Exo7. Matrice d une application linéaire. Corrections d Arnaud Bodin.

Save this PDF as:

Dimension: px
Commencer à balayer dès la page:

Download "Exo7. Matrice d une application linéaire. Corrections d Arnaud Bodin."

Transcription

1 Exo7 Matrice d une application linéaire Corrections d Arnaud odin. Exercice Soit R muni de la base canonique = ( i, j). Soit f : R R la projection sur l axe des abscisses R i parallèlement à R( i + j). Déterminer Mat, ( f ), la matrice de f dans la base ( i, j). Même question avec Mat,( f ) où est la base ( i j, i + j) de R. Même question avec Mat, ( f ). Indication [87] Exercice Soient trois vecteurs e,e,e formant une base de R. On note φ l application linéaire définie par φ(e ) = e, φ(e ) = e + e + e et φ(e ) = e.. Écrire la matrice A de φ dans la base (e,e,e ). Déterminer le noyau de cette application.. On pose f = e e, f = e e, f = e + e + e. Calculer e,e,e en fonction de f, f, f. Les vecteurs f, f, f forment-ils une base de R?. Calculer φ( f ),φ( f ),φ( f ) en fonction de f, f, f. Écrire la matrice de φ dans la base ( f, f, f ) et trouver la nature de l application φ. 4. On pose P =. Vérifier que P est inversible et calculer P. Quelle relation lie A,, P et P? [97] Exercice Soit f l endomorphisme de R dont la matrice par rapport à la base canonique (e,e,e ) est 5 5 A = Montrer que les vecteurs e = e + e + e, e = e + 4e + e, e = e + e + e forment une base de R et calculer la matrice de f par rapport à cette base. [4] Exercice Soit A =.... En utilisant l application linéaire associée de L (R n,r n ), calculer A p pour.... p Z.

2 [] Exercice 5 Soient A, deux matrices semblables (i.e. il existe P inversible telle que = P AP). Montrer que si l une est inversible, l autre aussi ; que si l une est idempotente, l autre aussi ; que si l une est nilpotente, l autre aussi ; que si A = λi, alors A =. Indication [444] Exercice 6 Soit f l endomorphisme de R de matrice A = ( ) e =. 5 ( ) 5 dans la base canonique. Soient e =. Montrer que = (e,e ) est une base de R et déterminer Mat ( f ).. Calculer A n pour n N. x n+ = x n +. Déterminer l ensemble des suites réelles qui vérifient n N y n y n+ = 5 x n y n. ( ) et [4] Exercice 7 Soit a et b deux réels et A la matrice A = a b Montrer que rg(a). Pour quelles valeurs de a et b a-t-on rg(a) =? [774] Exercice 8 7 Soient A = 4 5 6, = 4 4. Calculer rg(a) et rg(). Déterminer une base du noyau 7 8 et une base de l image pour chacune des applications linéaires associées f A et f. [99] Exercice 9 Soit E un espace vectoriel et f une application linéaire de E dans lui-même telle que f = f.. Montrer que E = Ker f Im f.. Supposons que E soit de dimension finie n. Posons r = dimim f. Montrer qu il existe une base = (e,...,e n ) de E telle que : f (e i ) = e i si i r et f (e i ) = si i > r. Déterminer la matrice de f dans cette base. [9] Exercice Trouver toutes les matrices de M (R) qui vérifient. M = ;. M = M ;

3 . M = I. Indication [475] Exercice Soit f l application de R n [X] dans R[X] définie en posant pour tout P(X) R n [X] : f (P(X)) = P(X + ) + P(X ) P(X).. Montrer que f est linéaire et que son image est incluse dans R n [X].. Dans le cas où n =, donner la matrice de f dans la base,x,x,x. Déterminer ensuite, pour une valeur de n quelconque, la matrice de f dans la base,x,...,x n.. Déterminer le noyau et l image de f. Calculer leur dimension respective. 4. Soit Q un élément de l image de f. Montrer qu il existe un unique P R n [X] tel que : f (P) = Q et P() = P () =. [94] Exercice Pour toute matrice carrée A de dimension n, on appelle trace de A, et l on note tra, la somme des éléments diagonaux de A : tra = n a i,i i=. Montrer que si A, sont deux matrices carrées d ordre n, alors tr(a) = tr(a).. Montrer que si f est un endomorphisme d un espace vectoriel E de dimension n, M sa matrice par rapport à une base e, M sa matrice par rapport à une base e, alors trm = trm. On note tr f la valeur commune de ces quantités.. Montrer que si g est un autre endomorphisme de E, tr( f g g f ) =. [44] Retrouver cette fiche et d autres exercices de maths sur exo7.emath.fr

4 Indication pour l exercice ( ) x f est l application qui à associe y ( ) x y. Indication pour l exercice 5 A est idempotente s il existe un n tel que A n = I (la matrice identité). A est nilpotente s il existe un n tel que A n = () (la matrice nulle). Indication pour l exercice Il faut trouver les propriétés de l application linéaire f associée à chacune de ces matrices. Les résultats s expriment en explicitant une (ou plusieurs) matrice M qui est la matrice de f dans une base bien choisie et ensuite en montrant que toutes les autres matrices sont de la forme M = P M P. Plus en détails pour chacun des cas :. Im f Ker f et discuter suivant la dimension du noyau.. Utiliser l exercice 9 : Ker f Im f et il existe une base telle que f (e i ) = ou f (e i ) = e i.. Poser N = I+M (et donc M = ) chercher à quelle condition M = I. 4

5 Correction de l exercice ( ) x L expression de f dans la base est la suivante f (x,y) = (x y,). Autrement dit à un vecteur on associe y ( ) x y le vecteur. On note que f est bien une application linéaire. Cette expression nous permet de calculer les matrices demandées. ( ) ( ) x x Remarque : comme est la base canonique on note pour qui est le vecteur x i + y j. y y. Calcul de Mat( f,,). Comme = ( i, j), la matrice s obtient en calculant f ( i) et f ( j) : ( ) ( ) ( ) ( ) f ( i) = f = = i f ( j) = f = = i donc Mat( f,,) = ( ). On garde la même application linéaire mais la base de départ change (la base d arrivée reste ). Si on note u = i j et v = i + j, on a = ( i j, i + j) = ( u, v). On exprime f ( u) et f ( v) dans la base d arrivée. donc f ( u) = f ( i j) = f ( ) = ( ) Mat( f,,) = f ( v) = f ( i + j) = f ( ) 5 ( ) = ( ) 5. Toujours avec le même f on prend comme base de départ et d arrivée, il s agit donc d exprimer f ( u) et f ( v) dans la base = ( u, v). Nous venons de calculer que ( ) ( ) ( ) ( ) 5 f ( u) = f ( i j) = f = = i f ( v) = f ( i + j) = f = = 5 i Mais il nous faut obtenir une expression en fonction de la base. Remarquons que { u = i j v = i + j = { i = u + v j = u + v Donc Donc f ( u) = f ( i j) = i = 6 u + v = Remarque : ( ) 6 f ( v) = f ( i + j) = 5 i = 5 u 5 v = Mat( f,, ) = ( ) x désigne le vecteur x u + y v. y ( ) ( ) 5 5 Correction de l exercice x. On note la base = (e,e,e ) et X = y = xe +ye +ze. La matrice A = Mat ( f ) est composée z des vecteurs colonnes φ(e i ), on sait φ(e ) = e = φ(e ) = e + e + e = φ(e ) = e = 5

