Relation d ordre. Manipulation des relations d ordre. Lycée Pierre de Fermat 2012/2013 Feuille d exercices

Dimension: px
Commencer à balayer dès la page:

Download "Relation d ordre. Manipulation des relations d ordre. Lycée Pierre de Fermat 2012/2013 Feuille d exercices"

Transcription

1 Lycée Pierre de Fermat 2012/2013 MPSI 1 Feuille d exercices Manipulation des relations d ordre. Relation d ordre Exercice 1. Soit E un ensemble fixé contenant au moins deux éléments. On considère la relation binaire suivante sur FE,R + ) : [ ] f,g) FE,R + ) FE,R + ), f g x E, fx) gx). 1. Montrer que définit une relation d ordre sur FE,R + ). 2. L ordre ainsi défini est-il total? 3. Montrer que, pour c ordre, FE,R + ) possède un plus pit élément à préciser. Exercice 2. [Ordre lexicographique sur R 2 ] Soit R la relation binaire définie sur R 2 par a,b)ra,b ) [ ] a < a ou a = a b b ). 1. Montrer que R définit une relation d ordre total sur R Ordonner 1,5), 3,6), 1, 2) 4,6). 3. En utilisant l identification canonique de R 2 C, montrer que cte relation d ordre total n est pas compatible avec la structure d anneau de C. Une relation d ordre sur C est compatible avec la structure d anneau si i) z 1,z 2,z) C 3, z 1 z 2 z 1 +z z 2 +z ii) z 1,z 2,z) C 3, 0 C z z 1 z 2 ) zz 1 zz 2 ). 4. Démontrer qu il n existe aucune relation d ordre total sur C compatible avec sa structure d anneau. Pour cela, on supposera qu il en existe une, que l on notera. Si 0 i, on montrera alors que ce qui conduit à une contradiction à préciser. Si i 0, on raisonnera de manière analogue pour aboutir à une contradiction. Attention : la contradiction avec est subtile. En eff, 0 1 donne soit 1 0 or 0 1 donc, par antisymétrie de la relation d ordre, 1 = 0, d où une contradiction. Exercice 3. On rappelle qu une application u : E F entre les ensembles ordonés E, E ) F, F ) est croissante si, x,y) E 2, x E y ux) F uy), décroissante si, x,y) E 2, x E y uy) F ux). Les applications, f : n 2n, g : n 2n+1 sont-ellescroissantesdes ensembles ordonnés, ) dans, ), de, ) dans, ), de, ) dans, )? qu en est-il de leurs restrictions au départ à? Exercice 4. Soit E un ensemble non vide. Soit A PE) fixé quelconque. 1. Les applications PE) PE), P P A PE) PE), P P A sont-elles croissantes de l ensemble ordonné PE), ) dans PE), ). 2. Les applications PE) PE) PE), P,Q) P Q PE) PE) PE), P,Q) P Q sont-elles croissantes de l ensemble ordonné PE) PE), ) dans PE), ) où la relation d ordre sur PE) PE) est définie de manière analogue à l ordre lexicographique. Exercice 5. Soit f une bijection d un ensemble ordonné E, ) sur un ensemble F. 1. Définir une relation binaire sur F qui serait induite par la relation d ordre sur E. 2. Démontrer qu il s agit d une relation d ordre. 3. La fonction f est-elle croissante pour les relations d ordre au départ à l arrivée définies précédemment. 4. L ordre ainsi obtenu sur F est-il total ou partiel? 1

2 5. Si f est seulement injective au lieu d être bijective, peut-on adapter la construction précédente pour obtenir un ordre sur F? quel sera son défaut majeur dû à la perte de la surjectivité? Exercice 6. Soit E, ) un ensemble totalement ordonné. 1. Prouver que, pour tout x,y) E 2, l obj max{x,y}) est bien défini on le notera maxx,y)). { E E E 2. Montrer que l application définit une LCI sur E. x,y) x y := maxx,y) 3. Montrer que cte LCI est associative commutative. 4. Déterminer une CS pour que cte LCI admte un élément neutre l illustrer par des exemples. 5. Si la LCI possède un neutre, quels sont les éléments inversibles? Éléments remarquables des ensembles ordonnés. Exercice 7. Soit E, ) un ensemble ordonné. Soit A une partie non vide de E admtant un plus pit élément un plus grand élément. 1. Montrer que mina maxa. 2. Que dire de A si mina = maxa? Exercice 8. Soit E, ) un ensemble ordonné. Montrer que si A B sont deux parties de E telles que supa), supb) sup{supa), supb)} existent, alors supa B) existe le calculer on pourra essayer sur des exemples pour avoir une idée du résultat à prouver.) Exercice 9. Montrer que dans Q, ), l ensemble {x Q x 2 2} n adm pas de borne supérieure. Exercice 10. Soient A B deux parties non vides bornées d un ensemble totalement ordonné E, )) typiquement, R, )). 1. Montrer que A B implique, sous réserve d existence de supa) supb), supa) supb). Cte inégalité peut-elle être stricte, peut-elle être une égalité? 2. MontrerqueA B implique, sousréserved existencedemax{infa),infb)}infa B), max{infa),infb)} infa B). Cte inégalité peut-elle être stricte, peut-elle être une égalité? 3. Montrer que A B implique, sous réserve d existence de supa B) min{supa),supb)}, supa B) min{supa),supb)}. Cte inégalité peut-elle être stricte, peut-elle être une égalité? Exercice 11. Soient A,B) PR) 2 telles que A, B A B majorées. On pose A+B = {a+b R a A, b B}. 1. Montrer que supa+b) = supa+supb. 2. En remplaçant l hypothèse A B majorées par A B minorées, que devient le résultat de la question précédente? On admtra que toute partie non vide majorée de R adm une borne supérieure. Exercice 12. Considérons le plan euclidien rapporté au repère orthonormé direct canonique O, i, j). Si un point M a pour coordonnées x, y) R 2 si un point M a pour coordonnées x, y ) R 2, on définit la relation binaire R par MRM si x > x ou x = x y y). 1. Montrer que R définit une relation d ordre sur l ensemble des points du plan. C ordre est-il total? 2. Soit ρ 0 le quadrupl de points 0, A, B, C) définis de la manière suivante : O est l origine, A a pour coordonnées 2, 0), B 2, 1) C 0, 1). Soit θ [ π, π]. On désigne par ρ θ le quadrupl déduit de ρ 0 par la rotation centrée en l origine d angle orienté θ. Calculer, s ils existent les max, min, sup inf de ρ 0 puis de ρ θ. 3. Construire, sur un dessin avec des couleurs, les ensembles parcourus par maxρ θ minρ θ lorsque θ varie dans [ π, π]. 4. Une partie non vide majorée a-t-elle toujours, pour l ordre R, une borne supérieure? 5. Question analogue pour une partie non vide minorée sa borne inférieure? 2

