Petit traité de l électricité statique avec application aux ballons à gaz



Documents pareils
Electrification statique - Problèmes et solutions L application des sources ionisantes. Auteur: Dr Mark G Shilton, CChem, MRSC. (Copie du document

Décharge électrostatique

Module 3 : L électricité

La charge électrique C6. La charge électrique

Électricité statique. Introduction. Quelques étapes historiques importantes

!!! atome = électriquement neutre. Science et technologie de l'environnement CHAPITRE 5 ÉLECTRICITÉ ET MAGNÉTISME

Rappel sur les atomes Protons p + Neutrons n 0. Les objets sont faits de différents matériaux ou de diverses substances.

3 Charges électriques

DVD-FR54C Transcript. Scène 1. DES Le transfert soudain, ou une décharge d'électricité d'un objet à un autre.

GUIDE DE BONNES PRATIQUES POUR LA COLLECTE DE PILES ET ACCUMULATEURS AU LUXEMBOURG

Fiche 1 (Observation): Définitions

Electricité et mise à la terre

L ÉLECTROCUTION Intensité Durée Perception des effets 0,5 à 1 ma. Seuil de perception suivant l'état de la peau 8 ma

ÉLECTRICITÉ STATIQUE

Choix multiples : Inscrire la lettre correspondant à la bonne réponse sur le tiret. (10 pts)

L École nationale des pompiers du Québec. Dans le cadre de son programme de formation Pompier I

TP N 1 : ÉLECTRISATION PAR FROTTEMENT

Sont assimilées à un établissement, les installations exploitées par un employeur;

Présentation générale des principales sources d énergies fossiles.

Module 3 : L électricité

PROTECTION DU CORPS INfORmaTIONS TEChNIqUES

Chapitre 7 : CHARGES, COURANT, TENSION S 3 F

Défi 1 Qu est-ce que l électricité statique?

Aide à l'application Chauffage et production d'eau chaude sanitaire Edition décembre 2007

Cours d électricité. Introduction. Mathieu Bardoux. 1 re année. IUT Saint-Omer / Dunkerque Département Génie Thermique et Énergie

Colloque APDQ Véhicule enlisé ou accidenté. Pas de présence policière. Pas d information transmise sur le type de véhicule en cause

FICHE DE DONNEES DE SECURITE

Recommandations pour le contrôle par méthode électrique des défauts des revêtements organiques appliqués sur acier en usine ou sur site de pose

Électricité. 1 Interaction électrique et modèle de l atome

BROSSES ANTISTATIQUES GUIDE TECHNIQUE

CORRIGE. CHAP 04-ACT PB/DOC Electrolyse de l eau 1/12 1. ALIMENTATION ELECTRIQUE D'UNE NAVETTE SPATIALE

Instructions d'utilisation

Le circuit électrique

Qu est ce qu un gaz comprimé?

Fiche 7 (Analyse): Notions d'électricité

Electrostatique. Le mot électrostatique se divise en deux parties : électron qui en grec veut dire "ambre" et statique qui signifie "ne bouge pas".

I. Introduction: L énergie consommée par les appareils de nos foyers est sous forme d énergie électrique, facilement transportable.

Colle époxydique multi usages, à 2 composants

Ingrédients No cas % Contrôlé par SIMDUT. Propane >90 Oui Propylène <5 Oui Hydrocarbures, C <2.5 Oui

NOTICE DE MISE EN SERVICE

ELECTRICITE. Introduction

TECHNIQUE DU FROID ET DU CONDITIONNEMENT DE L AIR. confort = équilibre entre l'homme et l'ambiance

CODE DU TRAVAIL Art. R Art. R Art. R Art. R

Matériel de laboratoire

COMMENT PEUT-ON CRÉER DE L ÉLECTRICITÉ STATIQUE?

NOTE D INFORMATION TECHNIQUE

RELAIS STATIQUE. Tension commutée

Module d Electricité. 2 ème partie : Electrostatique. Fabrice Sincère (version 3.0.1)

C3. Produire de l électricité

Chap 1: Toujours plus vite... Introduction: Comment déterminer la vitesse d une voiture?

