (f(x) f(a)) = o(x a) + o(x a) = o(x a) Ce qui termine la démonstration et l on a D(g f)(a) = L h (a) 3.1 Une première application : permutabilité de la dérivation et d une application linéaire Corollaire 3.1 : Si f est une application de E = R n dans F = R m ayant une dérivée en a et si L est une application linéaire de F dans G = R p alors l application composée L f a une dérivée en a, donnée par C est évident. 3.2 Deuxième application D(L f)(a) = L Df(a) Proposition 3.1 : Si f est une bijection d un ouvert Ω de R n sur un ouvert Ω de R m, qui est dérivable en tout point de Ω ainsi que sa fonction réciproque f 1 en tout point de Ω. Alors la dérivée Df(a) est une bijection de R n sur R m. En particulier n = m. De plus la bijection réciproque Df 1 (a) de Df(a) n est autre que la dérivée, au point b = f(a) de f 1. Autrement dit on a (Df(a)) 1 = D(f 1 )(b) 8

9 3.3 Troisième application Exercice 3.1 : Trouver la dérivée de x x 2 Que se passe-t-il en 0? La dérivée en x 0 est l application linéaire x h h x 2 La norme n est pas dérivable en l origine. 3.4 Quatrième application :dérivée directionnelle Définition 3.1 (dérivée directionnelle) : On dit que f admet une dérivée directionnelle en a suivant le vecteur v si et seulement si l application ϕ v (t) = f(a + t.v) de R dans R m est dérivable en t = 0. Comme au paragraphe (1.1) on identifie cette dérivée avec un vecteur de R m. La dérivée est Df(a).v Cela revient à dire que la limite suivante existe lim t 0 t 0 f(a + t.v) f(a) t Proposition 3.2 : Si f est différentiable en a alors pour tout v 0 alors f admet une dérivée directionnelle en a que l on note D v (a) preuve On applique le théorème de composition. R θ v R n f R m t a + t.v f(a + tv) On remarque que θ v est une application affine, sa dérivée est l application linéaire h h.v que l on identifie avec le vecteur v. Le théorème de composition donne pour la dérivée Df(a) v = Df(a).v. 4 Dérivées partielles, Jacobien, gradient 4.1 Dérivées partielles On considère une application f définie sur un ensemble ouvert D de R n à valeurs dans R m On rappelle la notion d application partielle 9

10 Définition 4.1 : Soit f une application définie sur un ensemble D de R n à valeurs dans R m. Soit a D. On appelle i-ème application partielle associée à f relativement au point a l application de R dans R m l application ϕ i : x f(a 1, a 2,, a i 1, x, a i+1,, a n ) L application partielle est définie sur l ensemble des x tels que (a 1, a 2,, a i 1, x, a i+1,, a n ) D. Proposition 4.1 : Si f est différentiable en a, alors pour chaque indice i l application partielle relativement à a est différentiable en a i. On note D i f(a) sa dérivée en a i. C est une application linéaire de R dans R m. On l appelle i-ème dérivée partielle de f par rapport à la i-ème variable x i. On a Df(a).(h 1, h 2,, h n ) = n Df i (a).h i (3) Remarque 4.1 : La i-ème dérivée partielle est la dérivée directionnelle en a suivant le i-ème vecteur e i de la base canonique de R n. Remarque 4.2 : On a D i f(a) L(R n, R m ) Remarque 4.3 : La dérivée partielle par rapport à la i-ème variable Df i (a) se note aussi très souvent La formule (3) devient f x i (a) Df(a).(h 1, h 2,, h n ) = n f x i.h i Ces notations sont très utilisées mais elles conduisent souvent à des confusions inextricables quand par exemple on fait des changement de variables. Quel sens doit-on attribuer à y f(y, x) où à x f(x, x)? Remarque 4.4 : Le calcul pratique de la dérivée partielle est très facile. En fait l application partielle est une application d une variable (par exemple x i ). On a donc à calculer la dérivée d une fonction d une variable. On a vu que l on peut écrire 10

11 f(x D i f(x) = lim 1,,x i 1,x i+h,x i+1,,x n) f(x 1,,x i 1,x i,x i+1,,x n) h 0 h x i 0 Cela signifie que si f(x 1,, x n ) est donnée par une formule qui comporte des variables notées x 1,..., x n, la i-ème dérivée partielle, c est à dire dans ce cas, la dérivée par rapport à x i s obtient en dérivant la formule par rapport à x i, quand tous les x j, pour j i sont considérées comme des constantes. Par exemple si f(x, y) = sin(xy 2 ) alors D 1 f(x, y) = y 2 cos(xy 2 ) et D 2 f(x, y) = 2xy cos(xy 2 ). De même si f(x, y) = x y alors D 1 f(x, y) = yx y 1 et D 2 f(x, y) = x y log x Si l on doit calculer la i-ème dérivée partielle en a, on peut mettre les valeurs des variables x j autres que x i à la valeur a j. Par exemple Calculer D 2 f(1, y) pour la fonction f(x, y) = x xxxy + log(x) arctg(arctg(arctg(sin(cos(xy) log(x + y))))) preuve de la proposition Il n y a rien à démontrer. Puisque D i f(a) = D ei f(a) on applique la proposition sur les dérivées directionnelles. Autrement dit D i f(a) = Df(a).e i. Maintenant si on écrit h = n h i e i on a, en utilisant le fait que Df(a) est une application linéaire On a donc, puisque Df(a) est linéaire Df(a).h = ( n ) Df(a) h i e i = n h i Df(a).e i = = n h i D i f(a) n D i f(a)h i Ce qui donne exactement la formule (3) puisque les h i sont des scalaires. Commentaire 4.1 : Attention! : Si f est différentiable alors les dérivées partielles existent mais la réciproque n est pas forcément vraie. 11