6 donc A = x Le noyau de φ (ou celui de A) est l ensemble de X = y tel que AX =. z x y = AX = y = y = z x + y + z = Donc Kerφ = { x R x R } = Vect = Vect(e e ). Le noyau est donc de dimension. x. On applique le pivot de Gauss comme si c était un système linéaire : e e = f L e e = f L e + e + e = f L e e = f e + e = f f L L e = f + f L +L On en déduit e = f + f + f e = f + f e = f + f. Donc tous les vecteurs de la base = (e,e,e ) s expriment en fonction de ( f, f, f ), ainsi la famille ( f, f, f ) est génératrice. Comme elle a exactement éléments dans l espace vectoriel R de dimension alors = ( f, f, f ) est une base. φ( f ) = φ(e e ) = φ(e ) φ(e ) = e e = φ( f ) = φ(e e ) = φ(e ) φ(e ) = e ( e + e + e ) = e e = f φ( f ) = φ( e + e + e ) = φ(e ) + φ(e ) + φ(e ) = e + e + e = f Donc, dans la base = ( f, f, f ), nous avons φ( f ) = = φ( f ) = f = φ( f ) = f = Donc la matrice de φ dans la base est = φ est la projection sur Vect( f, f ) parallèlement à Vect( f ) (autrement dit c est la projection sur le plan d équation (x = ), parallèlement à l axe des x, ceci dans la base ). 6

7 4. P est la matrice de passage de vers. En effet la matrice de passage contient -en colonnes- les coordonnées des vecteurs de la nouvelle base exprimés dans l ancienne base. Si un vecteur a pour coordonnées X dans la base et X dans la base alors PX = X (attention à l ordre). Et si A est la matrice de φ dans la base et est la matrice de φ dans la base alors = P AP (Une matrice de passage entre deux bases est inversible.) Ici on calcule l inverse de P : P = donc = P AP = On retrouve donc bien les mêmes résultats que précédemment. Correction de l exercice Notons l ancienne base = (e,e,e ) et ce qui sera la nouvelle base = (e,e,e ). Soit P la matrice de passage qui contient -en colonnes- les coordonnées des vecteurs de la nouvelle base exprimés dans l ancienne base P = 4 On vérifie que P est inversible (on va même calculer son inverse) donc est bien une base. De plus 6 5 P = 4 et on calcule = P AP = est la matrice de f dans la base. Correction de l exercice 4 Nous associons à la matrice A son application linéaire naturelle f. Si = (e,e,...,e n ) est la base canonique de R n alors f (e ) est donné par le premier vecteur colonne, f (e ) par le deuxième, etc. Donc ici.. f (e ) = = e n, f (e ) = = e n,... et en général f (e i ) = e n+ i Calculons ce que vaut la composition f f. Comme une application linéaire est déterminée par les images des éléments d une base alors on calcule f f (e i ), i =,...,n en appliquant deux fois la formule précédente : f f (e i ) = f ( f (e i ) ) = f (e n+ i ) = e n+ (n+ i) = e i Comme f f laisse invariant tous les vecteurs de la base alors f f (x) = x pour tout x R n. Donc f f = id. On en déduit f = f et que la composition itérée vérifie f p = id si p est pair et f p = f si p est impair. Conclusion : A p = I si p est pair et A p = A si p est impair. Correction de l exercice 5 Soit A, tel que = P AP. 7

8 . Supposons A inversible, alors il existe A tel que A A = I et A A = I. Notons alors = P A P. On a = ( P AP ) ( P A P ) = P A ( PP ) A P = P AA P = P IP = I De même = I. Donc est inversible d inverse.. Supposons que A n = I. Alors Donc est idempotente. n = ( P AP ) n ( = P AP )( P AP ) (P AP ) = P A(PP )A(PP ) AP = P A n P = P IP = I. Si A n = () alors le même calcul qu au-dessus conduit à n = (). 4. Si A = λi alors = P (λi)p = λi P P = λi (car la matrice λi commute avec toutes les matrices). Correction de l exercice 6. Notons P la matrice de passage de la base canonique = ( (,),(,) ) vers (ce qui va être) la base = (e,e ). C est la matrice composée des vecteurs colonnes e et e : ( ) P = 5 detp = 4 donc P est inversible et ainsi est bien une base. Alors la matrice de f dans la base est : = P AP = ( )( Il est très facile de calculer la puissance d une matrice diagonale : ( ) n = ( ) n Comme A = PP on va en déduire A n :. Si l on note X n = ( xn y n Si l on note les conditions initiales X = )( ) = 5 ( ) A n = ( PP ) n = P n P = ( ) n n n n ) alors les équations que vérifient les suites s écrivent en terme matriciel : x n = 4 y n = 4 ( x y X n+ = AX n. ) R alors X n = A n X. On en déduit (( 6 n )x + (4 4 n )y ) ( ( n )x + ( 6 + n )y ) Correction de l exercice 7 Avant toute, un coup d œil sur la matrice nous informe de deux choses : (a) A n est pas la matrice nulle donc rg(a) ; (b) il y a lignes donc rg(a) (le rang est plus petit que le nombre de colonnes et que le nombre de lignes). 8

9 . Montrons de différentes façons que rg(a). Première méthode : sous-déterminant non nul. On trouve une sous-matrice dont le déterminant est non nul. Par exemple la sous-matrice extraite du coin en bas à gauche vérifie 5 4 = donc rg(a). Deuxième méthode : espace vectoriel engendré par les colonnes. On sait que l image de l application linéaire associée à la matrice A est engendrée par les vecteurs colonnes. Et le rang est la dimension de cette image. On trouve facilement deux colonnes linéairement indépendantes : la deuxième 4 et la troisième colonne. Donc rg(a). Troisième méthode : espaces vectoriel engendré par les lignes. Il se trouve que la dimension de l espace vectoriel engendré par les lignes égal la dimension de l espace vectoriel engendré par les colonnes (car rg(a) = rg( t A)). Comme les deuxième et troisième lignes sont linéairement indépendantes alors rg(a). Attention : les dimensions des espaces vectoriels engendrés sont égales mais les espaces sont différents!. En utilisant la dernière méthode : le rang est exactement si la première ligne est dans le sous-espace engendré par les deux autres. Donc rg(a) = (a,,,b) Vect { (,,, 4),(5,4,,) } λ,µ R λ,µ R (a,,,b) = λ(,,, 4) + µ(5,4,,) λ + 5µ = a 4µ = λ µ = 4λ + µ = b λ = µ = a = b = Conclusion la rang de A est si (a,b) = (,). Sinon le rang de A est. Correction de l exercice 8. (a) Commençons par des remarques élémentaires : la matrice est non nulle donc rg(a) et comme il y a p = 4 lignes et n = colonnes alors rg(a) min(n, p) =. (b) Ensuite on va montrer rg(a) en effet le sous-déterminant (extrait du coin en haut à gauche) : 4 = est non nul. (c) Montrons que rg(a) =. Avec les déterminants il faudrait vérifier que pour toutes les sous-matrices les déterminants sont nuls. Pour éviter de nombreux calculs on remarque ici que les colonnes sont liées par la relation v = v + v. Donc rg(a) =. (d) L application linéaire associée à la matrice A est l application f A : R R 4. Et le théorème du rang dimker f A + dimim f A = dimr donne ici dimker f A = rg(a) =. Mais la relation v = v +v donne immédiatement un élément du noyau : en écrivant v v +v = alors A = Donc Ker f A. Et comme le noyau est de dimension alors Ker f A = Vect 9