NOTICE D UTILISATION. Masque de soudage protecteur de vision

Chapitre 3 CONDUCTEURS ET ISOLANTS

ÉLECTRICITÉ INDUSTRIELLE ÉLECTRICITÉ STATIQUE

1. Identification de la substance ou préparation et de la Société. 2. Composition/ informations sur les composants

L ÉNERGIE C EST QUOI?

LES PNEUS SONT-ILS DANGEREUX POUR LA SANTÉ ET L ENVIRONNEMENT? Les pneus sont dangereux dans des piles, pas dans des Earthships.

Normes CE Equipements de Protection Individuelle

MESURE DE LA TEMPERATURE

FICHE DE DONNÉES DE SÉCURITÉ conformément au Règlement (CE) nº1907/2006 REACH Nom : KR-G KR-G

INSTITUT DE SÉCURITÉ

Comment peut-on produire du chauffage et de l'eau chaude à partir de l'air? EFFICACITÉ POUR LES MAISONS

MANUEL D INSTRUCTIONS K-STAR ÉLECTRIQUE Chauffe-piscine/spa électrique

T.I.P.E. Optimisation d un. moteur

La copie sur support papier à usage privé est autorisée conformément à l article L122-5 du Code de la Propriété Intellectuelle.

LA MAIN A LA PATE L électricité Cycle 3 L électricité.

L'ABC. Le gaz naturel

de l Université Laval Orientations et exigences générales et techniques de construction

Caractéristiques techniques

Les capteurs et leurs branchements

BM21 MANUEL D UTILISATION HUMIDIMÈTRE TRT-BA-BM21-TC-001-FR

Chapitre 1 - Les circuits électriques

A B C Eau Eau savonneuse Eau + détergent

TS1 TS2 02/02/2010 Enseignement obligatoire. DST N 4 - Durée 3h30 - Calculatrice autorisée

Construction. Sarnavap 5000E SA. Pare-vapeur. Description du produit. Tests

Fiche de données de sécurité

Capacité Métal-Isolant-Semiconducteur (MIS)

CHAÎNES ÉNERGÉTIQUES I CHAÎNES ÉNERGÉTIQUES. II PUISSANCE ET ÉNERGIE

Fiche technique Mai, 2011 Dernière version : Oct Produits transparents : SJ 3460 : non adhésif SJ 3560 : Muni d un adhésif acrylique VHB

Soudal Panel System SPS. La force extrême derrière vos panneaux de façade. SOUDAL PANEL SYSTEM. Soudal Panel System 1 SPS SOUDAL PANEL

IR Temp 210. Thermomètre infrarouge. Des techniques sur mesure

Méthodes de Caractérisation des Matériaux. Cours, annales

Manuel d utilisation du modèle

Les Mesures Électriques

NOTICE D UTILISATION

CORRIGÉS DES EXERCICES

Everything stays different

MultiPlus sans limites

RAID PIEGES ANTI-FOURMIS x 2 1/5 Date de création/révision: 25/10/1998 FICHE DE DONNEES DE SECURITE NON CLASSE

Phénomènes dangereux et modélisation des effets

Aide à l'application Preuve du besoin de réfrigération et/ou d humidification de l air Edition mai 2003

outils de mesure du climat intérieur (3) Le thermohygrographe à tambour : entretien et calibration

Comment expliquer ce qu est la NANOTECHNOLOGIE

Manuel d'utilisation du détecteur de fumée

L ÉLECTRICITÉ, C EST QUOI?

Points clefs pour l'adaptation du Chauffe-Eau Solaire Bon Marché (CESBM) dans d'autres pays

Cafetière. Mode d Emploi. 1Notice cafetière v1.0

Dangers liés à l électricité

XTR. Humidificateur vapeur à électrodes

Sécuriser une intervention sur un poste de travail

Conseils pour la pose des revêtements de sols textiles (excepté dalles)

Transcription:

Petit traité de l électricité statique avec application aux ballons à gaz Introduction L'électricité statique se rencontre partout: dans les résidences, les usines et la nature. Elle est générée en petite quantité lorsqu'on se peigne les cheveux ou lorsqu'on marche sur un tapis, en quantité moyenne dans des machines ou en très grande quantité dans les coups de foudre. Elle est presque toujours sans conséquence fâcheuse sauf pour un choc déplaisant. Dans d'autres cas, elle peut produire des catastrophes. C'est le cas du coup de foudre qui peut conduire à l'électrocution ou à un incendie. Même en petite quantité, elle peut conduire à une explosion et à un incendie dans des circonstances particulières comme en présence de mélanges explosifs. Nature de l'électricité statique La matière est constituée d'atomes qui ont un noyau avec des charges positives et des électrons en périphérie qui ont des charges négatives. Ces charges sont présentes dans toute la matière et tous les atomes. Les charges positives et négatives sont normalement en quantités égales et la matière est électriquement neutre. Pour différentes raisons, les électrons peuvent être enlevés d'un matériau et transmis à un autre. Le deuxième matériau aura aussi un surplus d'électrons et sera donc négatif alors que le premier aura une déficience d'électrons et sera positif. Lorsque deux objets de nature différente sont frottés l'un sur l'autre, il se produit un transfert de charges d'un matériau vers l'autre. Si, ensuite, on les sépare, ils seront chargés, l'un positivement et l'autre négativement. Pour le cas du ballon à gaz, il y a plusieurs sources génératrices d électricité statique : - Le frottement dut à l écoulement du gaz sur le tissu : lors du gonflement, d un lâcher de gaz par la soupape ou par le panneau de déchirure et lors du dégonflement. - Le frottement tissu contre tissu lors de la manipulation ou lorsque le ballon est flasque. - Le frottement filet (ou ralingues) contre le tissu. La quantité de charge générée dépend de la matière des matériaux en contact, de leurs surfaces, de la façon dont la séparation est faite et de bien d'autres facteurs. La présence d'un film de graisse ou d'humidité en surface peut affecter grandement les résultats. Certains matériaux ont une grande propension à perdre des charges ou à en acquérir.

Cette facilité est donnée dans le Tableau 1 qu'on appelle la série triboélectrique. Les premiers matériaux sont ceux qui ont le plus tendance à devenir positif alors que ceux de la fin tendent à devenir négatifs ou accepter des charges. Il va de soi que, plus deux matériaux sont loin l'un de l'autre dans cette liste, plus il y aura tendance à générer de grandes charges d'électricité statique suite à une séparation des surfaces. Ainsi, pour faire un générateur d'électricité statique on utilisera deux matériaux éloignés. Dans le cas où on désire éviter les problèmes d'électricité statique, on choisira deux matériaux rapprochés. Cela explique pourquoi deux personnes marchant sur la même moquette pourront être soumises à des chocs d'intensités différentes dépendant de la nature des semelles des souliers. Série triboélectrique Fourrure de lapin (plus positif) verre nylon laine fourrure de chat coton soie dacron polyvinylchloré polyéthylène caoutchouc Teflon Saran wrap (plus négatif) Tableau 1 Force et charge En hiver, par exemple, lorsque l'air est très sec, si on marche sur un tapis et qu'on approche un doigt d'une pièce métallique, l'électricité saute dans l'air entre son doigt et l'objet. On a une décharge électrique. Le saut se fait sur une distance de l'ordre de quelques millimètres et parfois jusqu'à environ un centimètre. Pour les petites distances, l'air éclate à un champ électrique d'environ 3 000 volts par millimètre de distance. Ainsi, la tension peut facilement atteindre quelques dizaines de milliers de volts, dépendant des conditions.

