Chapitre E5 : Electronique numérique

Documents pareils
INTRODUCTION A L ELECTRONIQUE NUMERIQUE ECHANTILLONNAGE ET QUANTIFICATION I. ARCHITECTURE DE L ELECRONIQUE NUMERIQUE

Partie Agir : Défis du XXI ème siècle CHAP 20-ACT EXP Convertisseur Analogique Numérique (CAN)

TP Modulation Démodulation BPSK

Etudier l influence de différents paramètres sur un phénomène physique Communiquer et argumenter en utilisant un vocabulaire scientifique adapté

BACCALAURÉAT PROFESSIONNEL EPREUVE DE TRAVAUX PRATIQUES DE SCIENCES PHYSIQUES SUJET A.1

Régler les paramètres de mesure en choisissant un intervalle de mesure 10µs et 200 mesures.

TS 35 Numériser. Activité introductive - Exercice et démarche expérimentale en fin d activité Notions et contenus du programme de Terminale S

Numérisation du signal

CHAPITRE V. Théorie de l échantillonnage et de la quantification

Systèmes de transmission

Union générale des étudiants de Tunisie Bureau de l institut Préparatoire Aux Etudes D'ingénieurs De Tunis. Modèle de compte-rendu de TP.

PRODUIRE DES SIGNAUX 1 : LES ONDES ELECTROMAGNETIQUES, SUPPORT DE CHOIX POUR TRANSMETTRE DES INFORMATIONS

Projet audio. Analyse des Signaux ELE2700

M HAMED EL GADDAB & MONGI SLIM

UE 503 L3 MIAGE. Initiation Réseau et Programmation Web La couche physique. A. Belaïd

Chaine de transmission

Charges électriques - Courant électrique

LABO PROJET : IMPLEMENTATION D UN MODEM ADSL SOUS MATLAB

SUJET ZÉRO Epreuve d'informatique et modélisation de systèmes physiques

Equipement. électronique

TD1 Signaux, énergie et puissance, signaux aléatoires

TRAVAUX PRATIQUES SCIENTIFIQUES SUR SYSTÈME

TABLE DES MATIÈRES 1. DÉMARRER ISIS 2 2. SAISIE D UN SCHÉMA 3 & ' " ( ) '*+ ", ##) # " -. /0 " 1 2 " 3. SIMULATION 7 " - 4.

P1PY7204 Acquisition de données Cours

8563A. SPECTRUM ANALYZER 9 khz GHz ANALYSEUR DE SPECTRE

Mini_guide_Isis.pdf le 23/09/2001 Page 1/14

Donner les limites de validité de la relation obtenue.

Mini_guide_Isis_v6.doc le 10/02/2005 Page 1/15

Didier Pietquin. Timbre et fréquence : fondamentale et harmoniques

Transmission d informations sur le réseau électrique

Automatique Linéaire 1 Travaux Dirigés 1A ISMIN

Chapitre 1 Régime transitoire dans les systèmes physiques

Chapitre I La fonction transmission

TP 7 : oscillateur de torsion

Caractéristiques des ondes

SYSTEME DE PALPAGE A TRANSMISSION RADIO ETUDE DU RECEPTEUR (MI16) DOSSIER DE PRESENTATION. Contenu du dossier :

Traitement du signal avec Scilab : la transformée de Fourier discrète


Traitement du signal avec Scilab : transmission numérique en bande de base

M1107 : Initiation à la mesure du signal. T_MesSig

SIGNAUX NUMERIQUES ET MODULATIONS NUMERIQUES

Intérêt du découpage en sous-bandes pour l analyse spectrale

1 Démarrer L écran Isis La boite à outils Mode principal Mode gadget Mode graphique...

OBJECTIFS. I. A quoi sert un oscilloscope?

- Instrumentation numérique -

A. N(p) B + C p. + D p2

QUELQUES ACTIVITES RELATIVES A LA PARTIE A Propagation d une onde ; onde progressive. Comment installer le format de compression divx?

LYCEE TECHNIQUE PIERRE EMILE MARTIN BOURGES ETUDE D UN TRAITEMENT DE SURFACE

LÕenregistrement Enregistrement analogique et enregistrement numžrique

I- Définitions des signaux.