10 (e) Pour un base de l image, qui est de dimension, il suffit par exemple de prendre les deux premiers vecteurs colonnes de la matrice A (ils sont clairement non colinéaires) : Im f A = Vect{v,v } = Vect 5, 7. On fait le même travail avec et f. (a) Matrice non nulle avec 4 lignes et 4 colonnes donc rg() 4. (b) Comme le sous-déterminant (du coin supérieur gauche) 4 = est non nul alors rg(). (c) Et pareil avec le sous-déterminant : 4 = qui est non nul donc rg(). (d) Maintenant on calcule le déterminant de la matrice et on trouve det =, donc rg() < 4. Conclusion rg() =. Par le théorème du rang alors dimker f =. (e) Cela signifie que les colonnes (et aussi les lignes) sont liées, comme il n est pas clair de trouver la relation à la main on résout le système X = pour trouver cette relation ; autrement dit : 7 x x + y z + 7t = 4 4 y z = 4x + y z + t = ou encore y + z 4t = t x + y z + t = Après résolution de ce système on trouve que les solutions s écrivent (x, y, z, t) = ( λ, λ, λ, λ). Et ainsi Ker f = Vect Et pour une base de l image il suffit, par exemple, de prendre les premiers vecteurs colonnes v,v,v de la matrice, car ils sont linéairement indépendants : Im f = Vect{v,v,v } = Vect 4,, Correction de l exercice 9. Nous devons montrer Ker f Im f = {} et Ker f + Im f = E. (a) Si x Ker f Im f alors d une part f (x) = et d autre part il existe x E tel que x = f (x ). Donc = f (x) = f ( f (x ) ) = f (x ) = x donc x = (on a utilisé f f = f ). Donc Ker f Im f = {}. (b) Pour x E on le réécrit x = x f (x) + f (x). Alors x f (x) Ker f (car f ( x f (x) ) = f (x) f f (x) = ) et f (x) Im f. Donc x Ker f + Im f. Donc Ker f + Im f = E. (c) Conclusion : E = Ker f Im f.

11 . Notons r le rang de f : r = dimim f. Soit {e,...,e r } une base de Im f et soit {e r+,...,e n } une base de Ker f. Comme E = Ker f Im f alors (e,...,e n ) est une base de E. Pour i > r alors e i Ker f donc f (e i ) =. Comme f f = f alors pour n importe quel x Im f on a f (x) = x : en effet comme x Im f, il existe x E tel que x = f (x ) ainsi f (x) = f ( f (x ) ) = f (x ) = x. En particulier si i r alors f (e i ) = e i.. La matrice de f dans la base (e,...,e n ) est donc : ( I ) () () () où I désigne la matrice identité de taille r r et les () désignent des matrices nulles. Correction de l exercice. Soit M une matrice telle que M = et soit f l application linéaire associée à M. Comme M = alors f f =. Cela entraîne Im f Ker f. Discutons suivant la dimension du noyau : (a) Si dimker f = alors f = donc M = (la matrice nulle). (b) Si dimker f = alors prenons une base de R formée de deux vecteurs du noyau et d un troisième a vecteur. Dans cette base la matrice de f est M = b mais comme f f = alors M = ; c un petit calcul implique c =. Donc M et M sont les matrices de la même application linéaire f mais exprimées dans des bases différentes, donc M et M sont semblables. (c) Si dimker f = alors comme Im f Ker f on a dimim f mais alors cela contredit le théorème du rang : dimker f + dimim f = dimr. Ce cas n est pas possible. (d) Conclusion : M est une matrice qui vérifie M = si et seulement si il existe une matrice inversible P et des réels a,b tels que a M = P b P. On va s aider de l exercice 9. Si M = M et f est l application linéaire associée alors f f = f. On a vu dans l exercice 9 qu alors Ker f Im f et que l on peut choisir une base (e,e,e ) telle que f (e i ) = e i puis f (e i ) =. Suivant la dimension du noyau cela donne que la matrice M de f dans cette base est A = A = A = A =. Maintenant M est semblable à l une de ces matrices : il existe P inversible telle que M = P M P où M est l une des quatre matrices A i ci-dessus. Géométriquement notre application est une projection (projection sur une droite pour la seconde matrice et sur un plan pour la troisième).. Posons N = I+M et donc M = N I. Alors M = I (N I) = I 4N 4N I = I N = N. Donc par la deuxième question N est semblable à l une des matrice A i : N = P A i P. Donc M = P A i P I = P (A i I)P. Ainsi M est semblable à l une des matrices A i I suivantes :. Ce sont des matrices de symétrie (par rapport à l origine pour la première matrice, par rapport à une droite pour la seconde matrice et par rapport à un plan pour la troisième).

12 L idée de poser N = I+M est la suivante : si M = I alors géométriquement l application linéaire s associée à M est une symétrie, alors que si N = N alors l application linéaire p associée est une projection. Et projection et symétrie sont liées par p(x) = x+s(x) (faites un dessin!) c est-à-dire p = id+s ou encore N = I+M. Correction de l exercice. Il est facile de voir que f (λp+ µq) = λ f (P)+ µ f (Q) donc f est linéaire, de plus, P étant un polynôme de degré n alors f (P) aussi.. Pour n = on calcule l image de chacun des éléments de la base : f () = + =, f (X) = (X + ) + (X ) X =, f (X ) = (X + ) + (X ) X =, f (X ) = (X + ) + (X ) X = 6X. Donc la matrice de f dans la base (,X,X,X ) est 6 Pour le cas général on calcule Donc la matrice est f (X p ) = (X + ) p + (X ) p X p p ( ) p = X k p ( ) p + k= k X k ( ) p k X p k= k ( ) p = X k p k pair et k<p k ( ) ( ) p ( ) ( ) p+ ( ) p ( ) p Dans cet exemple de matrice, p est pair. Chaque colonne commence en alternant une valeur nulle/une valeur non-nulle jusqu à l élément diagonal (qui est nul).. Nous savons que f () = et f (X) = donc et X sont dans le noyau Ker f. Il est aussi clair que les colonnes de la matrices f (X ),, f (X n ) sont linéairement indépendantes (car la matrice est échelonnée). Donc Im f = Vect{ f (X ), f (X ),..., f (X n )} et dimim f = n. Par la formule du rang dimker f + dimim f = dimr n [X] donc dimker f =. Comme nous avons déjà deux vecteurs du noyau alors Ker f = Vect{,X}. 4. (a) Soit Q Im f. Il existe donc R R n [X] tel que f (R) = Q. On pose ensuite P(X) = R(X) R() R ()X. On a tout fait pour que P() = et P () =. De plus par la linéarité de f et son noyau alors f (P) = f ( R(X) R() R ()X ) = f ( R(X) ) R() f () R () f (X) = f (R) = Q. Donc notre polynôme P convient.

13 (b) Montrons l unicité. Soient P et P tels que f (P) = f ( P) = Q avec P() = P () = = P() = P (). Alors f (P P) = Q Q = donc P P Ker f = Vect{,X}. Ainsi P P s écrit P P = ax + b. Mais comme (P P)() = alors b =, et comme (P P) () = alors a =. Ce qui prouve P = P. Correction de l exercice. Notons C = A et D = A. Alors par la définition du produit de matrice : Ainsi De même c i j = k n a ik b k j donc c ii = a ik b ki k n tr(a) = trc = c ii = i n tr(a) = trd = i n k n i n k n b ik a ki a ik b ki Si dans cette dernière formule on renomme l indice i en k et l indice k en i (ce sont des variables muettes donc on leur donne le nom qu on veut) alors on obtient : tr(a) = k n i n b ki a ik = i n k n a ik b ki = tr(a). M et M sont semblables donc il existe une matrice de passage P telle que M = P MP donc. La trace a aussi la propriété évidente que trm = tr ( P (MP) ) = tr ( (MP)P ) = tr(mi) = trm tr(a + ) = tra + tr. Fixons une base de E. Notons A la matrice de f dans cette base et la matrice de g dans cette même base. Alors A est la matrice de f g et A est la matrice de g f. Ainsi la matrice de f g g f est A A Donc tr( f g g f ) = tr(a A) = tr(a) tr(a) =.

Exo7. Sujets de l année 2008-2009. 1 Partiel. Enoncés et corrections : Sandra Delaunay. Exercice 1 Soit A une matrice 2 2 à coefficients réels.