Conducteurs et isolants Du point de vue électrique, les matériaux sont classifiés comme conducteurs ou isolants. Tous les métaux et leurs alliages sont des bons conducteurs à un degré plus ou moins élevé. De façon générale, les alliages, quoique bons conducteurs, le sont à un degré moindre que les métaux purs. Par contre, les matières plastiques, le bois, le coton, la soie et le papier sont des isolants électriques. D'autres matériaux ont une conductivité intermédiaire entre ces derniers. C'est le cas du carbone dont la conductivité se situe entre celle des conducteurs et des isolants bien qu'il soit plus près des conducteurs que des isolants. L'eau est aussi un matériau intermédiaire qui n'est ni bon isolant, ni bon conducteur. Bien que l'eau parfaitement pure soit un assez bon isolant, en pratique ce liquide contient toujours des sels dissous et cela le rend un peu conducteur d'électricité. La conductivité augmente rapidement en fonction des sels ou acides dissous. Plus haut, nous mentionnions que le bois, les tissus et le papier sont de bons isolants électriques. Ces matériaux sont poreux et peuvent absorber une certaine quantité d'eau. Ils ne sont pas absolument secs. Par exemple, dans une température ambiante de 20 C et 50% d'humidité relative dans l'air, le bois contient environ 8% de sa masse en eau. Ces matériaux sont de plus en plus conducteurs lorsqu'ils sont de plus en plus humides. Même des matériaux imperméables comme le plastique peuvent produire une conduction de surface si les conditions sont telles que la surface devient humide ou mouillée. Cela serait particulièrement vrai en milieu salin ou acide. Plus l'air est sec, plus les problèmes d'électricité statique sont susceptibles de se produire. En général, si l'air contient plus de 50 ou 60% d'humidité relative, les problèmes d'électricité statique sont minimes ou inexistants. On voit là une solution simple pour résoudre ce problème; il suffit d'humidifier l'air. On croit souvent, à tort, que l'air humide est plus conducteur que l'air sec. D'ailleurs, le paragraphe précédent peut le laisser croire puisque, en humidifiant l'air, on prévient l'accumulation des charges. En fait, ce qui se passe, est que l'air humide mouille les surfaces et, surtout, augmente le contenu en eau des matériaux. Ce sont eux qui, rendus plus conducteurs préviennent l'accumulation des charges. Ainsi, on prévient l'accumulation des charges en mouillant les matériaux isolants. L'effet de l'humidité de l'air n'est que de rendre les matériaux partiellement conducteurs de l'électricité. Par exemple, certains tissus fraîchement lavés causent des problèmes d'électricité statique. Avec le temps, les problèmes disparaissent même si l'air est toujours sec. Cela vient du fait qu'un matériau devient sale à cause de l'air et de la sueur. On ajoute ainsi des matières polluantes sur le tissu et il devient moins bon isolant. On ajoute quelquefois des produits à la lessive pour éviter le problème. On ne connais pas le secret des manufacturiers mais il est probable qu'on ajoute certains sels ou autres produits pour rendre le matériau partiellement conducteur. C'est l'équivalent de s'assurer d'une certaine quantité de polluant.

Danger d'ignition Si on ajoute des charges sur un objet, la tension augmente jusqu'à ce qu'il y ait éclatement de l'isolant ou de l'air qui l'entoure. Généralement, cette tension est limitée à quelques milliers ou dizaines de milliers de volts. Exceptionnellement, cette tension peut approcher 100 000 volts. Lorsqu'il y a éclatement de l'isolant ou de l'air, il se produit une décharge électrique lumineuse et un petit bruit sec. L'énergie emmagasinée dans un condensateur est: Si cette énergie est suffisamment élevée, il peut y avoir ignition de certaines substances. Le tableau II donne l'énergie minimale requise pour l'ignition de certaines substances. On remarquera que pour les poussières en suspension dans l'air, l'énergie est beaucoup plus grande que celle requise pour les vapeurs de gaz combustibles. L'énergie donnée dans ce tableau est exprimée en mj (milli Joule). Les valeurs données sont le niveau au-dessus duquel il y a danger d'ignition. C'est le niveau d'énergie pour lequel l'ignition s'est faite sous des conditions contrôlées en laboratoire. Cela suppose que le mélange est en proportion tel qu'il soit combustible et explosif. Il va de soi que, par exemple, si les vapeurs d'essence sont en dessous de la plage explosion, l'explosion sera impossible. De même que pour les poussières en suspension, le danger donné correspond à celui obtenu avec des particules très fines bien mélangées dans l'air et dans la proportion la plus dangereuse. Ainsi, dans bien des cas, l'énergie pourrait être bien plus élevée que celle qui est donnée au Tableau II et l'explosion pourrait très bien ne pas se produire. D'autres conditions, telles de basses températures ou un pourcentage d'humidité élevé peut également diminuer considérablement le danger d'explosion. Cependant, étant donné les conséquences catastrophiques que peut constituer une explosion, il faut prévoir une marge de sécurité. Énergie d'ignition Type de matériau A- Vapeurs combustibles Énergie minimale(mj) Essence 0.2 Éthylène 0.075 Hydrogène 0.011 Méthane 0.28 Propane 0.16