3 Corrections. Exo 1. Soit E un ensemble fixé contenant au moins deux éléments. On considère la relation binaire suivante sur FE,R + ) : f,g) FE,R + ) FE,R + ), f g 1. Soit g FE,R + ) fixée quelconque. Soit x E fixé quelconque. Alors fx) fx). par réflexivité de la relation sur R + On en déduit que x E, fx) fx) si bien que f f. Par conséquent, est réflexive. [ ] x E, fx) gx). Soient f,g) FE,R + ) FE,R + ) fixées quelconques telles que f g g f. Soit x E fixé quelconque. Alors f g g f fx) gx) gx) fx) fx) = gx) par antisymétrie de la relation sur R + On en déduit que x E, fx) = gx) si bien que f = g. Par conséquent, est antisymétrique. Soient f,g,h) FE,R + ) 3 fixées quelconques telles que f g g h. Soit x E fixé quelconque. Alors f g g h fx) gx) gx) hx) fx) hx) par transitivité de la relation sur R + On en déduit que x E, fx) hx) si bien que f g. Par conséquent, est transitive. Ainsi définit une relation d ordre sur FE,R + ). 2. FixonsabdeuxélémentsdistinctsdeE considéronslesapplicationsf a E { R + f b 1 si x = b, x 0 si x E \{b},.. E { R + 1 si x = a, x 0 si x E \{a}, Puisque f b a) = 0 < 1 = f a a), nonf a f b ) puisque f a b) = 0 < 1 = f b b), nonf b f a ) si bien que f a f b ne sont pas comparables. L ordre défini sur FE,R + ) par n est pas total. 3. Posons 0 : Alors E R + x 0. 0 FE,R + ), Soit f FE,R + ) fixée quelconque. x E, fx) 0 = 0x) donc 0 f. Ainsi f FE,R + ), 0 f. Ainsi, FE,R + ), ) possède un plus pit élément minfe,r + ) = 0. Exo 3. Exo 6. Soit E, ) un ensemble totalement ordonné. 3

4 1. Pour tout x,y) E 2, {x,y} est une partie finie, non vide de l ensemble E totalement ordonné donc elle adm un ppe un pge. Ainsi, le pge max{x,y}) est bien défini. { E E E 2. Pour montrer que l application définit une LCI sur E, il suffit de x,y) x y := maxx,y) vérifier que, pour tout x,y) E 2, maxx,y) existe est un élément de E, ce qui est vrai d après la question précédente. 3. Montrer que cte LCI est associative commutative. L ensemble étant totalement ordonné, x,y) E 2 étant fixés quelconques, on est nécessairement dans l une des deux situations ci-dessous : donc x y = maxx,y) = maxy,x) = y x. Ainsi, est commutative. maxx, y) maxy, x) x y y y y x x x L ensemble étant totalement ordonné, x,y,z) E 3 étant fixés quelconques, on est nécessairement dans l une des six situations ci-dessous : maxx, maxy, z)) maxmaxx, y), z) x y z z z y x z z z x z y y y z x y y y z y x x x y z x x x donc x y z) = maxx,maxy,z)) = maxmaxx,y),z) = x y) z. Ainsi, est associative. 4. Montrons que la LCI adm un élément neutre E adm un ppe. Supposons que adm un élément neutre noté e. Alors, x E, x e = x donc maxx,e) = e. On en déduit que e me), or e E donc E adm un ppe mine = e. Supposons que E adm un ppe. Alors, x E, maxx,mine) = x donc x mine = x. De plus, la LCI est commutative donc x E, x mine = x = mine x si bien que adm mine comme élément neutre. Ainsi, adm un élément neutre si seulement si E adm un ppe. 5. Supposons que la LCI possède un neutre e, alors E adm un ppe mine = e. Soit x E un élément symétrisable pour. Alors, x x 1 = e maxx,x 1 ) = e donc x e, or e = mine donc e x si bien que x = e par antisymétrie de. Par conséquent, le seul élément suceptible d être symétrisable est le neutre e. Réciproquent, le neutre est symétrisable vrai dans tout ensemble muni d une LCI admtant un neutre) : e e = maxe,e) = e Ainsi, si la LCI possède un neutre e, alors e est le seul élément symétrisable. Exo 7. Soit E, ) un ensemble ordonné. Soit A une partie non vide de E admtant un plus pit élément un plus grand élément. 1. Par définition d une part mina A d autre part a A, a maxa donc en particularisant la relation ci-dessus pour a = mina, on obtient mina maxa. 4

5 2. Supposons que mina = maxa = b. Alors A car b A. Soit a A fixé quelconque. Par définition de mina maxa, on de la relation d ordre, a = b. Ainsi, A est réduit au singlon {b}. a maxa =b a mina =b donc, par antisymétrie Exo 8. Soit E, ) un ensemble ordonné. Montrer que si A B sont deux parties de E telles que supa), supb) sup{supa), supb)} existent, alors supa B) existe le calculer on pourra essayer sur des exemples pour avoir une idée du résultat à prouver.) Commençons par étudier quelques exemples pour proposer une conjecture : Dans l ensemble ordonné R, ), pour A = {0,1} B =]0,1[ {2}. On a supa = 1, supb = 2, supa B) = sup[0,1] {2}) = 2 sup{supa,supb} = sup{1,2} = 2. Dans l ensemble ordonné PR), ), pour A = {{0},]1,3]} B = {]0,1[,{1},]1,2[,{4}}. On a supa = {0} ]1,3], supb =]0,2[ {4}, supa B) = sup{{0},]1,3],]0,1[,{1},]1,2[,{4}}= [0,3] {4} sup{supa,supb} = sup{{0} ]1,3],]0,2[ {4}}= [0,3] {4}. Ainsi, les exemples précédents suggèrent que supa B) = sup{supa), supb)}. Soit x A B fixé quelconque. Si x A, x supa, or supa sup{supa), supb)} car sup{supa), supb)} est un majorant de {supa), supb)}) donc, par transitivité de la relation d ordre, x sup{supa), supb)}. Si x B, x supb, or supb sup{supa), supb)} donc, par transitivité de la relation d ordre, x sup{supa), supb)}. Par conséquent, x A B, x sup{supa), supb)} donc sup{supa), supb)} MA B). Soit M MA B) fixé quelconque. Alors x A B, x M donc d une part a A, a M donc M MA) donc supa M, d autre part b B, b M donc M MB) donc supb M. Par conséquent, M M{supA,supB}) si bien que sup{supa), supb)} M. Ainsi, sup{supa), supb)} est le plus pit des majorants de A B donc supa B) = sup{supa), supb)}. Exo 9. Raisonnons par l absurde supposons que A adm une borne supérieure dans Q que l on note r 0. r 0 Q donc p,q) Z : r 0 = p q. De plus, 1 Q 1 2 < 2 donc 1 A donc r 0 1. En particulier p > 0. Supposons que r 2 0 < 2. Brouillon. Idée, si r 2 0 < 2, pour assez grand, 1 r ) 2 < 2 Or r ) 2 = r r r 2 }{{} 0 + 2r }{{} r r 0 + r 0 r r 0 r 0 1 Par conséquent, il suffit de choisir tel que r r 0 < 2. 3r0 Posons = 2 r de sorte que > 3r 0 2 r0 2 soit 2 r0 2 > 3r 0. 5