12 Exercice 4.1 : Soit f : R 2 R définie par = xy x 2 +y sin 1 si (x, y) (0, 0) 2 x 2 +y 2 f(x, y) = = 0 si (x, y) = (0, 0) n est pas différentiable en (0, 0) et pourtant D 1 f(0, 0) et D 2 f(0, 0) existent. Exercice 4.2 : Soit f : R 2 R définie par x = 5 (y x) 2 +x si (x, y) (0, 0) 8 f(x, y) = = 0 si (x, y) = (0, 0) En considérant l ensemble des points {(x, y) y x 2 } (parabole) montrer que f n est pas continue en (0, 0). Montrer que D 1 f et D 2 f existent en Gradient On considère des applications f différentiables de plusieurs variables à valeurs réelles. Autrement dit f : R n R Si f est dérivable en a, sa dérivée Df(a) est une application linéaire de R n dans R, autrement dit une forme linéaire. La matrice Jacobienne de f en a est un vecteur ligne et l on a, en identitifiant par abus de langage la dérivée et sa matrice dans la base canonique Df(a) = (D 1 f(a), D 2 f(a),, D n f(a)) C est tout simplement la formule (3), en utilisant le produit matriciel Df(a).(h 1, h 2,, h n ) = n Df i (a).h i = (D 1 f(a),, D n f(a)) h 1. h n = (D 1 f(a),, D n f(a)) (h 1,, h n ) T La dernière équation fait penser à un produit scalaire. C est le produit scalaire, si on identifie Df(a) avec le vecteur ligne Df(a) T h. Cela donne la 12

13 Définition 4.2 : On appelle gradient en a d une fonction différentiable f à valeur réelle, que l on note f(a) le vecteur colonne des dérivées partielles calculées en a : D 1 f(a) D 2 f(a) f = 4.3 Matrice Jacobienne. Df n (a) Df(a)T Proposition 4.2 : Soit f = (f 1, f 2, f m ) une application différentiable de R n dans R m. La matrice Jacobienne de Df(a) dans la base canonique de R n et R m vaut D 1 f 1 (a) D n f 1 (a) J f (a) = (D j f i (a)),,m = j=1,,n On trouve aussi la notation J f (a) = ( ) fi (a) =,,m x j j=1,,n. D 1 f m (a) f 1 x 1 (a). f m x 1 (a). D n f m (a) f 1 x n (a). f m x n (a) C est évident avec les définitions. Les lignes de la matrice sont les dérivées des applications composantes f i. Comme les f i sont à valeur réelles on identifie la dérivée avec un vecteur ligne Df i (a). Ce vecteur ligne est, voir le paragraphe (4.2) Df i (a) = (D 1 f i (a), D 2 f i,, D n f i (a)) La i-ème ligne est le transposé du gradient f i (a). La j-ème colonne est la j-ème dérivée partielle de f, D j f(a). C est bien l identification avec un vecteur des applications linéaires à une seule variable réelle comme dans le paragraphe (1.1). Remarque 4.5 : Le théorème de composition se traduit par une produit de matrices Jacobienne : J g f (a) = J g (f(a) J f (a) 13

Théorème du point fixe - Théorème de l inversion locale

Théorème du point fixe - Théorème de l inversion locale Chapitre 7 Théorème du point fixe - Théorème de l inversion locale Dans ce chapitre et le suivant, on montre deux applications importantes de la notion de différentiabilité : le théorème de l inversion

Plus en détail

Calcul différentiel. Chapitre 1. 1.1 Différentiabilité

Calcul différentiel. Chapitre 1. 1.1 Différentiabilité Chapitre 1 Calcul différentiel L idée du calcul différentiel est d approcher au voisinage d un point une fonction f par une fonction plus simple (ou d approcher localement le graphe de f par un espace

Plus en détail

Fonctions de plusieurs variables

Fonctions de plusieurs variables Module : Analyse 03 Chapitre 00 : Fonctions de plusieurs variables Généralités et Rappels des notions topologiques dans : Qu est- ce que?: Mathématiquement, n étant un entier non nul, on définit comme

Plus en détail

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer Pour commencer Exercice 1 - Ensembles de définition - Première année - 1. Le logarithme est défini si x + y > 0. On trouve donc le demi-plan supérieur délimité par la droite d équation x + y = 0.. 1 xy

Plus en détail

3 Approximation de solutions d équations

3 Approximation de solutions d équations 3 Approximation de solutions d équations Une équation scalaire a la forme générale f(x) =0où f est une fonction de IR dans IR. Un système de n équations à n inconnues peut aussi se mettre sous une telle

Plus en détail

Différentiabilité ; Fonctions de plusieurs variables réelles

Différentiabilité ; Fonctions de plusieurs variables réelles Différentiabilité ; Fonctions de plusieurs variables réelles Denis Vekemans R n est muni de l une des trois normes usuelles. 1,. 2 ou.. x 1 = i i n Toutes les normes de R n sont équivalentes. x i ; x 2

Plus en détail

Cours d Analyse. Fonctions de plusieurs variables

Cours d Analyse. Fonctions de plusieurs variables Cours d Analyse Fonctions de plusieurs variables Licence 1ère année 2007/2008 Nicolas Prioux Université de Marne-la-Vallée Table des matières 1 Notions de géométrie dans l espace et fonctions à deux variables........