Exo7. Sujets de l année 2008-2009. 1 Partiel. Enoncés et corrections : Sandra Delaunay. Exercice 1 Soit A une matrice 2 2 à coefficients réels. Enoncés et corrections : Sandra Delaunay Exo7 Sujets de l année 28-29 1 Partiel Exercice 1 Soit A une matrice 2 2 à coefficients réels. On suppose a + c = b + d = 1 et a b 1. ( ) a b c d 1. Soient (x 1,x

Plus en détail

COR TD 2. Exercice 1. Déterminer si les applications f i suivantes sont linéaires : x + x, y + y )

COR TD 2. Exercice 1. Déterminer si les applications f i suivantes sont linéaires : x + x, y + y ) COR TD 2 Année 21 Exercice 1. Déterminer si les applications f i suivantes sont linéaires : f 1 : R 2 R 2 f 1 x, y = 2x + y, x y f 2 : R R f 2 x, y, z = xy, x, y f : R R f x, y, z = 2x + y + z, y z, x

Plus en détail

Fiche Méthode 11 : Noyaux et images.

Fiche Méthode 11 : Noyaux et images. Fiche Méthode 11 : Noyaux et images. On se place dans un espace vectoriel E de dimension finie n, muni d une base B = ( e 1,..., e n ). f désignera un endomorphisme de E 1 et A la matrice de f dans la

Plus en détail

Exo7. Applications linéaires. 1 Définition. 2 Image et noyau. Exercice 1 Déterminer si les applications f i suivantes sont linéaires :

Exo7. Applications linéaires. 1 Définition. 2 Image et noyau. Exercice 1 Déterminer si les applications f i suivantes sont linéaires : Exo7 Applications linéaires 1 Définition Exercice 1 Déterminer si les applications f i suivantes sont linéaires : f 1 : R R f 1 x,y = x + y,x y f : R R f x,y,z = xy,x,y f : R R f x,y,z = x + y + z,y z,x

Plus en détail

Applications linéaires

Applications linéaires Bibliothèque d exercices Énoncés L1 Feuille n 18 Applications linéaires 1 Définition Exercice 1 Déterminer si les applications f i suivantes (de E i dans F i ) sont linéaires : f 1 : (x, y) R (x + y, x

Plus en détail

Calcul Matriciel. Chapitre 10. 10.1 Qu est-ce qu une matrice? 10.2 Indexation des coefficients. 10.3 Exemples de matrices carrées.

Calcul Matriciel. Chapitre 10. 10.1 Qu est-ce qu une matrice? 10.2 Indexation des coefficients. 10.3 Exemples de matrices carrées. Chapitre 10 Calcul Matriciel 101 Qu est-ce qu une matrice? Définition : Soit K un ensemble de nombres exemples, K = N, Z, Q, R, C, n, p N On appelle matrice à n lignes et p colonnes la données de np nombres

Plus en détail

Première partie. Préliminaires : noyaux itérés. MPSI B 6 juin 2015

Première partie. Préliminaires : noyaux itérés. MPSI B 6 juin 2015 Énoncé Soit V un espace vectoriel réel. L espace vectoriel des endomorphismes de V est désigné par L(V ). Lorsque f L(V ) et k N, on désigne par f 0 = Id V, f k = f k f la composée de f avec lui même k

Plus en détail

Applications linéaires

Applications linéaires Chapitre IV Applications linéaires Révisions Définition. Soient E, deux espaces vectoriels sur le même corps commutatif est dite linéaire si quels que soient x, y E et λ,. Une application f : E f x y f

Plus en détail

1 Fiche méthodologique Passage d un mode de représentation d un sev à l autre

1 Fiche méthodologique Passage d un mode de représentation d un sev à l autre 1 Fiche méthodologique Passage d un mode de représentation d un sev à l autre BCPST Lycée Hoche $\ CC BY: Pelletier Sylvain Les deux modes de représentation des sous-espaces vectoriels Il existe deux modes

Plus en détail

2. MATRICES ET APPLICATIONS LINÉAIRES

2. MATRICES ET APPLICATIONS LINÉAIRES 2. MATRICES ET APPLICATIONS LINÉAIRES 2.1 Définition Une matrice n m est un tableau rectangulaire de nombres (réels en général) à n lignes et m colonnes ; n et m sont les dimensions de la matrice. Notation.

Plus en détail

Exercices Corrigés Premières notions sur les espaces vectoriels

Exercices Corrigés Premières notions sur les espaces vectoriels Exercices Corrigés Premières notions sur les espaces vectoriels Exercice 1 On considére le sous-espace vectoriel F de R formé des solutions du système suivant : x1 x 2 x 3 + 2x = 0 E 1 x 1 + 2x 2 + x 3

Plus en détail

Exo7. Formes quadratiques. Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france.fr

Exo7. Formes quadratiques. Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france.fr Exo Formes quadratiques Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france.fr * très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

Plus en détail

Espaces vectoriels et applications linéaires

Espaces vectoriels et applications linéaires Espaces vectoriels et applications linéaires Exercice 1 On considère l'ensemble E des matrices carrées d'ordre 3 défini par,,, 1) Montrer que est un sous-espace vectoriel de l'espace vectoriel des matrices

Plus en détail

UNIVERSITÉ DE POITIERS

UNIVERSITÉ DE POITIERS UNIVERSITÉ DE POITIERS Faculté des Sciences Fondamentales et Appliquées Mathématiques PREMIÈRE ANNEE DE LA LICENCE DE SCIENCES ET TECHNOLOGIES UE L «algèbre linéaire» Plan du cours Exercices Enoncés des

Plus en détail

1 Notion d espace vectoriel

1 Notion d espace vectoriel Arnaud de Saint Julien - MPSI Lycée La Merci 2014-2015 1 Résumé de cours sur les espaces vectoriels et les applications linéaires Les vecteurs du plan, les nombres réels, et les polynômes à coefficients

Plus en détail

Le Déterminant. par Alain Prouté Université Denis Diderot Paris 7. 1 Permutations. 1. 2 Application transposée, base duale. 3. 3 Mesures de volume.

Le Déterminant. par Alain Prouté Université Denis Diderot Paris 7. 1 Permutations. 1. 2 Application transposée, base duale. 3. 3 Mesures de volume. Ce cours peut être librement copié et distribué. Il est recommandé d en télécharger la version la plus récente à partir de : http://www.math.jussieu.fr/~alp. Toute remarque, correction ou suggestion doit

Plus en détail

Partie II. Supplémentaires d un sous-espace donné. Partie I. Partie III. Supplémentaire commun. MPSI B 8 octobre 2015

Partie II. Supplémentaires d un sous-espace donné. Partie I. Partie III. Supplémentaire commun. MPSI B 8 octobre 2015 Énoncé Dans tout le problème, K est un sous-corps de C. On utilisera en particulier que K n est pas un ensemble fini. Tous les espaces vectoriels considérés sont des K espaces vectoriels de dimension finie.

Plus en détail

Problèmes de Mathématiques Noyaux et images itérés

Problèmes de Mathématiques Noyaux et images itérés Énoncé Soit E un espace vectoriel sur IK (IK = IR ou lc). Soit f un endomorphisme de E. On pose f 0 = Id E, et pour tout entier k 1, f k = f f k 1. 1. Montrer que (Im f k ) k 0 et (Ker f k ) k 0 forment

Plus en détail

Applications linéaires

Applications linéaires Applications linéaires I) Applications linéaires - Généralités 1.1) Introduction L'idée d'application linéaire est intimement liée à celle d'espace vectoriel. Elle traduit la stabilité par combinaison

Plus en détail

Cours Diagonalisation

Cours Diagonalisation Cours Diagonalisation par Pierre Veuillez 1 Objectif Pour une matrice A donnée, déterminer une matrice D diagonale et une matrice P inversible telle que A = P D P 1. Interprètation : Quelle relation reconnaît-on?

Plus en détail

C) Fiche : Espaces vectoriels.