6 Calculons r ) 2 = r r r r car 1 r r 0 car r 0 1 < 2 car 3r 0 < 2 r2 0 Ainsi, r A r > r 0 = supa ce qui contredit la définition de r 0. Supposons que r 2 0 > 2. Brouillon. Idée, si r 2 0 > 2, pour assez grand, r 0 1 ) 2 > 2 Or r 0 1 ) 2 = r0 2 2r r }{{} Par conséquent, il suffit de choisir tel que r0 2 2r 0 > 2. 2r0 Posons = r de sorte que > 2r 0 r0 2 2 soit r2 0 2 > 2r 0. Calculons r 0 1 ) 2 = r0 2 2r r 0 r 2 0 2r 0 car > 2 car r > 2r 0 Soit x A fixé quelconque. Alors x 2 < 2 < r 0 1 ) 2 donc or r 0 1 r 2 = 0 1 ) 2 r x < r 0 1 > 0 car r0 2 > ) donc 2 x x < r 0 1 si bien que r 0 1 majore A. Ainsi, r 0 1 majore A donc r 0 1 supa = r 0 ce qui est faux d où une contradiction. Conclusion. Par conséquent, r 2 0 = 2. Or nous savons exo) que l équation x2 = 2 n a aucune solution rationnelle, ce qui est la constradiction cherchée. Exo 10. partie de R, 1. A resp. B) est une non vide, majorée, donc supa resp. supb) existe. a,b) A B, a+b supa+supb donc A+B est une partie de R, non vide, majorée, donc supa+b) existe. 6

7 Méthode 1 : directe, sans ε. ous avons vu que supa + supb est un majorant de A + B, or supa + B) est le plus pit des majorants de A+B si bien que Soient a,b) A B fixés quelconques. Par définition de supa+b), donc supa+b) supa+supb 1) a+b supa+b) a supa+b) b Cela étant vrai pour tout a A pour le b fixé quelconque, a A, a supa+b) b donc supa+b) b majore A, or supa est le plus pit des majorants de A si bien que Or cela est vrai pour tout b B, donc supa supa+b) b. b B,,b supa+b) supa donc supa+b) supa majore B, or supb est le plus pit des majorants de B si bien que supa+supb supa+b) 2) Méthode 2 : preuve par la caractérisation de la borne supérieure. ous avons vu que supa+supb est un majorant de A+B. Soit ε R + fixé quelconque. Appliquons la caractérisation de la borne supérieure de A en remplaçant le ε de la caractérisation par ε 2 : a A : a supa < a+ ε 2. 3) Appliquons la caractérisation de la borne supérieure de B en remplaçant le ε de la caractérisation par ε 2 : b B : b supb < b+ ε 2. 4) Posons c = a+b. Par conséquent, en sommant les inégalités 3) 4), c A+B : c supa+supb < c+ε. Les deux points ci-dessus permtent de conclure en utilisant la caractérisation de la borne sup de A+B. Ainsi, 1) 2) conduisent à supa+b) = supa+supb. 2. En remplaçant l hypothèse A B majorées par A B minorées, on peut utiliser le lemme du cours construction de la propriété de la borne inférieure) pour justifier que infa infb existent valent infa= supâ infb = Â. 5) De plus les parties de R  B sont non vides, majorés vérifient  B si bien qu en leur appliquant le résultat de la première question, En observant alors que Â+ B = Â+B, supâ+ B) = supâ+sup B. supâ+b = supâ+sup B. si bien qu en utilisant 5) le lemme?? appliqué à la partie non vide minorée A + B qui perm d affirmer que supâ+b = infa+b), on obtient infa+b) = infa infb d où infa+b) = infa+infb. 7

De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que

De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que Introduction. On suppose connus les ensembles N (des entiers naturels), Z des entiers relatifs et Q (des nombres rationnels). On s est rendu compte, depuis l antiquité, que l on ne peut pas tout mesurer

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours Exo7 Continuité (étude globale). Diverses fonctions Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france.fr * très facile ** facile *** difficulté moyenne **** difficile *****

Plus en détail

Image d un intervalle par une fonction continue

Image d un intervalle par une fonction continue DOCUMENT 27 Image d un intervalle par une fonction continue La continuité d une fonction en un point est une propriété locale : une fonction est continue en un point x 0 si et seulement si sa restriction

Plus en détail

Développement décimal d un réel

Développement décimal d un réel 4 Développement décimal d un réel On rappelle que le corps R des nombres réels est archimédien, ce qui permet d y définir la fonction partie entière. En utilisant cette partie entière on verra dans ce

Plus en détail

Continuité en un point

Continuité en un point DOCUMENT 4 Continuité en un point En général, D f désigne l ensemble de définition de la fonction f et on supposera toujours que cet ensemble est inclus dans R. Toutes les fonctions considérées sont à

Plus en détail

Limites finies en un point

Limites finies en un point 8 Limites finies en un point Pour ce chapitre, sauf précision contraire, I désigne une partie non vide de R et f une fonction définie sur I et à valeurs réelles ou complees. Là encore, les fonctions usuelles,

Plus en détail

Intégration et probabilités TD1 Espaces mesurés Corrigé

Intégration et probabilités TD1 Espaces mesurés Corrigé Intégration et probabilités TD1 Espaces mesurés Corrigé 2012-2013 1 Petites questions 1 Est-ce que l ensemble des ouverts de R est une tribu? Réponse : Non, car le complémentaire de ], 0[ n est pas ouvert.