B- Poussières en suspension Aluminium 50@280 Poussière de bois 20@40 Poussière de chocolat 100 Poudre noire 300 Tableau II Par exemple, un être humain, qui marche sur un tapis alors que l'air est sec, peut facilement, générer une tension de 5 000 V. Avec une capacité de 200*10exp-12 farad, l'énergie emmagasinée est de É = 1/2*200*10-12 *5000 2 = 0.0025joule ou 2.5mJ Cette énergie est suffisante pour initier une explosion d hydrogène ou dans des vapeurs d'essence; elle est cependant insuffisante pour initier une explosion dans des poussières en suspension comme le montre le Tableau II. Cas de l hydrogène : Comme l indique le tableau II, l énergie minimale d ignition pour l hydrogène n est que de 0.02mJ, ce qui est très faible. Donc, il suffit d un dixième de l énergie d une décharge d électricité statique d un arc ou d une étincelle pour allumer l hydrogène. De plus, lorsque l hydrogène est manipulé à pression élevée et qu une fuite a lieu, l hydrogène présente un effet Joule-Thompson inverse, de sorte que le gaz qui s échappe peut s échauffer suffisamment pour être enflammé directement. Ce potentiel est également augmenté par rapport aux autres gaz inflammables à cause de la petite taille de la molécule d hydrogène qui lui permet de migrer rapidement à travers de petites ouvertures. Le domaine d explosion de l hydrogène se situe dans l intervalle 13 à 59 %. Le coefficient de diffusion de l hydrogène dans l air est de 0,61 cm3/s, ce qui est 4 fois plus grand que le méthane. C est pourquoi l hydrogène se mélange beaucoup plus rapidement dans l air que le méthane ou les vapeurs de pétrole, ce qui est avantageux à l air libre et donc pour la pratique du ballon à gaz. De nombreuses expériences ont montré que l hydrogène ne détonait pas à l air libre. Temps de relaxation Si on place des charges de façon ponctuelle sur un objet, ces charges, puisqu'elles se repoussent, ont tendance à se répartir éventuellement sur tout l'objet. Évidemment, cette redistribution se fera de façon très rapide si l'objet est un bon conducteur. Le temps sera beaucoup plus long dans le cas d'un isolant. Pour un isolant parfait, il ne pourrait y avoir de redistribution mais ce matériau parfait n'existe pas dans la nature.

Dans les conducteurs, les charges se redistribuent de façon presque instantanée. Même pour l'eau pure, la redistribution se fait de façon très rapide. On note cependant que les hydrocarbones ont une très grande constante de temps puisque ce sont de très bons isolants électriques. Ils sont peu ou pas utilisés comme tels à cause de leur combustibilité. Ainsi, dans un réservoir de produits pétroliers, il peut exister des charges positives dans une certaine région et des charges négatives dans une autre. Il faudra un temps très long avant que ces charges se redistribuent. De plus, lors d'un transbordement de tels produits, à cause de l'écoulement, il peut se créer de grandes charges et présenter un danger d'ignition. Bien que des charges puissent être accumulées dans le liquide et créer des différences de potentiel à l'intérieur de celui-ci, le réservoir, s'il est métallique sera soumis à un potentiel constant sur toute sa surface. Cependant, cette surface peut très bien être à un potentiel plus ou moins élevé par rapport au sol ou par rapport à un autre réservoir. En effet, les pneus d'un camion constituent un isolant par rapport au sol. On pourra éviter les différences de potentiel entre deux réservoirs en reliant ceux-ci par un conducteur électrique. Pour éviter de créer de grandes charges, on limite la vitesse d'écoulement à environ un mètre par seconde. Dans ce cas, l'écoulement est laminaire et sans turbulence; cela diminue grandement la ségrégation des charges. Prévention Les problèmes causés par l'électricité statique peuvent aller du simple inconvénient mineur à la conflagration. Ainsi le niveau de prévention sera fonction des conséquences et du coût. Dans plusieurs cas, on pourra accepter le problème sans rien faire pour le corriger. Dans le cas d'atmosphères possiblement explosives, il faudra prendre des moyens multiples et extrêmes, peu importe le coût. Évidemment, dans ce dernier exemple, la première solution est d'éviter le danger d'explosion par la ventilation des lieux. Si cela ne peut être fait, il faut réduire le plus possible le volume où le danger existe et réduire celui-ci au strict minimum. Une façon de réduire les problèmes d'électricité statique est de rendre les matériaux conducteurs en les rendant humides. Généralement un niveau d'humidité relative de 70% élimine le problème. Dans certains cas, un niveau de 50% est suffisant. Dans d'autre cas, avec le Teflon et d'autres plastiques, l'eau n'est pas absorbée et on ne peut se fier qu'à l'humidité de surface. Certains de ces matériaux sont encore isolants même à des niveaux d'humidité de 90% et plus. Dépendant des circonstances, on pourra humidifier toute la pièce ou, encore, un simple jet de vapeur d'eau près de l'endroit à protéger. Cette vapeur peut provenir d'un plat d'eau bouillante. Il va de soi que, dans certaines circonstances, un haut pourcentage d'humidité n'est pas acceptable. Une autre façon de remédier au problème est de rendre le matériau ou sa surface partiellement conductrice. Le matériau peut être rendu plus conducteur par l'ajout de fibres de métal ou des particules de carbone distribuées dans le matériau. On peut aussi traiter la surface pour la rendre plus conductrice. Cette méthode peut bien ne pas être acceptable car le produit est ainsi modifié. On aura noté que cette solution est de même nature que la précédente. Rappelons que