Plus en détail

Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes.

Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes. 1 Définitions, notations Calcul matriciel Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes. On utilise aussi la notation m n pour le

Plus en détail

8.1 Généralités sur les fonctions de plusieurs variables réelles. f : R 2 R (x, y) 1 x 2 y 2

8.1 Généralités sur les fonctions de plusieurs variables réelles. f : R 2 R (x, y) 1 x 2 y 2 Chapitre 8 Fonctions de plusieurs variables 8.1 Généralités sur les fonctions de plusieurs variables réelles Définition. Une fonction réelle de n variables réelles est une application d une partie de R

Plus en détail

FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4)

FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4) FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4) Bernard Le Stum Université de Rennes 1 Version du 13 mars 2009 Table des matières 1 Fonctions partielles, courbes de niveau 1 2 Limites et continuité

Plus en détail

Planche n o 22. Fonctions de plusieurs variables. Corrigé

Planche n o 22. Fonctions de plusieurs variables. Corrigé Planche n o Fonctions de plusieurs variables Corrigé n o : f est définie sur R \ {, } Pour, f, = Quand tend vers, le couple, tend vers le couple, et f, tend vers Donc, si f a une limite réelle en, cette

Plus en détail

Notes du cours MTH1101N Calcul I Partie II: fonctions de plusieurs variables

Notes du cours MTH1101N Calcul I Partie II: fonctions de plusieurs variables Notes du cours MTH1101N Calcul I Partie II: fonctions de plusieurs variables Fausto Errico Département de mathématiques et de génie industriel École Polytechnique de Montréal Automne 2012 Table des matières

Plus en détail

Fonctions de plusieurs variables : dérivés partielles, diérentielle. Fonctions composées. Fonctions de classe C 1. Exemples

Fonctions de plusieurs variables : dérivés partielles, diérentielle. Fonctions composées. Fonctions de classe C 1. Exemples 45 Fonctions de plusieurs variables : dérivés partielles, diérentielle. Fonctions composées. Fonctions de classe C 1. Exemples Les espaces vectoriels considérés sont réels, non réduits au vecteur nul et

Plus en détail

Chapitre VI Fonctions de plusieurs variables

Chapitre VI Fonctions de plusieurs variables Chapitre VI Fonctions de plusieurs variables 6. 1 Fonctions différentiables de R 2 dans R. 6. 1. 1 Définition de la différentiabilité Nous introduisons la différentiabilité sous l angle des développements

Plus en détail

Cours3. Applications continues et homéomorphismes. 1 Rappel sur les images réciproques

Cours3. Applications continues et homéomorphismes. 1 Rappel sur les images réciproques Université de Provence Topologie 2 Cours3. Applications continues et homéomorphismes 1 Rappel sur les images réciproques Soit une application f d un ensemble X vers un ensemble Y et soit une partie P de

Plus en détail

Notes du cours MTH1101 Calcul I Partie II: fonctions de plusieurs variables

Notes du cours MTH1101 Calcul I Partie II: fonctions de plusieurs variables Notes du cours MTH1101 Calcul I Partie II: fonctions de plusieurs variables Guy Desaulniers Département de mathématiques et de génie industriel École Polytechnique de Montréal Automne 2014 Table des matières

Plus en détail

Calcul Différentiel. I Fonctions différentiables 3

Calcul Différentiel. I Fonctions différentiables 3 Université de la Méditerranée Faculté des Sciences de Luminy Licence de Mathématiques, Semestre 5, année 2008-2009 Calcul Différentiel Support du cours de Glenn Merlet 1, version du 6 octobre 2008. Remarques

Plus en détail

Continuité d une fonction de plusieurs variables

Continuité d une fonction de plusieurs variables Chapitre 2 Continuité d une fonction de plusieurs variables Maintenant qu on a défini la notion de limite pour des suites dans R n, la notion de continuité s étend sans problème à des fonctions de plusieurs

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable Eo7 Fonctions de plusieurs variables Eercices de Jean-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-francefr * très facile ** facile *** difficulté moenne **** difficile ***** très difficile I

Plus en détail

Image d un intervalle par une fonction continue

Image d un intervalle par une fonction continue DOCUMENT 27 Image d un intervalle par une fonction continue La continuité d une fonction en un point est une propriété locale : une fonction est continue en un point x 0 si et seulement si sa restriction

Plus en détail

De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que

De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que Introduction. On suppose connus les ensembles N (des entiers naturels), Z des entiers relatifs et Q (des nombres rationnels). On s est rendu compte, depuis l antiquité, que l on ne peut pas tout mesurer

Plus en détail

Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre

Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre IUFM du Limousin 2009-10 PLC1 Mathématiques S. Vinatier Rappels de cours Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre 1 Fonctions de plusieurs variables

Plus en détail

Dérivées d ordres supérieurs. Application à l étude d extrema.