Plus en détail

Problèmes de Mathématiques Filtres et ultrafiltres

Problèmes de Mathématiques Filtres et ultrafiltres Énoncé Soit E un ensemble non vide. On dit qu un sous-ensemble F de P(E) est un filtre sur E si (P 0 ) F. (P 1 ) (X, Y ) F 2, X Y F. (P 2 ) X F, Y P(E) : X Y Y F. (P 3 ) / F. Première Partie 1. Que dire

Plus en détail

Université Paris-Dauphine DUMI2E 1ère année, 2009-2010. Applications

Université Paris-Dauphine DUMI2E 1ère année, 2009-2010. Applications Université Paris-Dauphine DUMI2E 1ère année, 2009-2010 Applications 1 Introduction Une fonction f (plus précisément, une fonction réelle d une variable réelle) est une règle qui associe à tout réel x au

Plus en détail

Structures algébriques

Structures algébriques Structures algébriques 1. Lois de composition s Soit E un ensemble. Une loi de composition interne sur E est une application de E E dans E. Soient E et F deux ensembles. Une loi de composition externe

Plus en détail

Commun à tous les candidats

Commun à tous les candidats EXERCICE 3 (9 points ) Commun à tous les candidats On s intéresse à des courbes servant de modèle à la distribution de la masse salariale d une entreprise. Les fonctions f associées définies sur l intervalle

Plus en détail

Première partie. Préliminaires : noyaux itérés. MPSI B 6 juin 2015

Première partie. Préliminaires : noyaux itérés. MPSI B 6 juin 2015 Énoncé Soit V un espace vectoriel réel. L espace vectoriel des endomorphismes de V est désigné par L(V ). Lorsque f L(V ) et k N, on désigne par f 0 = Id V, f k = f k f la composée de f avec lui même k

Plus en détail

I. Ensemble de définition d'une fonction

I. Ensemble de définition d'une fonction Chapitre 2 Généralités sur les fonctions Fonctions de références et fonctions associées Ce que dit le programme : Étude de fonctions Fonctions de référence x x et x x Connaître les variations de ces deux

Plus en détail

3 Approximation de solutions d équations

3 Approximation de solutions d équations 3 Approximation de solutions d équations Une équation scalaire a la forme générale f(x) =0où f est une fonction de IR dans IR. Un système de n équations à n inconnues peut aussi se mettre sous une telle

Plus en détail

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer Pour commencer Exercice 1 - Ensembles de définition - Première année - 1. Le logarithme est défini si x + y > 0. On trouve donc le demi-plan supérieur délimité par la droite d équation x + y = 0.. 1 xy

Plus en détail

Equations cartésiennes d une droite

Equations cartésiennes d une droite Equations cartésiennes d une droite I) Vecteur directeur d une droite : 1) Définition Soit (d) une droite du plan. Un vecteur directeur d une droite (d) est un vecteur non nul la même direction que la

Plus en détail

Premiers exercices d Algèbre. Anne-Marie Simon

Premiers exercices d Algèbre. Anne-Marie Simon Premiers exercices d Algèbre Anne-Marie Simon première version: 17 août 2005 version corrigée et complétée le 12 octobre 2010 ii Table des matières 1 Quelques structures ensemblistes 1 1.0 Ensembles, relations,

Plus en détail

1 Définition et premières propriétés des congruences

1 Définition et premières propriétés des congruences Université Paris 13, Institut Galilée Département de Mathématiques Licence 2ème année Informatique 2013-2014 Cours de Mathématiques pour l Informatique Des nombres aux structures Sylviane R. Schwer Leçon

Plus en détail

Dualité dans les espaces de Lebesgue et mesures de Radon finies

Dualité dans les espaces de Lebesgue et mesures de Radon finies Chapitre 6 Dualité dans les espaces de Lebesgue et mesures de Radon finies Nous allons maintenant revenir sur les espaces L p du Chapitre 4, à la lumière de certains résultats du Chapitre 5. Sauf mention

Plus en détail

Cours de mathématiques

Cours de mathématiques DEUG MIAS premier niveau Cours de mathématiques année 2003/2004 Guillaume Legendre (version révisée du 3 avril 2015) Table des matières 1 Éléments de logique 1 1.1 Assertions...............................................

Plus en détail

Théorie de la Mesure et Intégration

Théorie de la Mesure et Intégration Université Pierre & Marie Curie (Paris 6) Licence de Mathématiques L3 UE LM364 Intégration 1 & UE LM365 Intégration 2 Année 2010 11 Théorie de la Mesure et Intégration Responsable des cours : Amaury LAMBERT

Plus en détail

Fonctions de plusieurs variables

Fonctions de plusieurs variables Module : Analyse 03 Chapitre 00 : Fonctions de plusieurs variables Généralités et Rappels des notions topologiques dans : Qu est- ce que?: Mathématiquement, n étant un entier non nul, on définit comme

Plus en détail

Items étudiés dans le CHAPITRE N5. 7 et 9 p 129 D14 Déterminer par le calcul l'antécédent d'un nombre par une fonction linéaire

Items étudiés dans le CHAPITRE N5. 7 et 9 p 129 D14 Déterminer par le calcul l'antécédent d'un nombre par une fonction linéaire CHAPITRE N5 FONCTIONS LINEAIRES NOTION DE FONCTION FONCTIONS LINEAIRES NOTION DE FONCTION FONCTIONS LINEAIRES NOTION DE FONCTION Code item D0 D2 N30[S] Items étudiés dans le CHAPITRE N5 Déterminer l'image

Plus en détail

Calcul fonctionnel holomorphe dans les algèbres de Banach

Calcul fonctionnel holomorphe dans les algèbres de Banach Chapitre 7 Calcul fonctionnel holomorphe dans les algèbres de Banach L objet de ce chapitre est de définir un calcul fonctionnel holomorphe qui prolonge le calcul fonctionnel polynômial et qui respecte

Plus en détail

Cours d Analyse. Fonctions de plusieurs variables

Cours d Analyse. Fonctions de plusieurs variables Cours d Analyse Fonctions de plusieurs variables Licence 1ère année 2007/2008 Nicolas Prioux Université de Marne-la-Vallée Table des matières 1 Notions de géométrie dans l espace et fonctions à deux variables........