LES DIFFÉRENTS FORMATS AUDIO NUMÉRIQUES

DimNet Gradateurs Numériques Evolués Compulite. CompuDim 2000

Manipulation N 6 : La Transposition de fréquence : Mélangeur micro-ondes

J AUVRAY Systèmes Electroniques TRANSMISSION DES SIGNAUX NUMERIQUES : SIGNAUX EN BANDE DE BASE

Enregistrement et transformation du son. S. Natkin Novembre 2001

FAG Detector III la solution pour la surveillance et l équilibrage. Information Technique Produit

LABO 5 ET 6 TRAITEMENT DE SIGNAL SOUS SIMULINK

AP1.1 : Montages électroniques élémentaires. Électricité et électronique

Approche expérimentale du rayonnement électromagnétique émis par un téléphone portable

Documentation Technique du programme HYDRONDE_LN

LES CARACTERISTIQUES DES SUPPORTS DE TRANSMISSION

Chapitre 2 Les ondes progressives périodiques

TP 03 B : Mesure d une vitesse par effet Doppler

Mesures de temps de propagation de groupe sur convertisseurs de fréquence sans accès aux OL

1. PRESENTATION DU PROJET

La conversion de données : Convertisseur Analogique Numérique (CAN) Convertisseur Numérique Analogique (CNA)

FAG Detector II le collecteur et l analyseur de données portatif. Information Technique Produit

Expérience 3 Formats de signalisation binaire

ACOUSTIQUE 3 : ACOUSTIQUE MUSICALE ET PHYSIQUE DES SONS

MODE D EMPLOI Boitier de programmation SKY

CHAPITRE IX : Les appareils de mesures électriques

Système d automation TROVIS 6400 Régulateur compact TROVIS 6493

Les techniques de multiplexage

Chapitre 13 Numérisation de l information

Filtres passe-bas. On utilise les filtres passe-bas pour réduire l amplitude des composantes de fréquences supérieures à la celle de la coupure.

SCL LOGICIEL DE CONTROL

Le transistor bipolaire. Page N 6 Tranlin

Exemple d acquisition automatique de mesures sur une maquette de contrôle actif de vibrations

Recherche De Coalescences Binaires Étalonnage Du Détecteur

Systèmes de communications numériques 2

GUIDE DE PRISE EN MAIN ISIS PROTEUS V7

ELEC2753 Electrotechnique examen du 11/06/2012

EMETTEUR ULB. Architectures & circuits. Ecole ULB GDRO ESISAR - Valence 23-27/10/2006. David MARCHALAND STMicroelectronics 26/10/2006

Spectrophotométrie. Spectrophotomètre CCD2. Réf : Version 1.0. Français p 2. Version : 4105

Bandes Critiques et Masquage

Telecommunication modulation numérique

Dan Istrate. Directeur de thèse : Eric Castelli Co-Directeur : Laurent Besacier

Champ électromagnétique?

Echantillonnage Non uniforme

Transmission de données. A) Principaux éléments intervenant dans la transmission

FORMATION MULTIMÉDIA LVE

BTS Groupement A. Mathématiques Session Spécialités CIRA, IRIS, Systèmes électroniques, TPIL

Chapitre 2 : Techniques de transmission

Programme Pédagogique National du DUT «Réseaux et Télécommunications» Présentation de la formation

VIBXPERT Collecteur et Analyseur de données FFT

Telecommunication modulation numérique

Chap17 - CORRECTİON DES EXERCİCES

CARACTERISTIQUE D UNE DIODE ET POINT DE FONCTIONNEMENT

Transcription:

Chapitre E5 : Electronique numérique 1 Echantillonage d un signal analogique 1.1 Principe de la conversion analogie-numérique CAN La plupart des signaux physiques sont analogiques : ils sont des fonctions continues du temps. Il peut être utile de les numériser. Le signal numérique acquis est alors une fonction discrète du temps. C est le rôle de la carte d acquisition, réalisant une conversion analogique-numérique (CAN). A l inverse il est possible de convertir un signal numérique en signal analogique (CNA). Numériser un signal peut présenter plusieurs intérêts : Les signaux numériques sont moins sensibles au bruit électronique. Un signal numérique nécessite une plus faible puissance d émission. Le traitement numérique est plus simple à mettre en œuvre sur un signal numérisé : pas besoin de modifier un montage expérimental en changeant les valeurs des composants, un simple changement d algorithme suffit. Echantilloner un signal analogique consiste à prendre des valeurs données à des instants discrets régulièrement espacés d une période T e. T e est la période d échantillonage, f e = 1 T e est la fréquence d échantillonage. Exemples : un signal audio numérique (mp3) est généralement échantilloné à f e = 44, 1kHz. Les oscilloscopes numériques de la salle de TP ont une fréquence d échantillonage réglable. 1 PSI, lycée de l Essouriau, 2016/2017