Dérivées d ordres supérieurs. Application à l étude d extrema. Chapitre 5 Dérivées d ordres supérieurs. Application à l étude d extrema. On s intéresse dans ce chapitre aux dérivées d ordre ou plus d une fonction de plusieurs variables. Comme pour une fonction d une

Plus en détail

Licence de Mathématiques 3

Licence de Mathématiques 3 Faculté des sciences et techniques Département de mathématiques 2004-2005 Licence de Mathématiques 3 M62 : Fonctions réelles de plusieurs variables Laurent Guillopé www.math.sciences.univ-nantes.fr/~guillope/m62/

Plus en détail

Fonctions de plusieurs variables et applications pour l ingénieur

Fonctions de plusieurs variables et applications pour l ingénieur Service Commun de Formation Continue Année Universitaire 2006-2007 Fonctions de plusieurs variables et applications pour l ingénieur Polycopié de cours Rédigé par Yannick Privat Bureau 321 - Institut Élie

Plus en détail

Cours 02 : Problème général de la programmation linéaire

Cours 02 : Problème général de la programmation linéaire Cours 02 : Problème général de la programmation linéaire Cours 02 : Problème général de la Programmation Linéaire. 5 . Introduction Un programme linéaire s'écrit sous la forme suivante. MinZ(ou maxw) =

Plus en détail

Continuité en un point

Continuité en un point DOCUMENT 4 Continuité en un point En général, D f désigne l ensemble de définition de la fonction f et on supposera toujours que cet ensemble est inclus dans R. Toutes les fonctions considérées sont à

Plus en détail

Correction de l examen de la première session

Correction de l examen de la première session de l examen de la première session Julian Tugaut, Franck Licini, Didier Vincent Si vous trouvez des erreurs de Français ou de mathématiques ou bien si vous avez des questions et/ou des suggestions, envoyez-moi

Plus en détail

Formes quadratiques. 1 Formes quadratiques et formes polaires associées. Imen BHOURI. 1.1 Définitions

Formes quadratiques. 1 Formes quadratiques et formes polaires associées. Imen BHOURI. 1.1 Définitions Formes quadratiques Imen BHOURI 1 Ce cours s adresse aux étudiants de niveau deuxième année de Licence et à ceux qui préparent le capes. Il combine d une façon indissociable l étude des concepts bilinéaires

Plus en détail

Fonctions de plusieurs variables

Fonctions de plusieurs variables Maths MP Exercices Fonctions de plusieurs variables Les indications ne sont ici que pour être consultées après le T (pour les exercices non traités). Avant et pendant le T, tenez bon et n allez pas les

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours Exo7 Continuité (étude globale). Diverses fonctions Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france.fr * très facile ** facile *** difficulté moyenne **** difficile *****

Plus en détail

Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications

Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications A. Optimisation sans contrainte.... Généralités.... Condition nécessaire et condition suffisante

Plus en détail

Continuité et dérivabilité d une fonction

Continuité et dérivabilité d une fonction DERNIÈRE IMPRESSIN LE 7 novembre 014 à 10:3 Continuité et dérivabilité d une fonction Table des matières 1 Continuité d une fonction 1.1 Limite finie en un point.......................... 1. Continuité

Plus en détail

Cours d Analyse 3 Fonctions de plusieurs variables

Cours d Analyse 3 Fonctions de plusieurs variables Université Claude Bernard, Lyon I Licence Sciences, Technologies & Santé 43, boulevard 11 novembre 1918 Spécialité Mathématiques 69622 Villeurbanne cedex, France L. Pujo-Menjouet pujo@math.univ-lyon1.fr

Plus en détail

Souad EL Bernoussi. Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/

Souad EL Bernoussi. Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/ Recherche opérationnelle Les démonstrations et les exemples seront traités en cours Souad EL Bernoussi Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/ Table des matières 1 Programmation

Plus en détail

Première partie. Préliminaires : noyaux itérés. MPSI B 6 juin 2015

Première partie. Préliminaires : noyaux itérés. MPSI B 6 juin 2015 Énoncé Soit V un espace vectoriel réel. L espace vectoriel des endomorphismes de V est désigné par L(V ). Lorsque f L(V ) et k N, on désigne par f 0 = Id V, f k = f k f la composée de f avec lui même k

Plus en détail

Fonctions de plusieurs variables. Sébastien Tordeux

Fonctions de plusieurs variables. Sébastien Tordeux Fonctions de plusieurs variables Sébastien Tordeux 22 février 2009 Table des matières 1 Fonctions de plusieurs variables 3 1.1 Définition............................. 3 1.2 Limite et continuité.......................

Plus en détail

Exercices - Polynômes : corrigé. Opérations sur les polynômes

Exercices - Polynômes : corrigé. Opérations sur les polynômes Opérations sur les polynômes Exercice 1 - Carré - L1/Math Sup - Si P = Q est le carré d un polynôme, alors Q est nécessairement de degré, et son coefficient dominant est égal à 1. On peut donc écrire Q(X)

Plus en détail

RO04/TI07 - Optimisation non-linéaire

RO04/TI07 - Optimisation non-linéaire RO04/TI07 - Optimisation non-linéaire Stéphane Mottelet Université de Technologie de Compiègne Printemps 2003 I Motivations et notions fondamentales 4 I1 Motivations 5 I2 Formes quadratiques 13 I3 Rappels

Plus en détail

Fonctions de plusieurs variables et changements de variables

Fonctions de plusieurs variables et changements de variables Notes du cours d'équations aux Dérivées Partielles de l'isima, première année http://wwwisimafr/leborgne Fonctions de plusieurs variables et changements de variables Gilles Leborgne juin 006 Table des