Plus en détail

Exercices - Polynômes : corrigé. Opérations sur les polynômes

Exercices - Polynômes : corrigé. Opérations sur les polynômes Opérations sur les polynômes Exercice 1 - Carré - L1/Math Sup - Si P = Q est le carré d un polynôme, alors Q est nécessairement de degré, et son coefficient dominant est égal à 1. On peut donc écrire Q(X)

Plus en détail

Continuité d une fonction de plusieurs variables

Continuité d une fonction de plusieurs variables Chapitre 2 Continuité d une fonction de plusieurs variables Maintenant qu on a défini la notion de limite pour des suites dans R n, la notion de continuité s étend sans problème à des fonctions de plusieurs

Plus en détail

Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications

Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications A. Optimisation sans contrainte.... Généralités.... Condition nécessaire et condition suffisante

Plus en détail

La mesure de Lebesgue sur la droite réelle

La mesure de Lebesgue sur la droite réelle Chapitre 1 La mesure de Lebesgue sur la droite réelle 1.1 Ensemble mesurable au sens de Lebesgue 1.1.1 Mesure extérieure Définition 1.1.1. Un intervalle est une partie convexe de R. L ensemble vide et

Plus en détail

Capes 2002 - Première épreuve

Capes 2002 - Première épreuve Cette correction a été rédigée par Frédéric Bayart. Si vous avez des remarques à faire, ou pour signaler des erreurs, n hésitez pas à écrire à : mathweb@free.fr Mots-clés : équation fonctionnelle, série

Plus en détail

DOCM 2013 http://docm.math.ca/ Solutions officielles. 1 2 10 + 1 2 9 + 1 2 8 = n 2 10.

DOCM 2013 http://docm.math.ca/ Solutions officielles. 1 2 10 + 1 2 9 + 1 2 8 = n 2 10. A1 Trouvez l entier positif n qui satisfait l équation suivante: Solution 1 2 10 + 1 2 9 + 1 2 8 = n 2 10. En additionnant les termes du côté gauche de l équation en les mettant sur le même dénominateur

Plus en détail

Chapitre 2 Le problème de l unicité des solutions

Chapitre 2 Le problème de l unicité des solutions Université Joseph Fourier UE MAT 127 Mathématiques année 2011-2012 Chapitre 2 Le problème de l unicité des solutions Ce que nous verrons dans ce chapitre : un exemple d équation différentielle y = f(y)

Plus en détail

Un K-espace vectoriel est un ensemble non vide E muni : d une loi de composition interne, c est-à-dire d une application de E E dans E : E E E

Un K-espace vectoriel est un ensemble non vide E muni : d une loi de composition interne, c est-à-dire d une application de E E dans E : E E E Exo7 Espaces vectoriels Vidéo partie 1. Espace vectoriel (début Vidéo partie 2. Espace vectoriel (fin Vidéo partie 3. Sous-espace vectoriel (début Vidéo partie 4. Sous-espace vectoriel (milieu Vidéo partie

Plus en détail

Axiomatique de N, construction de Z

Axiomatique de N, construction de Z Axiomatique de N, construction de Z Table des matières 1 Axiomatique de N 2 1.1 Axiomatique ordinale.................................. 2 1.2 Propriété fondamentale : Le principe de récurrence.................

Plus en détail

Groupe symétrique. Chapitre II. 1 Définitions et généralités

Groupe symétrique. Chapitre II. 1 Définitions et généralités Chapitre II Groupe symétrique 1 Définitions et généralités Définition. Soient n et X l ensemble 1,..., n. On appelle permutation de X toute application bijective f : X X. On note S n l ensemble des permutations

Plus en détail

Théorème du point fixe - Théorème de l inversion locale

Théorème du point fixe - Théorème de l inversion locale Chapitre 7 Théorème du point fixe - Théorème de l inversion locale Dans ce chapitre et le suivant, on montre deux applications importantes de la notion de différentiabilité : le théorème de l inversion

Plus en détail

Exo7. Matrice d une application linéaire. Corrections d Arnaud Bodin.

Exo7. Matrice d une application linéaire. Corrections d Arnaud Bodin. Exo7 Matrice d une application linéaire Corrections d Arnaud odin. Exercice Soit R muni de la base canonique = ( i, j). Soit f : R R la projection sur l axe des abscisses R i parallèlement à R( i + j).

Plus en détail

Marc HINDRY. Introduction et présentation. page 2. 1 Le langage mathématique page 4. 2 Ensembles et applications page 8

Marc HINDRY. Introduction et présentation. page 2. 1 Le langage mathématique page 4. 2 Ensembles et applications page 8 COURS DE MATHÉMATIQUES PREMIÈRE ANNÉE (L1) UNIVERSITÉ DENIS DIDEROT PARIS 7 Marc HINDRY Introduction et présentation. page 2 1 Le langage mathématique page 4 2 Ensembles et applications page 8 3 Groupes,

Plus en détail

La fonction exponentielle

La fonction exponentielle DERNIÈRE IMPRESSION LE 2 novembre 204 à :07 La fonction exponentielle Table des matières La fonction exponentielle 2. Définition et théorèmes.......................... 2.2 Approche graphique de la fonction

Plus en détail

La demande Du consommateur. Contrainte budgétaire Préférences Choix optimal

La demande Du consommateur. Contrainte budgétaire Préférences Choix optimal La demande Du consommateur Contrainte budgétaire Préférences Choix optimal Plan du cours Préambule : Rationalité du consommateur I II III IV V La contrainte budgétaire Les préférences Le choix optimal

Plus en détail

EXERCICE 4 (7 points ) (Commun à tous les candidats)

EXERCICE 4 (7 points ) (Commun à tous les candidats) EXERCICE 4 (7 points ) (Commun à tous les candidats) On cherche à modéliser de deux façons différentes l évolution du nombre, exprimé en millions, de foyers français possédant un téléviseur à écran plat

Plus en détail

Mathématiques Algèbre et géométrie

Mathématiques Algèbre et géométrie Daniel FREDON Myriam MAUMY-BERTRAND Frédéric BERTRAND Mathématiques Algèbre et géométrie en 30 fiches Daniel FREDON Myriam MAUMY-BERTRAND Frédéric BERTRAND Mathématiques Algèbre et géométrie en 30 fiches

Plus en détail

Probabilités sur un univers fini

Probabilités sur un univers fini [http://mp.cpgedupuydelome.fr] édité le 7 août 204 Enoncés Probabilités sur un univers fini Evènements et langage ensembliste A quelle condition sur (a, b, c, d) ]0, [ 4 existe-t-il une probabilité P sur

Plus en détail

Planche n o 22. Fonctions de plusieurs variables. Corrigé

Planche n o 22. Fonctions de plusieurs variables. Corrigé Planche n o Fonctions de plusieurs variables Corrigé n o : f est définie sur R \ {, } Pour, f, = Quand tend vers, le couple, tend vers le couple, et f, tend vers Donc, si f a une limite réelle en, cette

Plus en détail

Raisonnement par récurrence Suites numériques

Raisonnement par récurrence Suites numériques Chapitre 1 Raisonnement par récurrence Suites numériques Terminale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Raisonnement par récurrence. Limite finie ou infinie d une suite.