C) Fiche : Espaces vectoriels. C) Fiche : Espaces vectoriels. 1) Définition d'un espace vectoriel. K= I ou est le corps des scalaires. E est un K-espace I vectoriel si et seulement si : C'est un ensemble non vide muni de deux opérations,

Plus en détail

Indication Prendre une combinaison linéaire nulle et l évaluer par ϕ n 1.

Indication Prendre une combinaison linéaire nulle et l évaluer par ϕ n 1. 1 Définition Exercice 1 Déterminer si les applications f i suivantes (de E i dans F i ) sont linéaires : f 1 : (x, y) R 2 (2x + y, x y) R 2, f 2 : (x, y, z) R 3 (xy, x, y) R 3 f 3 : (x, y, z) R 3 (2x +

Plus en détail

Espaces vectoriels. par Pierre Veuillez

Espaces vectoriels. par Pierre Veuillez Espaces vectoriels par Pierre Veuillez 1 Objectifs : Disposer d un lieu où les opérations + et se comportent bien. Déterminer des bases (utilisation de la dimension) Représenter les vecteurs grace à leurs

Plus en détail

AGRÉGATION INTERNE: RÉDUCTION DES ENDOMORPHISMES

AGRÉGATION INTERNE: RÉDUCTION DES ENDOMORPHISMES AGRÉGATION INTERNE: RÉDUCTION DES ENDOMORPHISMES VINCENT GUEDJ 1. Notions fondamentales 1.1. Noyau, Image. On se donne E un K-espace vectoriel de dimension finie (K = R, C principalement) et f L(E) un

Plus en détail

Espaces vectoriels de dimension finie

Espaces vectoriels de dimension finie Chapitre 14 Espaces vectoriels de dimension finie Dans tout le chapitre K désigne R ou C. 14.1 Espaces vectoriels de dimension finie 14.1.1 Bases et dimension Ò Ø ÓÒ ½ º½ Espace vectoriel de dimension

Plus en détail

Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes.

Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes. 1 Définitions, notations Calcul matriciel Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes. On utilise aussi la notation m n pour le

Plus en détail

Groupe symétrique. Chapitre II. 1 Définitions et généralités

Groupe symétrique. Chapitre II. 1 Définitions et généralités Chapitre II Groupe symétrique 1 Définitions et généralités Définition. Soient n et X l ensemble 1,..., n. On appelle permutation de X toute application bijective f : X X. On note S n l ensemble des permutations

Plus en détail

Espaces vectoriels 2006-2007. Agrégation interne de Mathématiques Département de Mathématiques Université de La Rochelle F.

Espaces vectoriels 2006-2007. Agrégation interne de Mathématiques Département de Mathématiques Université de La Rochelle F. Agrégation interne de Mathématiques Département de Mathématiques Université de La Rochelle 2006-2007 Espaces vectoriels Convention 1. Dans toute la suite, k désignera un corps quelconque. Définition 2.

Plus en détail

L2 MIEE 2012-2013 VAR Université de Rennes 1

L2 MIEE 2012-2013 VAR Université de Rennes 1 . Sous-ensembles de R n et fonctions (suite) 1 Nappes paramétrées Si f une fonction de deux variables, son graphe est une surface incluse dans R 3 : {(x, y, f(x, y)) / (x, y) R 2 }. Une telle surface s

Plus en détail

PAD - Notes de cours. S. Rigal, D. Ruiz, et J. C. Satgé

PAD - Notes de cours. S. Rigal, D. Ruiz, et J. C. Satgé ALGÈBRE PAD - Notes de cours S. Rigal, D. Ruiz, et J. C. Satgé November 23, 2006 Table des Matières Espaces vectoriels Applications linéaires - Espaces vectoriels............................... 3 -. Approche

Plus en détail

Examen de l UE LM125 Janvier 2007 Corrigé

Examen de l UE LM125 Janvier 2007 Corrigé Université Pierre et Marie Curie Licence Sciences et Technologies MIME L énoncé est repris sur fond mauve. En prune : des commentaires. Examen de l UE LM15 Janvier 007 Corrigé Commentaires généraux barème

Plus en détail

Réduction des endomorphismes et des matrices carrées

Réduction des endomorphismes et des matrices carrées 48 Chapitre 4 Réduction des endomorphismes et des matrices carrées La motivation de ce chapitre est la suivante. Étant donné un endomorphisme f d un espace E de dimension finie, déterminé par sa matrice

Plus en détail

NOTATIONS PRÉLIMINAIRES

NOTATIONS PRÉLIMINAIRES Pour le Jeudi 14 Octobre 2010 NOTATIONS Soit V un espace vectoriel réel ; l'espace vectoriel des endomorphismes de l'espace vectoriel V est désigné par L(V ). Soit f un endomorphisme de l'espace vectoriel

Plus en détail

Cours de mathématiques - Alternance Gea

Cours de mathématiques - Alternance Gea Cours de mathématiques - Alternance Gea Anne Fredet 11 décembre 005 1 Calcul matriciel Une matrice n m est un tableau de nombres à n lignes( et m colonnes. 1 0 Par exemple, avec n = et m =, on peut considérer

Plus en détail

Espaces vectoriels et applications

Espaces vectoriels et applications Espaces vectoriels et applications linéaires 1 Définitions On parle d espaces vectoriels sur le corps R ou sur le corps C. Les définitions sont les mêmes en substituant R à C ou vice versa. Définition

Plus en détail

1. Montrer que B est une base de. 2. Donner la dimension de f ( 3 ), puis la dimension de Ker f, qu en conclure?

1. Montrer que B est une base de. 2. Donner la dimension de f ( 3 ), puis la dimension de Ker f, qu en conclure? Chapitre Applications linéaires Testez vos connaissances Pourquoi s intéresse-t-on au applications linéaires en économie? Qu est-ce qu un noyau, un rang et une image d une application linéaire? Donner

Plus en détail

Partie I - Valeurs propres de AB et BA

Partie I - Valeurs propres de AB et BA SESSION 9 Concours commun Centrale MATHÉMATIQUES. FILIERE PSI Partie I - Valeurs propres de AB et BA I.A - Cas de la valeur propre. I.A.) Sp(AB) Ker(AB) {} AB / G L n (R) det(ab) =. I.A.) Sp(AB) det(ab)

Plus en détail

Rappels sur les applications linéaires

Rappels sur les applications linéaires Rappels sur les applications linéaires 1 Définition d une application linéaire Définition 1 Soient E et F deux espaces vectoriels sur un même corps K et f une application de E dans F Dire que f est linéaire

Plus en détail

Cours 3: Inversion des matrices dans la pratique...

Cours 3: Inversion des matrices dans la pratique... Cours 3: Inversion des matrices dans la pratique... Laboratoire de Mathématiques de Toulouse Université Paul Sabatier-IUT GEA Ponsan Module complémentaire de maths, année 2012 1 Rappel de l épisode précédent

Plus en détail

E3A PC 2009 Math A. questions de cours. t C). On véri e que

E3A PC 2009 Math A. questions de cours. t C). On véri e que E3A PC 29 Math A questions de cours. Soit C 2 M 3 (R) Analyse : Si C = S + A, S 2 S 3 (R) et A 2 A 3 (R) alors t C = t S + t A = S A d où S = 2 (C +t C) et A = 2 (C t C). L analyse assure l unicité (sous

Plus en détail

À propos des matrices échelonnées

À propos des matrices échelonnées À propos des matrices échelonnées Antoine Ducros appendice au cours de Géométrie affine et euclidienne dispensé à l Université Paris 6 Année universitaire 2011-2012 Introduction Soit k un corps, soit E

Plus en détail

BJ - RELATIONS BINAIRES

BJ - RELATIONS BINAIRES BJ - RELATIONS BINAIRES Définitions Soit A et B deux ensembles non vides, et G une partie de A B. On dit qu un élément x de A est relié à un élément y de B par une relation binaire de graphe G, si le couple

Plus en détail

Chapitre 5: Opérateurs dans les espaces de Hilbert. Notions d opérateur adjoint

Chapitre 5: Opérateurs dans les espaces de Hilbert. Notions d opérateur adjoint Chapitre 5: Opérateurs dans les espaces de Hilbert. Notions d opérateur adjoint 18 mars 2008 1 Généralités sur les opérateurs 1.1 Définitions Soient H et H deux espaces de Hilbert sur C. Définition 1.1

Plus en détail

Fonctions homographiques

Fonctions homographiques Fonctions homographiques On donne ci-dessous deux définitions des fonctions homographiques, et on montre que ces deux définitions sont équivalentes. On décrit la courbe représentative d une fonction homographique.