Plus en détail

Chapitre 2. Matrices

Chapitre 2. Matrices Département de mathématiques et informatique L1S1, module A ou B Chapitre 2 Matrices Emmanuel Royer emmanuelroyer@mathuniv-bpclermontfr Ce texte mis gratuitement à votre disposition a été rédigé grâce

Plus en détail

Université Paris-Dauphine DUMI2E 1ère année, 2009-2010. Applications

Université Paris-Dauphine DUMI2E 1ère année, 2009-2010. Applications Université Paris-Dauphine DUMI2E 1ère année, 2009-2010 Applications 1 Introduction Une fonction f (plus précisément, une fonction réelle d une variable réelle) est une règle qui associe à tout réel x au

Plus en détail

Le produit semi-direct

Le produit semi-direct Le produit semi-direct Préparation à l agrégation de mathématiques Université de Nice - Sophia Antipolis Antoine Ducros Octobre 2007 Ce texte est consacré, comme son titre l indique, au produit semi-direct.

Plus en détail

LE PRODUIT SCALAIRE ( En première S )

LE PRODUIT SCALAIRE ( En première S ) LE PRODUIT SCALAIRE ( En première S ) Dernière mise à jour : Jeudi 4 Janvier 007 Vincent OBATON, Enseignant au lycée Stendhal de Grenoble ( Année 006-007 ) 1 Table des matières 1 Grille d autoévaluation

Plus en détail

I. Polynômes de Tchebychev

I. Polynômes de Tchebychev Première épreuve CCP filière MP I. Polynômes de Tchebychev ( ) 1.a) Tout réel θ vérifie cos(nθ) = Re ((cos θ + i sin θ) n ) = Re Cn k (cos θ) n k i k (sin θ) k Or i k est réel quand k est pair et imaginaire

Plus en détail

La fonction exponentielle

La fonction exponentielle DERNIÈRE IMPRESSION LE 2 novembre 204 à :07 La fonction exponentielle Table des matières La fonction exponentielle 2. Définition et théorèmes.......................... 2.2 Approche graphique de la fonction

Plus en détail

Limites finies en un point

Limites finies en un point 8 Limites finies en un point Pour ce chapitre, sauf précision contraire, I désigne une partie non vide de R et f une fonction définie sur I et à valeurs réelles ou complees. Là encore, les fonctions usuelles,

Plus en détail

INTRODUCTION À L ANALYSE FACTORIELLE DES CORRESPONDANCES

INTRODUCTION À L ANALYSE FACTORIELLE DES CORRESPONDANCES INTRODUCTION À L ANALYSE FACTORIELLE DES CORRESPONDANCES Dominique LAFFLY Maître de Conférences, Université de Pau Laboratoire Société Environnement Territoire UMR 5603 du CNRS et Université de Pau Domaine

Plus en détail

Commun à tous les candidats

Commun à tous les candidats EXERCICE 3 (9 points ) Commun à tous les candidats On s intéresse à des courbes servant de modèle à la distribution de la masse salariale d une entreprise. Les fonctions f associées définies sur l intervalle

Plus en détail

La programmation linéaire : une introduction. Qu est-ce qu un programme linéaire? Terminologie. Écriture mathématique

La programmation linéaire : une introduction. Qu est-ce qu un programme linéaire? Terminologie. Écriture mathématique La programmation linéaire : une introduction Qu est-ce qu un programme linéaire? Qu est-ce qu un programme linéaire? Exemples : allocation de ressources problème de recouvrement Hypothèses de la programmation

Plus en détail

Résolution d équations non linéaires

Résolution d équations non linéaires Analyse Numérique Résolution d équations non linéaires Said EL HAJJI et Touria GHEMIRES Université Mohammed V - Agdal. Faculté des Sciences Département de Mathématiques. Laboratoire de Mathématiques, Informatique

Plus en détail

Contexte. Pour cela, elles doivent être très compliquées, c est-à-dire elles doivent être très différentes des fonctions simples,

Contexte. Pour cela, elles doivent être très compliquées, c est-à-dire elles doivent être très différentes des fonctions simples, Non-linéarité Contexte Pour permettre aux algorithmes de cryptographie d être sûrs, les fonctions booléennes qu ils utilisent ne doivent pas être inversées facilement. Pour cela, elles doivent être très

Plus en détail

Résolution de systèmes linéaires par des méthodes directes

Résolution de systèmes linéaires par des méthodes directes Résolution de systèmes linéaires par des méthodes directes J. Erhel Janvier 2014 1 Inverse d une matrice carrée et systèmes linéaires Ce paragraphe a pour objet les matrices carrées et les systèmes linéaires.

Plus en détail

Programmation linéaire et Optimisation. Didier Smets

Programmation linéaire et Optimisation. Didier Smets Programmation linéaire et Optimisation Didier Smets Chapitre 1 Un problème d optimisation linéaire en dimension 2 On considère le cas d un fabricant d automobiles qui propose deux modèles à la vente, des

Plus en détail

Corrigé du baccalauréat S Asie 21 juin 2010

Corrigé du baccalauréat S Asie 21 juin 2010 Corrigé du baccalauréat S Asie juin 00 EXERCICE Commun à tous les candidats 4 points. Question : Le triangle GBI est : Réponse a : isocèle. Réponse b : équilatéral. Réponse c : rectangle. On a GB = + =

Plus en détail

Exo7. Matrice d une application linéaire. Corrections d Arnaud Bodin.