2 Phénomène de repliement spectral 2.1 Expérience collective : mouvement apparent d un segment tournant (expérience 1) 1. Proposer un protocole permettant de déterminer la fréquence de rotation du disque à l aide d un stroboscope. 2. Reporter sur la figure ci-dessous les observations réalisées : a) F e =F/2 θ (u.a.) b) F e =F c) F e =4F d) F e < F e) F e > F 2 PSI, lycée de l Essouriau, 2016/2017

2.2 Un même signal numérique pour plusieurs signaux analogiques différents (expérience 2) 1. Avec le GBF, générer un signal sinusoïdal de fréquence 5Hz strictement positif (ajuster pour cela l offset et l amplitude). Le visualiser sur l oscilloscope. 2. Ouvrir le logiciel Arduino puis le programme CAN 2 (dans Program files/arduino). Téleverser le programme dans la carte Arduino puis dans le menu outil cliquer sur Traceur série. Est alors affiché en temps réel le signal de l entrée analogique A0 avec une période d échantillonage de 1 ms. 3. Demander au professeur la carte Arduino correspondant à votre numéro de poste. Visualiser en temps réel le signal résultant de l acquisition numérique du signal de fréquence f = 5Hz. ATTENTION : l une des pattes GND de la carte Arduino doit impérativement être reliée à la masse du GBF. 4. Augmenter la fréquence du signal analogique jusqu à 1kHz et relever plusieurs valeurs de fréquences telles que les signaux numérisés correspondent à une même fréquence apparente que celle du signal de fréquence 5Hz. 5. Interpréter cette observation à l aide du schéma ci-dessous en représentant le signal numérique ) à partir du signal analogique déjà tracé et sachant que T e = 2, 0.10 5 s. 2.3 Condition de Nyquist Schannon 1. Soit un signal sinusoïdal v(t) = A cos (2πft) de fréquence f. Echantilloner un signal revient mathématiquement à le multiplier par une série d impulsions temporelles, le signal après échantillonnage est alors de la forme : v e (t) = E cos (n2πf e t) v(t) = E [cos (n2πf e t) cos (2πft)] n=0 Linéariser l expression du signal v e (t) puis compléter le graphique ci-dessous représentant le spectre du signal échantillonné dans deux cas : f e >> 2f et f e < 2f. Sachant que l étendue du spectre affiché par un oscilloscope (ou tout programme utilisant l algorithme FFT) s étale de 0 à f e 2, en déduire à quelle condition sur f e l observation du spectre est correcte. n=0 3 PSI, lycée de l Essouriau, 2016/2017

2. Cas d un signal quelconque comportant un spectre large. Pour simplifier on considèrera que le spectre d un tel signal peut s écrire comme la somme d une infinité de sinusoïdes. On appelle f max la plus haute composante spectrale du signal. Compléter le graphique ci-dessous représentant le spectre du signal échantillonné dans deux cas : f e >> 2f max et fe < 2f max. En déduire la condition sur f e pour que l observation du spectre entre 0 et f e2 soit correcte. On parle de repliement de spectre (aliasing en anglais) lorsqu il y a apparition de raies spectrales dans le domaine fréquentiel du signal réel. La condition pour ne pas avoir de repliement de spectre est la condition de Nyquist-Schannon : 2.4 Observation d un repliement de spectre avec l oscilloscope (expérience 3) Dans cette partie on s intéresse à l analyse spectrale d un signal de votre oscilloscope numérique. Nous avons vu que le choix de la fréquence d échantillonnage est un paramètre crucial pour effectuer une numérisation correcte du signal. Il faut respecter la condition de Nyquist-Shannon. En pratique il est préférable d avoir f e >> 2f max. Pour choisir f e, on peut régler deux paramètres : La durée D de l acquisition Le nombre de points N de l acquisition La période d échantillonnage se déterminant avec la relation : T e = D N (a) Aller regarder dans la documentation du fabriquant le nombre de points N (fixe) qu utilise votre oscilloscope pour numériser le signal. Le nombre de points est-il identique pour l acquisition du signal et pour l affichage du spectre? (b) Sur l écran du menu FFT, la fréquence d échantillonnage est donnée en S/s (S pour Samples), donc en Hz. Comment la modifier? Quel paramètre (D ou N) contrôlez-vous pour modifier F e? (c) Vérifier que la borne supérieure du graphe FFT affiché par l oscilloscope correspond à la fréquence f e2. 4 PSI, lycée de l Essouriau, 2016/2017