Plus en détail

Exo7. Calculs de déterminants. Fiche corrigée par Arnaud Bodin. Exercice 1 Calculer les déterminants des matrices suivantes : Exercice 2.

Exo7. Calculs de déterminants. Fiche corrigée par Arnaud Bodin. Exercice 1 Calculer les déterminants des matrices suivantes : Exercice 2. Eo7 Calculs de déterminants Fiche corrigée par Arnaud Bodin Eercice Calculer les déterminants des matrices suivantes : Correction Vidéo ( ) 0 6 7 3 4 5 8 4 5 6 0 3 4 5 5 6 7 0 3 5 4 3 0 3 0 0 3 0 0 0 3

Plus en détail

Document créé le 27 novembre 2013 Lien vers la dernière mise à jour de ce document Lien vers les exercices de ce chapitre

Document créé le 27 novembre 2013 Lien vers la dernière mise à jour de ce document Lien vers les exercices de ce chapitre Document créé le 27 novembre 2013 Lien vers la dernière mise à jour de ce document Lien vers les exercices de ce chapitre Chapitre 17 Matrices et applications linéaires Sommaire 171 Matrices et applications

Plus en détail

UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire 2013 2014 MATHS/STATS. Solution des exercices d algèbre linéaire

UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire 2013 2014 MATHS/STATS. Solution des exercices d algèbre linéaire UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire 3 4 Master d économie Cours de M. Desgraupes MATHS/STATS Document : Solution des exercices d algèbre linéaire Table des matières

Plus en détail

Exercices - Réduction des endomorphismes : énoncé. Réduction pratique de matrices

Exercices - Réduction des endomorphismes : énoncé. Réduction pratique de matrices Réduction pratique de matrices Exercice 1 - Diagonalisation - 1 - L1/L2/Math Spé - Diagonaliser les matrices suivantes : 0 2 1 A = 3 2 0 B = 2 2 1 0 3 2 2 5 2 2 3 0 On donnera aussi la matrice de passage

Plus en détail

Analyse des données et algèbre linéaire

Analyse des données et algèbre linéaire Analyse des données et algèbre linéaire Fondamentaux pour le Big Data c Télécom ParisTech 1/15 Machine-Learning : Une donnée x i = un ensemble de features (caractères) d un individu i x i = (x i,1,...,

Plus en détail

Fonction polynôme du second degré : Forme canonique

Fonction polynôme du second degré : Forme canonique Fonction polynôme du second degré : Forme canonique I) Introduction. Soit g(x) = a(x - s)²+h. Toute fonction polynôme du second degré peut s écrire sous cette forme. Le passage de la forme développée à

Plus en détail

1.1 Définitions... 2 1.2 Opérations élémentaires... 2 1.3 Systèmes échelonnés et triangulaires... 3

1.1 Définitions... 2 1.2 Opérations élémentaires... 2 1.3 Systèmes échelonnés et triangulaires... 3 Chapitre 5 Systèmes linéaires 1 Généralités sur les systèmes linéaires 2 11 Définitions 2 12 Opérations élémentaires 2 13 Systèmes échelonnés et triangulaires 3 2 Résolution des systèmes linéaires 3 21

Plus en détail

Formulaire de maths Algèbre linéaire et multilinéaire

Formulaire de maths Algèbre linéaire et multilinéaire Formulaire de maths Algèbre linéaire et multilinéaire Nom Formule Espaces vectoriels Famille libre On dit que la famille est libre si Famille liée On dit que la famille est liée si Théorème de la base

Plus en détail

Rappels d Algèbre Linéaire de P.C.S.I

Rappels d Algèbre Linéaire de P.C.S.I Rappels d Algèbre Linéaire de PCSI Table des matières 1 Structure d espace vectoriel sur IK 3 11 Définition et règles de calcul 3 12 Exemples de référence 3 13 Espace vectoriel produit 4 14 Sous-espaces

Plus en détail

Autour du cardinal d un ensemble de matrices binaires

Autour du cardinal d un ensemble de matrices binaires Autour du cardinal d un ensemble de matrices binaires Adrien REISNER 1 Abstract. We here study a couple of algebraic and analytic properties of certain binary matrices in the spaces M n(r). In particular,

Plus en détail

UNIVERSITÉ DE CERGY Année 2012-2013 U.F.R. Économie & Gestion Licence d Économie et Mathématiques MATH104 : Mathématiques

UNIVERSITÉ DE CERGY Année 2012-2013 U.F.R. Économie & Gestion Licence d Économie et Mathématiques MATH104 : Mathématiques 1 UNIVERSITÉ DE CERGY Année 2012-201 U.F.R. Économie & Gestion Licence d Économie et Mathématiques MATH104 : Mathématiques Chapitre III : Polynômes 1 Fonctions polynômes & polynômes Définition 1. Soit

Plus en détail

Chapitre IV Bases et dimension d un espace vectoriel

Chapitre IV Bases et dimension d un espace vectoriel Chapitre IV Bases et dimension d un espace vectoriel Objectif : Nous allons voir comment fabriquer des systèmes de coordonnées pour les vecteurs d un espace vectoriel général. Dans ce chapitre désigne

Plus en détail

Programmation Linéaire - Cours 2

Programmation Linéaire - Cours 2 Programmation Linéaire - Cours 2 P. Pesneau pierre.pesneau@math.u-bordeaux1.fr Université Bordeaux 1 Bât A33 - Bur 265 Sommaire 1 2 3 Retournons dans le yaourt! Reprenons l exemple du 1er cours Forme normale

Plus en détail

UNIVERSITE D ORLEANS SL01MA11, Groupes 1 et 5 Département de Mathématiques 2009-2010. N. El Hage Hassan S EXPRIMER EN MATHÉMATIQUES

UNIVERSITE D ORLEANS SL01MA11, Groupes 1 et 5 Département de Mathématiques 2009-2010. N. El Hage Hassan S EXPRIMER EN MATHÉMATIQUES UNIVERSITE D ORLEANS SL01MA11, Groupes 1 et 5 Département de Mathématiques 2009-2010 N. El Hage Hassan S EXPRIMER EN MATHÉMATIQUES 1 Les énoncés La plupart des phrases que l on rencontre dans un livre

Plus en détail

Coloriages et invariants

Coloriages et invariants DOMAINE : Combinatoire AUTEUR : Razvan BARBULESCU NIVEAU : Débutants STAGE : Montpellier 013 CONTENU : Exercices Coloriages et invariants - Coloriages - Exercice 1 Le plancher est pavé avec des dalles

Plus en détail

Intégration de polynômes Points de Gauss

Intégration de polynômes Points de Gauss Intégration de polynômes Points de Gauss Commençons par un exercice classique de premier cycle. Problème 1 Trouver trois réels α, β et γ tels que, pour tout polynôme P de degré au plus 2, on ait : ( )

Plus en détail

Examen - septembre 2012. Question de cours Enoncer et démontrer l inégalité de Cauchy-Schwarz dans un espace euclidien. Quel est le cas d égalité?