Exo7. Matrice d une application linéaire. Corrections d Arnaud Bodin. Exo7 Matrice d une application linéaire Corrections d Arnaud odin. Exercice Soit R muni de la base canonique = ( i, j). Soit f : R R la projection sur l axe des abscisses R i parallèlement à R( i + j).

Plus en détail

Intégration et probabilités TD1 Espaces mesurés Corrigé

Intégration et probabilités TD1 Espaces mesurés Corrigé Intégration et probabilités TD1 Espaces mesurés Corrigé 2012-2013 1 Petites questions 1 Est-ce que l ensemble des ouverts de R est une tribu? Réponse : Non, car le complémentaire de ], 0[ n est pas ouvert.

Plus en détail

Cours d analyse numérique SMI-S4

Cours d analyse numérique SMI-S4 ours d analyse numérique SMI-S4 Introduction L objet de l analyse numérique est de concevoir et d étudier des méthodes de résolution de certains problèmes mathématiques, en général issus de problèmes réels,

Plus en détail

Problème 1 : applications du plan affine

Problème 1 : applications du plan affine Problème 1 : applications du plan affine Notations On désigne par GL 2 (R) l ensemble des matrices 2 2 inversibles à coefficients réels. Soit un plan affine P muni d un repère (O, I, J). Les coordonnées

Plus en détail

Calcul intégral élémentaire en plusieurs variables

Calcul intégral élémentaire en plusieurs variables Calcul intégral élémentaire en plusieurs variables PC*2 2 septembre 2009 Avant-propos À part le théorème de Fubini qui sera démontré dans le cours sur les intégrales à paramètres et qui ne semble pas explicitement

Plus en détail

Cours Fonctions de deux variables

Cours Fonctions de deux variables Cours Fonctions de deux variables par Pierre Veuillez 1 Support théorique 1.1 Représentation Plan et espace : Grâce à un repère cartésien ( ) O, i, j du plan, les couples (x, y) de R 2 peuvent être représenté

Plus en détail

Fonctions holomorphes

Fonctions holomorphes Université Joseph Fourier, Grenoble Maths en Ligne Fonctions holomorphes Christine Laurent-Thiébaut Ceci est le second volet de l étude des fonctions d une variable complexe, faisant suite au chapitre

Plus en détail

Suites numériques 3. 1 Convergence et limite d une suite

Suites numériques 3. 1 Convergence et limite d une suite Suites numériques 3 1 Convergence et limite d une suite Nous savons que les termes de certaines suites s approchent de plus en plus d une certaine valeur quand n augmente : par exemple, les nombres u n

Plus en détail

AOT 13. et Application au Contrôle Géométrique

AOT 13. et Application au Contrôle Géométrique AOT 13 Géométrie Différentielle et Application au Contrôle Géométrique Frédéric Jean Notes de cours Édition 2011/2012 ii Table des matières 1 Variétés différentiables 1 1.1 Variétés différentiables............................

Plus en détail

Optimisation des fonctions de plusieurs variables

Optimisation des fonctions de plusieurs variables Optimisation des fonctions de plusieurs variables Hervé Hocquard Université de Bordeaux, France 8 avril 2013 Extrema locaux et globaux Définition On étudie le comportement d une fonction de plusieurs variables

Plus en détail

Chapitre 2 Le problème de l unicité des solutions

Chapitre 2 Le problème de l unicité des solutions Université Joseph Fourier UE MAT 127 Mathématiques année 2011-2012 Chapitre 2 Le problème de l unicité des solutions Ce que nous verrons dans ce chapitre : un exemple d équation différentielle y = f(y)

Plus en détail

I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES

I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES Théorème - Définition Soit un cercle (O,R) et un point. Une droite passant par coupe le cercle en deux points A et

Plus en détail

Capes 2002 - Première épreuve

Capes 2002 - Première épreuve Cette correction a été rédigée par Frédéric Bayart. Si vous avez des remarques à faire, ou pour signaler des erreurs, n hésitez pas à écrire à : mathweb@free.fr Mots-clés : équation fonctionnelle, série

Plus en détail

Nombre dérivé et tangente

Nombre dérivé et tangente Nombre dérivé et tangente I) Interprétation graphique 1) Taux de variation d une fonction en un point. Soit une fonction définie sur un intervalle I contenant le nombre réel a, soit (C) sa courbe représentative

Plus en détail

Dérivation : cours. Dérivation dans R

Dérivation : cours. Dérivation dans R TS Dérivation dans R Dans tout le capitre, f désigne une fonction définie sur un intervalle I de R (non vide et non réduit à un élément) et à valeurs dans R. Petits rappels de première Téorème-définition

Plus en détail

Correction du Baccalauréat S Amérique du Nord mai 2007

Correction du Baccalauréat S Amérique du Nord mai 2007 Correction du Baccalauréat S Amérique du Nord mai 7 EXERCICE points. Le plan (P) a une pour équation cartésienne : x+y z+ =. Les coordonnées de H vérifient cette équation donc H appartient à (P) et A n

Plus en détail

Dualité dans les espaces de Lebesgue et mesures de Radon finies

Dualité dans les espaces de Lebesgue et mesures de Radon finies Chapitre 6 Dualité dans les espaces de Lebesgue et mesures de Radon finies Nous allons maintenant revenir sur les espaces L p du Chapitre 4, à la lumière de certains résultats du Chapitre 5. Sauf mention

Plus en détail

Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme

Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme Chapitre 3 Quelques fonctions usuelles 1 Fonctions logarithme et eponentielle 1.1 La fonction logarithme Définition 1.1 La fonction 7! 1/ est continue sur ]0, +1[. Elle admet donc des primitives sur cet

Plus en détail

OM 1 Outils mathématiques : fonction de plusieurs variables

OM 1 Outils mathématiques : fonction de plusieurs variables Outils mathématiques : fonction de plusieurs variables PCSI 2013 2014 Certaines partie de ce chapitre ne seront utiles qu à partir de l année prochaine, mais une grande partie nous servira dès cette année.