Plus en détail

Chapitre 2. Eléments pour comprendre un énoncé

Chapitre 2. Eléments pour comprendre un énoncé Chapitre 2 Eléments pour comprendre un énoncé Ce chapitre est consacré à la compréhension d un énoncé. Pour démontrer un énoncé donné, il faut se reporter au chapitre suivant. Les tables de vérité données

Plus en détail

Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme

Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme Chapitre 3 Quelques fonctions usuelles 1 Fonctions logarithme et eponentielle 1.1 La fonction logarithme Définition 1.1 La fonction 7! 1/ est continue sur ]0, +1[. Elle admet donc des primitives sur cet

Plus en détail

Le produit semi-direct

Le produit semi-direct Le produit semi-direct Préparation à l agrégation de mathématiques Université de Nice - Sophia Antipolis Antoine Ducros Octobre 2007 Ce texte est consacré, comme son titre l indique, au produit semi-direct.

Plus en détail

Calcul différentiel sur R n Première partie

Calcul différentiel sur R n Première partie Calcul différentiel sur R n Première partie Université De Metz 2006-2007 1 Définitions générales On note L(R n, R m ) l espace vectoriel des applications linéaires de R n dans R m. Définition 1.1 (différentiabilité

Plus en détail

I. Polynômes de Tchebychev

I. Polynômes de Tchebychev Première épreuve CCP filière MP I. Polynômes de Tchebychev ( ) 1.a) Tout réel θ vérifie cos(nθ) = Re ((cos θ + i sin θ) n ) = Re Cn k (cos θ) n k i k (sin θ) k Or i k est réel quand k est pair et imaginaire

Plus en détail

Seconde Généralités sur les fonctions Exercices. Notion de fonction.

Seconde Généralités sur les fonctions Exercices. Notion de fonction. Seconde Généralités sur les fonctions Exercices Notion de fonction. Exercice. Une fonction définie par une formule. On considère la fonction f définie sur R par = x + x. a) Calculer les images de, 0 et

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable Eo7 Fonctions de plusieurs variables Eercices de Jean-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-francefr * très facile ** facile *** difficulté moenne **** difficile ***** très difficile I

Plus en détail

Logique. Plan du chapitre

Logique. Plan du chapitre Logique Ce chapitre est assez abstrait en première lecture, mais est (avec le chapitre suivant «Ensembles») probablement le plus important de l année car il est à la base de tous les raisonnements usuels

Plus en détail

Calcul intégral élémentaire en plusieurs variables

Calcul intégral élémentaire en plusieurs variables Calcul intégral élémentaire en plusieurs variables PC*2 2 septembre 2009 Avant-propos À part le théorème de Fubini qui sera démontré dans le cours sur les intégrales à paramètres et qui ne semble pas explicitement

Plus en détail

Exo7. Limites de fonctions. 1 Théorie. 2 Calculs

Exo7. Limites de fonctions. 1 Théorie. 2 Calculs Eo7 Limites de fonctions Théorie Eercice Montrer que toute fonction périodique et non constante n admet pas de ite en + Montrer que toute fonction croissante et majorée admet une ite finie en + Indication

Plus en détail

Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre

Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre IUFM du Limousin 2009-10 PLC1 Mathématiques S. Vinatier Rappels de cours Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre 1 Fonctions de plusieurs variables

Plus en détail

Proposition. Si G est un groupe simple d ordre 60 alors G est isomorphe à A 5.

Proposition. Si G est un groupe simple d ordre 60 alors G est isomorphe à A 5. DÉVELOPPEMENT 32 A 5 EST LE SEUL GROUPE SIMPLE D ORDRE 60 Proposition. Si G est un groupe simple d ordre 60 alors G est isomorphe à A 5. Démonstration. On considère un groupe G d ordre 60 = 2 2 3 5 et

Plus en détail

I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES

I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES Théorème - Définition Soit un cercle (O,R) et un point. Une droite passant par coupe le cercle en deux points A et

Plus en détail

Soit la fonction affine qui, pour représentant le nombre de mois écoulés, renvoie la somme économisée.

Soit la fonction affine qui, pour représentant le nombre de mois écoulés, renvoie la somme économisée. ANALYSE 5 points Exercice 1 : Léonie souhaite acheter un lecteur MP3. Le prix affiché (49 ) dépasse largement la somme dont elle dispose. Elle décide donc d économiser régulièrement. Elle a relevé qu elle

Plus en détail

Calcul différentiel. Chapitre 1. 1.1 Différentiabilité

Calcul différentiel. Chapitre 1. 1.1 Différentiabilité Chapitre 1 Calcul différentiel L idée du calcul différentiel est d approcher au voisinage d un point une fonction f par une fonction plus simple (ou d approcher localement le graphe de f par un espace

Plus en détail

Extrait du poly de Stage de Grésillon 1, août 2010

Extrait du poly de Stage de Grésillon 1, août 2010 MINI-COURS SUR LES POLYNÔMES À UNE VARIABLE Extrait du poly de Stage de Grésillon 1, août 2010 Table des matières I Opérations sur les polynômes 3 II Division euclidienne et racines 5 1 Division euclidienne

Plus en détail

Intégration et probabilités TD1 Espaces mesurés

Intégration et probabilités TD1 Espaces mesurés Intégration et probabilités TD1 Espaces mesurés 2012-2013 1 Petites questions 1) Est-ce que l ensemble des ouverts de R est une tribu? 2) Si F et G sont deux tribus, est-ce que F G est toujours une tribu?