Examen - septembre 2012. Question de cours Enoncer et démontrer l inégalité de Cauchy-Schwarz dans un espace euclidien. Quel est le cas d égalité? Université Paris Dauphine DEMIE e année Algèbre linéaire 3 Examen - septembre 01 Le sujet comporte pages. L épreuve dure heures. Les documents, calculatrices et téléphones portables sont interdits. Question

Plus en détail

1.3 Produit matriciel

1.3 Produit matriciel MATRICES Dans tout ce chapitre, K désigne les corps R ou C, p et n des entiers naturels non nuls 1 Matrices à coefficients dans K 11 Définition Définition 11 Matrice On appelle matrice à coefficients dans

Plus en détail

Problèmes de Mathématiques Filtres et ultrafiltres

Problèmes de Mathématiques Filtres et ultrafiltres Énoncé Soit E un ensemble non vide. On dit qu un sous-ensemble F de P(E) est un filtre sur E si (P 0 ) F. (P 1 ) (X, Y ) F 2, X Y F. (P 2 ) X F, Y P(E) : X Y Y F. (P 3 ) / F. Première Partie 1. Que dire

Plus en détail

SOMMES ET PRODUITS. 1 Techniques de calcul. 1.1 Le symbole. 1.2 Règles de calcul. Laurent Garcin MPSI Lycée Jean-Baptiste Corot

SOMMES ET PRODUITS. 1 Techniques de calcul. 1.1 Le symbole. 1.2 Règles de calcul. Laurent Garcin MPSI Lycée Jean-Baptiste Corot SOMMES ET PRODUITS 1 Techniques de calcul 1.1 Le symbole Notation 1.1 Soient m et n deux entiers naturels. Alors { a m + a m+1 + + a + a n si m n, a = 0 sinon. On peut aussi noter m n =m a ou encore m,n

Plus en détail

IV.1 Dual d un espace vectoriel... 77

IV.1 Dual d un espace vectoriel... 77 76 IV FORMES LINÉAIRES, DUALITÉ IV Formes linéaires, dualité Sommaire IV.1 Dual d un espace vectoriel.......... 77 IV.1.a Rappels sur les e.v................... 77 IV.1.b Rappels sur les applications linéaires........

Plus en détail

1 Programme de Colles : Espaces vectoriels.

1 Programme de Colles : Espaces vectoriels. Lycée Louis le grand Année scolaire 2007/2008 Mathématiques Supérieure MPSI Semaine 12 11 mai 2009 1 Programme de Colles : Espaces vectoriels. On note K le corps R ou C. 1.1 Axiomes d espace vectoriel.

Plus en détail

ÉCOLE NATIONALE DE L AVIATION CIVILE Session 2007

ÉCOLE NATIONALE DE L AVIATION CIVILE Session 2007 ÉCOLE NATIONALE DE L AVIATION CIVILE Session 27 CONCOURS DE RECRUTEMENT D ÉLÈVES INGÉNIEURS DU CONTRÔLE DE LA NAVIGATION AÉRIENNE Épreuve commune obligatoire de MATHÉMATIQUES Durée : 4 Heures Coefficient

Plus en détail

Université Paris-Dauphine DUMI2E 1ère année, 2009-2010. Applications

Université Paris-Dauphine DUMI2E 1ère année, 2009-2010. Applications Université Paris-Dauphine DUMI2E 1ère année, 2009-2010 Applications 1 Introduction Une fonction f (plus précisément, une fonction réelle d une variable réelle) est une règle qui associe à tout réel x au

Plus en détail

Factorisation Factoriser en utilisant un facteur commun Fiche méthode

Factorisation Factoriser en utilisant un facteur commun Fiche méthode Factorisation Factoriser en utilisant un facteur commun Fiche méthode Rappel : Distributivité simple Soient les nombres, et. On a : Factoriser, c est transformer une somme ou une différence de termes en

Plus en détail

Notes de cours L1 MATH120. Hervé Le Dret

Notes de cours L1 MATH120. Hervé Le Dret Notes de cours L1 MATH120 Hervé Le Dret 18 octobre 2004 40 Chapitre 3 Vecteurs dans R m Dans ce chapitre, nous allons nous familiariser avec la notion de vecteur du point de vue algébrique. Nous reviendrons

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours Exo7 Continuité (étude globale). Diverses fonctions Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france.fr * très facile ** facile *** difficulté moyenne **** difficile *****

Plus en détail

Vecteurs Géométrie dans le plan Exercices corrigés

Vecteurs Géométrie dans le plan Exercices corrigés Vecteurs Géométrie dans le plan Exercices corrigés Sont abordés dans cette fiche : Exercice 1 : notion de vecteur, transformation de points par translation et vecteurs égaux Exercice 2 : parallélogramme

Plus en détail

TD 5- Applications linéaires

TD 5- Applications linéaires TD 5- Applications linéaires Exercice 1. Soit f l'application dénie sur R 2 par f(x, y) = (2x y, 3x + y). 1. Montrer que f est un endomorphisme de R 2. 2. Montrer que f est injective. 3. Montrer que f

Plus en détail

FICHE MÉTHODE POUR L ALGÈBRE LINÉAIRE EN L1

FICHE MÉTHODE POUR L ALGÈBRE LINÉAIRE EN L1 FICHE MÉTHODE POUR L ALGÈBRE LINÉAIRE EN L TABLE DES MATIÈRES. Déterminer si un ensemble est un sous espace vectoriel sur R ou non.. Une vérification essentielle.2. La stabilité par combinaisons linéaires

Plus en détail

Espaces vectoriels. Université d Orléans Année 2009-2010 Espaces vectoriels et applications linéaires. 2MA01-Licence de Mathématiques

Espaces vectoriels. Université d Orléans Année 2009-2010 Espaces vectoriels et applications linéaires. 2MA01-Licence de Mathématiques Université d Orléans Année 2009-2010 Espaces vectoriels et applications linéaires 2MA01-Licence de Mathématiques Espaces vectoriels Exercice 1 Soit E un espace vectoriel. Pour x, y E et λ, µ K, montrer

Plus en détail

Probabilités Loi exponentielle Exercices corrigés

Probabilités Loi exponentielle Exercices corrigés Probabilités Loi exponentielle Exercices corrigés Sont abordés dans cette fiche : (cliquez sur l exercice pour un accès direct) Exercice 1 : densité de probabilité Exercice 2 : loi exponentielle de paramètre

Plus en détail

Matrices. 1. Définition. Exo7. 1.1. Définition

Matrices. 1. Définition. Exo7. 1.1. Définition Exo7 Matrices Vidéo partie 1 Définition Vidéo partie 2 Multiplication de matrices Vidéo partie 3 Inverse d'une matrice : définition Vidéo partie 4 Inverse d'une matrice : calcul Vidéo partie 5 Inverse

Plus en détail

Espaces euclidiens. 1 Définitions et exemples. 2 Orthogonalité, norme euclidienne 2. 3 Espaces euclidiens, bases orthonormées 2

Espaces euclidiens. 1 Définitions et exemples. 2 Orthogonalité, norme euclidienne 2. 3 Espaces euclidiens, bases orthonormées 2 Espaces euclidiens Table des matières 1 Définitions et exemples 1 Orthogonalité, norme euclidienne 3 Espaces euclidiens, bases orthonormées 4 Orthogonalisation de Schmidt 3 5 Sous-espaces orthogonaux 3

Plus en détail

Fiche n 1: Groupe, sous-groupe, ordre

Fiche n 1: Groupe, sous-groupe, ordre Université Lille 1 Algèbre 2010/11 M51.MIMP Fiche n 1: Groupe, sous-groupe, ordre Exercice 1 On considère sur R la loi de composition définie par x y = x + y xy. Cette loi est-elle associative, commutative?