Plus en détail

1S Modèles de rédaction Enoncés

1S Modèles de rédaction Enoncés Par l équipe des professeurs de 1S du lycée Parc de Vilgénis 1S Modèles de rédaction Enoncés Produit scalaire & Corrigés Exercice 1 : définition du produit scalaire Soit ABC un triangle tel que AB, AC

Plus en détail

Rappels et compléments, première partie : Nombres complexes et applications à la géométrie

Rappels et compléments, première partie : Nombres complexes et applications à la géométrie Rappels et compléments, première partie : Nombres complexes et applications à la géométrie 1 Définition des nombres complexes On définit sur les couples de réels une loi d addition comme suit : (x; y)

Plus en détail

C1 : Fonctions de plusieurs variables

C1 : Fonctions de plusieurs variables 1er semestre 2012/13 CPUMP 3 U 11 : Abrégé de cours Compléments Analyse 3 : fonctions analytiques Les notes suivantes, disponibles à l adresse http://www.iecn.u-nancy.fr/~bertram/, contiennent les définitions

Plus en détail

Équations non linéaires

Équations non linéaires Équations non linéaires Objectif : trouver les zéros de fonctions (ou systèmes) non linéaires, c-à-d les valeurs α R telles que f(α) = 0. y f(x) α 1 α 2 α 3 x Equations non lineaires p. 1/49 Exemples et

Plus en détail

Calcul fonctionnel holomorphe dans les algèbres de Banach

Calcul fonctionnel holomorphe dans les algèbres de Banach Chapitre 7 Calcul fonctionnel holomorphe dans les algèbres de Banach L objet de ce chapitre est de définir un calcul fonctionnel holomorphe qui prolonge le calcul fonctionnel polynômial et qui respecte

Plus en détail

[http://mp.cpgedupuydelome.fr] édité le 30 avril 2015 Enoncés 1

[http://mp.cpgedupuydelome.fr] édité le 30 avril 2015 Enoncés 1 [http://mpcpgedupuydelomefr] édité le 3 avril 215 Enoncés 1 Exercice 1 [ 265 ] [correction] On note V l ensemble des matrices à coefficients entiers du type a b c d d a b c c d a b b c d a et G l ensemble

Plus en détail

Un K-espace vectoriel est un ensemble non vide E muni : d une loi de composition interne, c est-à-dire d une application de E E dans E : E E E

Un K-espace vectoriel est un ensemble non vide E muni : d une loi de composition interne, c est-à-dire d une application de E E dans E : E E E Exo7 Espaces vectoriels Vidéo partie 1. Espace vectoriel (début Vidéo partie 2. Espace vectoriel (fin Vidéo partie 3. Sous-espace vectoriel (début Vidéo partie 4. Sous-espace vectoriel (milieu Vidéo partie

Plus en détail

Fonctions de deux variables. Mai 2011

Fonctions de deux variables. Mai 2011 Fonctions de deux variables Dédou Mai 2011 D une à deux variables Les fonctions modèlisent de l information dépendant d un paramètre. On a aussi besoin de modéliser de l information dépendant de plusieurs

Plus en détail

La mesure de Lebesgue sur la droite réelle

La mesure de Lebesgue sur la droite réelle Chapitre 1 La mesure de Lebesgue sur la droite réelle 1.1 Ensemble mesurable au sens de Lebesgue 1.1.1 Mesure extérieure Définition 1.1.1. Un intervalle est une partie convexe de R. L ensemble vide et

Plus en détail

Sujet proposé par Yves M. LEROY. Cet examen se compose d un exercice et de deux problèmes. Ces trois parties sont indépendantes.

Sujet proposé par Yves M. LEROY. Cet examen se compose d un exercice et de deux problèmes. Ces trois parties sont indépendantes. Promotion X 004 COURS D ANALYSE DES STRUCTURES MÉCANIQUES PAR LA MÉTHODE DES ELEMENTS FINIS (MEC 568) contrôle non classant (7 mars 007, heures) Documents autorisés : polycopié ; documents et notes de

Plus en détail

Simulation de variables aléatoires

Simulation de variables aléatoires Chapter 1 Simulation de variables aléatoires Références: [F] Fishman, A first course in Monte Carlo, chap 3. [B] Bouleau, Probabilités de l ingénieur, chap 4. [R] Rubinstein, Simulation and Monte Carlo

Plus en détail

Proposition. Si G est un groupe simple d ordre 60 alors G est isomorphe à A 5.