les charges électrostatiques sont en très faible quantité et que la moindre conductivité est suffisante pour résoudre le problème. Si des charges s'accumulent sur un objet métallique isolé du sol, on peut les éliminer facilement en reliant cet objet à la terre. Une résistance, même d'un million d'ohms, est très efficace dans ce cas. Généralement, les charges ne sont transférées qu'au taux de 10-6 coulomb par seconde (10-6 ampère) et ainsi, la tension ne serait que de 10-6 x 10+6 = 1 volt. Il va de soi que si les charges s'accumulent sur un matériau isolant, cette dernière méthode ne peut s'appliquer, à moins qu'on rende l'objet conducteur par un dépôt de surface. Explosion Nous avons déjà mentionné le danger d'ignition et d'explosion associé à l'électricité statique. Ce danger ne peut exister que dans certaines circonstances bien particulières mais qui peuvent se rencontrer en pratique. Pour que la chose soit possible il faut que toutes les conditions suivantes soient réalisées simultanément: i) génération de charges ii) système d'accumulation des charges iii) l'énergie accumulée soit au-dessus du seuil d'ignition iv) une atmosphère explosive v) un claquage du milieu isolant, généralement le gaz ambiant La décharge au bout d'un doigt d'un être humain sur un gros objet à proximité peut conduire à une explosion en présence de vapeurs combustibles et d hydrogène. Il y a lieu de signaler que, dans l'arc d'une décharge électrostatique, une partie appréciable de l'énergie est absorbée par les plaques en présence. Cela diminue le danger d'ignition. Pour ces décharges, la publication NFPA 77 du National Fire Protection Association dit que "les décharges électrostatiques qui se produisent à moins de 1500 V sont peu susceptibles de produire l'ignition en présence de vapeurs d'hydrocarbone saturées à cause de la petite distance entre les électrodes" (traduction libre). Évidemment, le danger serait très réel dans le cas d'un arc avec un courant élevé. En présence de vapeur d'hydrocarbone, le danger d'ignition par l'électricité, autre que de sources électrostatiques, est très grand. Par exemple, l'ouverture d'un circuit même à 120 V, 1A produit une étincelle. Si l'ouverture dure une milliseconde, on peut estimer l'énergie dans l'arc produit comme environ 60 millijoule. En se référant au Tableau II, on constate que le danger est grand pour beaucoup de produits. Signalons finalement que le simple fait de frapper deux objets en pierre ou en acier peut produire l'ignition en présence de vapeur combustible ou d hydrogène. Il faudrait donc être prudent avant de pointer l'électricité statique comme cause d'ignition. Des causes plus plausibles, a priori, seraient l'ouverture d'un contact, le démarrage d'un moteur ou d'un autre dispositif électrique. Dans une résidence, un atelier, un garage, s'il y a fuite de gaz ou évaporation d'essence dans des proportions appropriées pendant un certain temps, l'ignition est presque certaine suite à l'ouverture ou la fermeture d'un interrupteur, le démarrage d'un moteur, l'opération d'un thermostat et de bien d'autres dispositifs électriques contrôlés manuellement ou de façon automatique.