Plus en détail

Laurent Garcin MPSI Lycée Jean-Baptiste Corot

Laurent Garcin MPSI Lycée Jean-Baptiste Corot ESPACES VECTORIELS 1 Définition et exemples fondamentaux 1.1 Définition Définition 1.1 Espace vectoriel Soient K un corps et E un ensemble muni d une loi interne + et d une loi externe. i.e. d une application

Plus en détail

Résumé de cours: Espaces vectoriels (Généralités) 1 Vocabulaire : 1.3 Régles de calcul : 1.1 Loi de composition interne :

Résumé de cours: Espaces vectoriels (Généralités) 1 Vocabulaire : 1.3 Régles de calcul : 1.1 Loi de composition interne : Résumé de cours : Espaces vectoriels Partie I : Généralités. : Source disponible sur : c Dans tout le chapitre K désigne un sous corps de C, et en général sauf mention du contraire, Q ou R ou bien C et

Plus en détail

UNIVERSITE PAUL SABATIER 2008/2009. Le déterminant d une matrice carrée à deux lignes et colonnes A = définition le nombre réel (ou complexe)

UNIVERSITE PAUL SABATIER 2008/2009. Le déterminant d une matrice carrée à deux lignes et colonnes A = définition le nombre réel (ou complexe) UNIVERSITE PAUL SABATIER 2008/2009 YjY L1 - PCP - DETERMINANTS (COURS-EXERCICES) YjY 1 Déterminant, définition, propriètés Le déterminant d une matrice carrée à deux lignes et colonnes A = définition le

Plus en détail

Cours de mathématiques : Equation du second degré

Cours de mathématiques : Equation du second degré Cours de mathématiques : Equation du second degré I ) Formes de l'équation du second degré. L'équation du deuxiéme degré à une inconnue est celle où l'inconnue est élévé à la puissance de 2, sans y etre

Plus en détail

Anneaux, algèbres. Chapitre 2. 2.1 Structures

Anneaux, algèbres. Chapitre 2. 2.1 Structures Chapitre 2 Anneaux, algèbres 2.1 Structures Un anneau est un ensemble A muni de deux opérations internes + et et d éléments 0 A et 1 A qui vérifient : associativité de l addition : commutativité de l addition

Plus en détail

Corrigé de l examen partiel du 19 novembre 2011

Corrigé de l examen partiel du 19 novembre 2011 Université Paris Diderot Langage Mathématique (LM1) Département Sciences Exactes 2011-2012 Corrigé de l examen partiel du 19 novembre 2011 Durée : 3 heures Exercice 1 Dans les expressions suivantes, les

Plus en détail

Matrices et déterminants

Matrices et déterminants Matrices et déterminants Matrices Définition.. Une matrice réelle (ou complexe) M = (m i,j ) (m, n) à m lignes et n colonnes est un tableau à m lignes et n colonnes de réels (ou de complexes). Le coefficient

Plus en détail

2.4 Représentation graphique, tableau de Karnaugh

2.4 Représentation graphique, tableau de Karnaugh 2 Fonctions binaires 45 2.4 Représentation graphique, tableau de Karnaugh On peut définir complètement une fonction binaire en dressant son tableau de Karnaugh, table de vérité à 2 n cases pour n variables

Plus en détail

est diagonale si tous ses coefficients en dehors de la diagonale sont nuls.

est diagonale si tous ses coefficients en dehors de la diagonale sont nuls. Diagonalisation des matrices http://www.math-info.univ-paris5.fr/~ycart/mc2/node2.html Sous-sections Matrices diagonales Valeurs propres et vecteurs propres Polynôme caractéristique Exemples Illustration

Plus en détail

APPLICATIONS LINÉAIRES

APPLICATIONS LINÉAIRES 21-10- 2007 J.F.C. A.L. p. 1 APPLICATIONS LINÉAIRES I GÉNÉRALITÉS 1. Définition et vocabulaire 2. Conséquences de la définition 3. Caractérisation II OPÉRATIONS SUR LES APPLICATION LINÉAIRES 1. Somme,

Plus en détail

Résolution de systèmes linéaires : Méthodes directes. Polytech Paris-UPMC. - p. 1/51

Résolution de systèmes linéaires : Méthodes directes. Polytech Paris-UPMC. - p. 1/51 Résolution de systèmes linéaires : Méthodes directes Polytech Paris-UPMC - p. /5 Rappels mathématiques s Propriétés - p. 2/5 Rappels mathématiques Soit à résoudre le système linéaire Ax = b. Rappels mathématiques

Plus en détail

Le problème des multiplications matricielles enchaînées peut être énoncé comme suit : étant

Le problème des multiplications matricielles enchaînées peut être énoncé comme suit : étant Licence informatique - L Année 0/0 Conception d algorithmes et applications (LI) COURS Résumé. Dans cette cinquième séance, nous continuons l exploration des algorithmes de type Programmation Dynamique.

Plus en détail

Applications des nombres complexes à la géométrie

Applications des nombres complexes à la géométrie Chapitre 6 Applications des nombres complexes à la géométrie 6.1 Le plan complexe Le corps C des nombres complexes est un espace vectoriel de dimension 2 sur R. Il est donc muni d une structure naturelle

Plus en détail

Bref, c'est difficile, mais tout le monde doit y arriver.

Bref, c'est difficile, mais tout le monde doit y arriver. Bonjour à tous, les colles de mardi m'ont permis de vérifier que les notions de base du chapitre espaces vectoriels sont loin d'être acquises. Comme je vous le disais, il est essentiel d'apprendre régulièrement

Plus en détail

Cahier de vacances - Préparation à la Première S

Cahier de vacances - Préparation à la Première S Cahier de vacances - Préparation à la Première S Ce cahier est destiné à vous permettre d aborder le plus sereinement possible la classe de Première S. Je vous conseille de le travailler pendant les 0

Plus en détail

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1. b) On suppose rga + rgb n. Montrer qu il existe U, V GL n (K) tels que

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1. b) On suppose rga + rgb n. Montrer qu il existe U, V GL n (K) tels que [http://mp.cpgedupuydelome.fr] édité le 0 juillet 204 Enoncés Rang d une matrice Exercice [ 0070 ] [correction] Soit A M n K une matrice carrée de rang. a Etablir l existence de colonnes X, Y M n, K vérifiant

Plus en détail

17. ISOMÉTRIES LINÉAIRES

17. ISOMÉTRIES LINÉAIRES 17 ISOMÉTRIES LINÉAIRES 171 Isométries linéaires dans un espace vectoriel euclidien Soit E un espace vectoriel euclidien Une application linéaire f dans E est appelée isométrie linéaire ssi, quel que soit

Plus en détail

Outils d analyse fonctionnelle Cours 5 Théorie spectrale

Outils d analyse fonctionnelle Cours 5 Théorie spectrale Outils d analyse fonctionnelle Cours 5 Théorie spectrale 22 septembre 2015 Généralités Dans tout ce qui suit V désigne un espace de Hilbert réel muni d un produit scalaire x, y. Définition Soit A une application

Plus en détail

Équations du troisième degré

Équations du troisième degré par Z, auctore L objet de cet article est d exposer deux méthodes pour trouver des solutions à une équation du troisième degré : la recherche de racines évidentes d une part, et la formule de Cardan d

Plus en détail

Introduction à l étude des Corps Finis

Introduction à l étude des Corps Finis Introduction à l étude des Corps Finis Robert Rolland (Résumé) 1 Introduction La structure de corps fini intervient dans divers domaines des mathématiques, en particulier dans la théorie de Galois sur

Plus en détail

MULTIPLICATION RAPIDE : KARATSUBA ET FFT

MULTIPLICATION RAPIDE : KARATSUBA ET FFT MULTIPLICATION RAPIDE : KARATSUBA ET FFT 1. Introduction La multiplication est une opération élémentaire qu on utilise évidemment très souvent, et la rapidité des nombreux algorithmes qui l utilisent dépend

Plus en détail