Proposition. Si G est un groupe simple d ordre 60 alors G est isomorphe à A 5. DÉVELOPPEMENT 32 A 5 EST LE SEUL GROUPE SIMPLE D ORDRE 60 Proposition. Si G est un groupe simple d ordre 60 alors G est isomorphe à A 5. Démonstration. On considère un groupe G d ordre 60 = 2 2 3 5 et

Plus en détail

ENSAE - DAKAR BROCHURE D'INFORMATION SUR LE CONCOURS DE RECRUTEMENT D ÉLÈVES INGÉNIEURS STATISTICIENS ÉCONOMISTES (I S E) Option Mathématiques CAPESA

ENSAE - DAKAR BROCHURE D'INFORMATION SUR LE CONCOURS DE RECRUTEMENT D ÉLÈVES INGÉNIEURS STATISTICIENS ÉCONOMISTES (I S E) Option Mathématiques CAPESA ENSEA - ABIDJAN ENSAE - DAKAR ISSEA - YAOUNDÉ BROCHURE D'INFORMATION SUR LE CONCOURS DE RECRUTEMENT D ÉLÈVES INGÉNIEURS STATISTICIENS ÉCONOMISTES (I S E) Option Mathématiques CAPESA CENTRE D APPUI AUX

Plus en détail

Programmes des classes préparatoires aux Grandes Ecoles

Programmes des classes préparatoires aux Grandes Ecoles Programmes des classes préparatoires aux Grandes Ecoles Filière : scientifique Voie : Biologie, chimie, physique et sciences de la Terre (BCPST) Discipline : Mathématiques Seconde année Préambule Programme

Plus en détail

Quelques contrôle de Première S

Quelques contrôle de Première S Quelques contrôle de Première S Gilles Auriol auriolg@free.fr http ://auriolg.free.fr Voici l énoncé de 7 devoirs de Première S, intégralement corrigés. Malgré tout les devoirs et 5 nécessitent l usage

Plus en détail

Méthodes de quadrature. Polytech Paris-UPMC. - p. 1/48

Méthodes de quadrature. Polytech Paris-UPMC. - p. 1/48 Méthodes de Polytech Paris-UPMC - p. 1/48 Polynôme d interpolation de Preuve et polynôme de Calcul de l erreur d interpolation Étude de la formule d erreur Autres méthodes - p. 2/48 Polynôme d interpolation

Plus en détail

Programme de la classe de première année MPSI

Programme de la classe de première année MPSI Objectifs Programme de la classe de première année MPSI I - Introduction à l analyse L objectif de cette partie est d amener les étudiants vers des problèmes effectifs d analyse élémentaire, d introduire

Plus en détail

Dérivation CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES

Dérivation CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Capitre 4 Dérivation Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Dérivation Nombre dérivé d une fonction en un point. Tangente à la courbe représentative d une fonction dérivable

Plus en détail

3. Conditionnement P (B)

3. Conditionnement P (B) Conditionnement 16 3. Conditionnement Dans cette section, nous allons rappeler un certain nombre de définitions et de propriétés liées au problème du conditionnement, c est à dire à la prise en compte

Plus en détail

Les indices à surplus constant

Les indices à surplus constant Les indices à surplus constant Une tentative de généralisation des indices à utilité constante On cherche ici en s inspirant des indices à utilité constante à définir un indice de prix de référence adapté

Plus en détail

Exercices Corrigés Premières notions sur les espaces vectoriels

Exercices Corrigés Premières notions sur les espaces vectoriels Exercices Corrigés Premières notions sur les espaces vectoriels Exercice 1 On considére le sous-espace vectoriel F de R formé des solutions du système suivant : x1 x 2 x 3 + 2x = 0 E 1 x 1 + 2x 2 + x 3

Plus en détail

n N = u N u N+1 1 u pour u 1. f ( uv 1) v N+1 v N v 1 1 2 t

n N = u N u N+1 1 u pour u 1. f ( uv 1) v N+1 v N v 1 1 2 t 3.La méthode de Dirichlet 99 11 Le théorème de Dirichlet 3.La méthode de Dirichlet Lorsque Dirichlet, au début des années 180, découvre les travaux de Fourier, il cherche à les justifier par des méthodes

Plus en détail

Moments des variables aléatoires réelles

Moments des variables aléatoires réelles Chapter 6 Moments des variables aléatoires réelles Sommaire 6.1 Espérance des variables aléatoires réelles................................ 46 6.1.1 Définition et calcul........................................

Plus en détail

Fonctions de plusieurs variables

Fonctions de plusieurs variables UNIVERSITÉ DE POITIERS Parcours Renforcé Première Année 2009/2010 Paul Broussous Fonctions de plusieurs variables Seconde version corrigée Table des matières 1. Un peu de topologie. 1.1. Distance euclidienne,

Plus en détail

Sur certaines séries entières particulières

Sur certaines séries entières particulières ACTA ARITHMETICA XCII. 2) Sur certaines séries entières particulières par Hubert Delange Orsay). Introduction. Dans un exposé à la Conférence Internationale de Théorie des Nombres organisée à Zakopane

Plus en détail

Exercices - Nombres complexes : corrigé. Formes algébriques et trigonométriques, module et argument

Exercices - Nombres complexes : corrigé. Formes algébriques et trigonométriques, module et argument Formes algébriques et trigonométriques, module et argument Exercice - - L/Math Sup - On multiplie le dénominateur par sa quantité conjuguée, et on obtient : Z = 4 i 3 + i 3 i 3 = 4 i 3 + 3 = + i 3. Pour

Plus en détail