Plus en détail

UNIVERSITE IBN ZOHR Faculté des sciences Agadir. Filière SMA & SMI. Semestre 1. Module : Algèbre 1

UNIVERSITE IBN ZOHR Faculté des sciences Agadir. Filière SMA & SMI. Semestre 1. Module : Algèbre 1 UNIVERSITE IBN ZOHR Faculté des sciences Agadir Filière SMA & SMI Semestre 1 Module : Algèbre 1 Année universitaire : 011-01 A. Redouani & E. Elqorachi 1 Contenu du Module : Chapitre 1 : Introduction Logique

Plus en détail

Programmation linéaire et Optimisation. Didier Smets

Programmation linéaire et Optimisation. Didier Smets Programmation linéaire et Optimisation Didier Smets Chapitre 1 Un problème d optimisation linéaire en dimension 2 On considère le cas d un fabricant d automobiles qui propose deux modèles à la vente, des

Plus en détail

Correction du Baccalauréat S Amérique du Nord mai 2007

Correction du Baccalauréat S Amérique du Nord mai 2007 Correction du Baccalauréat S Amérique du Nord mai 7 EXERCICE points. Le plan (P) a une pour équation cartésienne : x+y z+ =. Les coordonnées de H vérifient cette équation donc H appartient à (P) et A n

Plus en détail

Suites numériques 3. 1 Convergence et limite d une suite

Suites numériques 3. 1 Convergence et limite d une suite Suites numériques 3 1 Convergence et limite d une suite Nous savons que les termes de certaines suites s approchent de plus en plus d une certaine valeur quand n augmente : par exemple, les nombres u n

Plus en détail

Formes quadratiques. 1 Formes quadratiques et formes polaires associées. Imen BHOURI. 1.1 Définitions

Formes quadratiques. 1 Formes quadratiques et formes polaires associées. Imen BHOURI. 1.1 Définitions Formes quadratiques Imen BHOURI 1 Ce cours s adresse aux étudiants de niveau deuxième année de Licence et à ceux qui préparent le capes. Il combine d une façon indissociable l étude des concepts bilinéaires

Plus en détail

a et b étant deux nombres relatifs donnés, une fonction affine est une fonction qui a un nombre x associe le nombre ax + b

a et b étant deux nombres relatifs donnés, une fonction affine est une fonction qui a un nombre x associe le nombre ax + b I Définition d une fonction affine Faire l activité 1 «une nouvelle fonction» 1. définition générale a et b étant deux nombres relatifs donnés, une fonction affine est une fonction qui a un nombre x associe

Plus en détail

Correction du baccalauréat S Liban juin 2007

Correction du baccalauréat S Liban juin 2007 Correction du baccalauréat S Liban juin 07 Exercice. a. Signe de lnx lnx) : on fait un tableau de signes : x 0 e + ln x 0 + + lnx + + 0 lnx lnx) 0 + 0 b. On afx) gx) lnx lnx) lnx lnx). On déduit du tableau

Plus en détail

Moments des variables aléatoires réelles

Moments des variables aléatoires réelles Chapter 6 Moments des variables aléatoires réelles Sommaire 6.1 Espérance des variables aléatoires réelles................................ 46 6.1.1 Définition et calcul........................................

Plus en détail

Cours3. Applications continues et homéomorphismes. 1 Rappel sur les images réciproques

Cours3. Applications continues et homéomorphismes. 1 Rappel sur les images réciproques Université de Provence Topologie 2 Cours3. Applications continues et homéomorphismes 1 Rappel sur les images réciproques Soit une application f d un ensemble X vers un ensemble Y et soit une partie P de

Plus en détail

3. Conditionnement P (B)

3. Conditionnement P (B) Conditionnement 16 3. Conditionnement Dans cette section, nous allons rappeler un certain nombre de définitions et de propriétés liées au problème du conditionnement, c est à dire à la prise en compte

Plus en détail

Fonction inverse Fonctions homographiques

Fonction inverse Fonctions homographiques Fonction inverse Fonctions homographiques Année scolaire 203/204 Table des matières Fonction inverse 2. Définition Parité............................................ 2.2 Variations Courbe représentative...................................

Plus en détail

CHAPITRE IV. L axiome du choix

CHAPITRE IV. L axiome du choix CHAPITRE IV L axiome du choix Résumé. L axiome du choix AC affirme qu il est légitime de construire des objets mathématiques en répétant un nombre infini de fois l opération de choisir un élément dans

Plus en détail

Une forme générale de la conjecture abc

Une forme générale de la conjecture abc Une forme générale de la conjecture abc Nicolas Billerey avec l aide de Manuel Pégourié-Gonnard 6 août 2009 Dans [Lan99a], M Langevin montre que la conjecture abc est équivalente à la conjecture suivante

Plus en détail

F1C1/ Analyse. El Hadji Malick DIA

F1C1/ Analyse. El Hadji Malick DIA F1C1/ Analyse Présenté par : El Hadji Malick DIA dia.elmalick1@gmail.com Description sommaire du cours Porte sur l analyse réelle propose des outils de travail sur des éléments de topologie élémentaire

Plus en détail

MESURE ET INTÉGRATION EN UNE DIMENSION. Notes de cours

MESURE ET INTÉGRATION EN UNE DIMENSION. Notes de cours MSUR T INTÉGRATION N UN DIMNSION Notes de cours André Giroux Département de Mathématiques et Statistique Université de Montréal Mai 2004 Table des matières 1 INTRODUCTION 2 1.1 xercices.............................

Plus en détail

Polynômes à plusieurs variables. Résultant

Polynômes à plusieurs variables. Résultant Polynômes à plusieurs variables. Résultant Christophe Ritzenthaler 1 Relations coefficients-racines. Polynômes symétriques Issu de [MS] et de [Goz]. Soit A un anneau intègre. Définition 1.1. Soit a A \

Plus en détail

Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques.

Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques. 14-3- 214 J.F.C. p. 1 I Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques. Exercice 1 Densité de probabilité. F { ln x si x ], 1] UN OVNI... On pose x R,

Plus en détail

Problème 1 : applications du plan affine

Problème 1 : applications du plan affine Problème 1 : applications du plan affine Notations On désigne par GL 2 (R) l ensemble des matrices 2 2 inversibles à coefficients réels. Soit un plan affine P muni d un repère (O, I, J). Les coordonnées

Plus en détail

Approximations variationelles des EDP Notes du Cours de M2

Approximations variationelles des EDP Notes du Cours de M2 Approximations variationelles des EDP Notes du Cours de M2 Albert Cohen Dans ce cours, on s intéresse à l approximation numérique d équations aux dérivées partielles linéaires qui admettent une formulation

Plus en détail

Cours d Analyse I et II

Cours d Analyse I et II ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE Cours d Analyse I et II Sections Microtechnique & Science et génie des matériaux Dr. Philippe Chabloz avril 23 Table des matières Sur les nombres. Les nombres

Plus en détail

CCP PSI - 2010 Mathématiques 1 : un corrigé

CCP PSI - 2010 Mathématiques 1 : un corrigé CCP PSI - 00 Mathématiques : un corrigé Première partie. Définition d une structure euclidienne sur R n [X]... B est clairement symétrique et linéaire par rapport à sa seconde variable. De plus B(P, P

Plus en détail

Cours arithmétique et groupes. Licence première année, premier semestre

Cours arithmétique et groupes. Licence première année, premier semestre Cours arithmétique et groupes. Licence première année, premier semestre Raphaël Danchin, Rejeb Hadiji, Stéphane Jaffard, Eva Löcherbach, Jacques Printems, Stéphane Seuret Année 2006-2007 2 Table des matières

Plus en détail

CHOIX OPTIMAL DU CONSOMMATEUR. A - Propriétés et détermination du choix optimal

CHOIX OPTIMAL DU CONSOMMATEUR. A - Propriétés et détermination du choix optimal III CHOIX OPTIMAL DU CONSOMMATEUR A - Propriétés et détermination du choix optimal La demande du consommateur sur la droite de budget Résolution graphique Règle (d or) pour déterminer la demande quand

Plus en détail

Deux disques dans un carré

Deux disques dans un carré Deux disques dans un carré Table des matières 1 Fiche résumé 2 2 Fiche élève Seconde - version 1 3 2.1 Le problème............................................... 3 2.2 Construction de la figure avec geogebra...............................

Plus en détail

Cours d arithmétique Première partie

Cours d arithmétique Première partie Cours d arithmétique Première partie Pierre Bornsztein Xavier Caruso Pierre Nolin Mehdi Tibouchi Décembre 2004 Ce document est la première partie d un cours d arithmétique écrit pour les élèves préparant

Plus en détail

Chapitre VI - Méthodes de factorisation

Chapitre VI - Méthodes de factorisation Université Pierre et Marie Curie Cours de cryptographie MM067-2012/13 Alain Kraus Chapitre VI - Méthodes de factorisation Le problème de la factorisation des grands entiers est a priori très difficile.

Plus en détail

Exemple 4.4. Continuons l exemple précédent. Maintenant on travaille sur les quaternions et on a alors les décompositions

Exemple 4.4. Continuons l exemple précédent. Maintenant on travaille sur les quaternions et on a alors les décompositions Exemple 4.4. Continuons l exemple précédent. Maintenant on travaille sur les quaternions et on a alors les décompositions HQ = He 1 He 2 He 3 He 4 HQ e 5 comme anneaux (avec centre Re 1 Re 2 Re 3 Re 4

Plus en détail

Résolution d équations non linéaires

Résolution d équations non linéaires Analyse Numérique Résolution d équations non linéaires Said EL HAJJI et Touria GHEMIRES Université Mohammed V - Agdal. Faculté des Sciences Département de Mathématiques. Laboratoire de Mathématiques, Informatique

Plus en détail

Chapitre VI Fonctions de plusieurs variables

Chapitre VI Fonctions de plusieurs variables Chapitre VI Fonctions de plusieurs variables 6. 1 Fonctions différentiables de R 2 dans R. 6. 1. 1 Définition de la différentiabilité Nous introduisons la différentiabilité sous l angle des développements

Plus en détail

Chapitre 7 : Intégration sur un intervalle quelconque

Chapitre 7 : Intégration sur un intervalle quelconque Universités Paris 6 et Paris 7 M1 MEEF Analyse (UE 3) 2013-2014 Chapitre 7 : Intégration sur un intervalle quelconque 1 Fonctions intégrables Définition 1 Soit I R un intervalle et soit f : I R + une fonction

Plus en détail

Les indices à surplus constant

Les indices à surplus constant Les indices à surplus constant Une tentative de généralisation des indices à utilité constante On cherche ici en s inspirant des indices à utilité constante à définir un indice de prix de référence adapté

Plus en détail

Fibonacci et les paquerettes

Fibonacci et les paquerettes Fibonacci et les paquerettes JOLY Romain & RIVOAL Tanguy Introduction Quand on entend dire que l on peut trouver le nombre d or et la suite de Fibonacci dans les fleurs et les pommes de pin, on est au

Plus en détail

La Longue Marche à travers la théorie de Galois, Part Ib, 26-37

La Longue Marche à travers la théorie de Galois, Part Ib, 26-37 La Longue Marche à travers la théorie de Galois, Part Ib, 26-37 26. Groupes de Teichmüller profinis (Discrétification et prédiscrétification) Soit π un groupe profini à lacets de type g, ν, T le Ẑ-module

Plus en détail

NOMBRES COMPLEXES. Exercice 1 :

NOMBRES COMPLEXES. Exercice 1 : Exercice 1 : NOMBRES COMPLEXES On donne θ 0 un réel tel que : cos(θ 0 ) 5 et sin(θ 0 ) 1 5. Calculer le module et l'argument de chacun des nombres complexes suivants (en fonction de θ 0 ) : a i( )( )(1

Plus en détail

Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures)

Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures) Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures) Eercice 1 (5 points) pour les candidats n ayant pas choisi la spécialité MATH Le tableau suivant donne l évolution du chiffre

Plus en détail

Souad EL Bernoussi. Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/

Souad EL Bernoussi. Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/ Recherche opérationnelle Les démonstrations et les exemples seront traités en cours Souad EL Bernoussi Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/ Table des matières 1 Programmation

Plus en détail

Fonctions de plusieurs variables et applications pour l ingénieur

Fonctions de plusieurs variables et applications pour l ingénieur Service Commun de Formation Continue Année Universitaire 2006-2007 Fonctions de plusieurs variables et applications pour l ingénieur Polycopié de cours Rédigé par Yannick Privat Bureau 321 - Institut Élie

Plus en détail

Suites numériques 4. 1 Autres recettes pour calculer les limites

Suites numériques 4. 1 Autres recettes pour calculer les limites Suites numériques 4 1 Autres recettes pour calculer les limites La propriété suivante permet de calculer certaines limites comme on verra dans les exemples qui suivent. Propriété 1. Si u n l et fx) est

Plus en détail