On souhaite faire l analyse spectrale d un signal sinusoïdal de fréquence f = 100kHz. (a) Choisir la fréquence d échantillonnage, le nombre N de points d acquisition ou la durée D pour que l analyse spectrale soit correcte. Réaliser cette acquisition et vérifier que le spectre du signal sinusoïdal est correctement tracé dans le menu FFT de l oscilloscope. (b) Pour une durée d acquisition fixée (donc f e fixée), modifier la fréquence f du signal de façon à observer un repliement de spectre. (c) Comment faire pour observer le spectre d un signal avec une échelle plus petite sans modifier la fréquence d échantillonnage? 2.5 Effet des paramètres d acquisition sur la résolution spectrale (pour les plus rapides) Dans cette partie on travaillera toujours avec la fréquence f e très supérieure à 2f max de telle sorte que les problèmes dus à l échantillonnage soient absents. (a) Comparer et représenter sur un même graphe l allure des spectres d un signal sinusoïdal pour différentes durées d acquisition. On pensera à utiliser l outil de zoom pour agrandir l éhelle sans changer la durée d acquisition. (b) Comment faut-il choisir N et D pour que la résolution spectrale soit la meilleure possible? 3 Filtrage numérique d une acquisition (expérience 4) Dans cette partie on réalise un filtrage numérique d un signal analogique. Ce filtrage sera programmé directement dans l environnement Arduino CAN 3. La carte Arduino ne pouvant travailler qu avec un signal strictement positif, réaliser un signal sinusoïdal de fréquence 40 Hz, d amplitude 1, 5V avec un offset d environ 1 V. 3.1 Filtrage numérique passe-bas Le premier filtrage que l on souhaite réaliser est un filtrage de type passe-bas avec la fréquence de coupure 62, 5Hz. La fonction de transfert d un filtre analogique passe-bas du premier ordre équivalent est de la forme : L équation différentielle associée est donc : s e = 1 1 + jx avec x = ω = ωτ ω c s + τ ds dt = e 5 PSI, lycée de l Essouriau, 2016/2017

1. La période d échantillonage en ms est définie dans delay(). Par défaut on choisit une période de 1 ms. Le critère de Nyquist-Schannon est respecté pour des signaux sinusoïdaux de quelles fréquences? 2. Après échantillonnage, le CAN permet d obtenir une série de données du signal d entrée e[j]. En vous aidant de la méthode d Euler (vue en première année), écrire une relation mathématique entre s[j], s[j +1], e[j], f c et la période d échantillonnage T e, où s[j] est la valeur du signal de sortie du filtre numérique. 3. Dans le programme CAN 3, écrire la ligne de code donnant la valeur du signal de sortie. Remarque : comme en langage Python s[j + 1] = s[j] + 2 peut s écrire s = s + 2. 4. La carte possède des sorties permettant la conversion numérique-analogique (CNA) sous la forme de modulation de largeur d impulsion, notée PWM (Pulse Width Modulation). Le signal de sortie de la carte est un signal haute fréquence f s = 31kHz dont la valeur moyenne est proportionnelle au signal numérique de sortie. Réaliser un filtre passe-bas RC en sortie de la carte (sortie PWM 9) avec R 10kΩ et C 22nF (fréquence de coupure de 720 Hz). Le signal numérique convertit analogiquement par la carte peut maintenant être mesuré en sortie de ce filtre. 5. Téléverser le programme dans la carte et observer simultanément sur l oscilloscope le signal d entrée et le signal de sortie. Rappel : on choisira un signal d entrée de fréquence f = 40Hz, strictement positif (ajuster pour cela l offset et l amplitude du signal). 6. A l aide du bouton Run/Stop figer l affichage de l oscilloscope. Commenter l allure crénelée du signal de sortie et mesurer la période d échantillonnage. 7. Mesurer la fréquence de coupure f c du filtre numérique passe-bas. 8. Appliquer en entrée un signal créneau, commenter l allure du signal de sortie. 3.2 Filtrage numérique passe-bande d un signal créneau On souhaite sélectionner la composante fréquentielle fondamentale d un signal numérique créneau (tension strictement positive, de fréquence f=100 Hz) à l aide d un filtre numérique passe-bande d ordre 2 dont le filtre analogique équivalent a la fonction de transfert suivante : s e = j x Q 1 + j x Q + avec x = ω = ωτ (jx)2 ω o En vous aidant de la méthode d Euler et du paragraphe précédent, réaliser le filtrage numérique passebande du signal créneau numérisé respectant le critère de Shannon-Nyquist. Le facteur de qualité du filtre sera pris égal à Q = 1, 2. 4 Réalisation d oscillateurs à portes logiques Cette partie sera abordée lors de la prochaine séance. 6 PSI, lycée de l Essouriau, 2016/2017