Comment déterminer la "vrai" puissance de son installation



Documents pareils
Notions de base sur l énergie solaire photovoltaïque

Architecture et Matériel Industriel

Cours d électricité. Circuits électriques en courant constant. Mathieu Bardoux. 1 re année

Manuel d'utilisation de la maquette

Circuits RL et RC. Chapitre Inductance

ELEC2753 Electrotechnique examen du 11/06/2012

CHAPITRE IX. Modèle de Thévenin & modèle de Norton. Les exercices EXERCICE N 1 R 1 R 2

Le transistor bipolaire

Spécifications techniques relatives à la protection des personnes et des biens dans les installations photovoltaïques raccordées au réseau

CHAPITRE VIII : Les circuits avec résistances ohmiques

GOL-MPPT- 24V-10A GOL-MPPT- 12V-15A

Systèmes de transmission

Représentation des Nombres

L analyse boursière avec Scilab

Electricité : caractéristiques et point de fonctionnement d un circuit

Exercice n 1: La lampe ci-dessous comporte 2 indications: Exercice n 2: ( compléter les réponses sans espaces)

Panneaux solaires. cette page ne traite pas la partie mécanique (portique, orientation,...) mais uniquement la partie électrique

Sciences physiques Stage n

LE PROCESSUS ( la machine) la fonction f. ( On lit : «fonction f qui à x associe f (x)» )

Centrale d alarme DA996

T.P. 7 : Définir et contrôler un système d allumage statique

Les puissances La notion de puissance La puissance c est l énergie pendant une seconde CHAPITRE

Introduction : Les modes de fonctionnement du transistor bipolaire. Dans tous les cas, le transistor bipolaire est commandé par le courant I B.

La fonction exponentielle

Cours 9. Régimes du transistor MOS

Défi 1 Qu est-ce que l électricité statique?

/ kit camping-car - modèle avec 2 panneaux

Études et Réalisation Génie Électrique

Complément d information concernant la fiche de concordance

Les indices à surplus constant

Chapitre 1 : Évolution COURS

Fonctions de deux variables. Mai 2011

Soit la fonction affine qui, pour représentant le nombre de mois écoulés, renvoie la somme économisée.

Fonctions de plusieurs variables

Chapitre 3 Les régimes de fonctionnement de quelques circuits linéaires

Chapitre 1 Régime transitoire dans les systèmes physiques

Convertisseurs statiques d'énergie électrique

Chapitre 3 CONDUCTEURS ET ISOLANTS

Chapitre 4 : Guide de Mouvement et Masque

Unités de mesure de l énergie Septembre 2009

Module 16 : Les fonctions de recherche et de référence

Module d Electricité. 2 ème partie : Electrostatique. Fabrice Sincère (version 3.0.1)

Chapitre 02. La lumière des étoiles. Exercices :

L énergie durable Pas que du vent!

V- Manipulations de nombres en binaire

Le circuit électrique

I GENERALITES SUR LES MESURES

Les transistors à effet de champ

Energie et conversions d énergie

Chapitre 7 : CHARGES, COURANT, TENSION S 3 F

KIT SOLAIRE EVOLUTIF DE BASE

EXCEL PERFECTIONNEMENT SERVICE INFORMATIQUE. Version /11/05

Eteindre. les. lumières MATH EN JEAN Mme BACHOC. Elèves de seconde, première et terminale scientifiques :

Dossier technique. Présentation du bus DMX et Utilisation des options EL13 / EL14 ERM AUTOMATISMES INDUSTRIELS 1 LE PROTOCOLE DMX 2

1 Savoirs fondamentaux

PRODUCTION DE L ENERGIE ELECTRIQUE

Copropriété: 31, rue des Abondances Boulogne-Billancourt

Numéro de publication: Al. Int. CIA H03K 17/12, H03K 17/08. Demandeur: FERRAZ Societe Anonyme

Générateur Photovoltaïque K-Sol

ALIMENTATION PORTABLE 9000 AVEC DEMARRAGE DE SECOURS POUR VOITURE

CH IV) Courant alternatif Oscilloscope.

Vous avez dit... LED??? DOCLED V2 Page 1 / 14

Notice d utilisation Cafetère isotherme programmable CL-ISPR12X FR-1. Version

0.8 U N /0.5 U N 0.8 U N /0.5 U N 0.8 U N /0.5 U N 0.2 U N /0.1 U N 0.2 U N /0.1 U N 0.2 U N /0.1 U N

Introduction à HTML5, CSS3 et au responsive web design

t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre :

M HAMED EL GADDAB & MONGI SLIM

Contrôle parental NetAddictFree 8 NetAddictFree 8 - Guide d utilisation

TD 11. Les trois montages fondamentaux E.C, B.C, C.C ; comparaisons et propriétés. Association d étages. *** :exercice traité en classe.

CORRECTION TP Multimètres - Mesures de résistances - I. Mesure directe de résistors avec ohmmètre - comparaison de deux instruments de mesure

TP Modulation Démodulation BPSK

Information Technique Derating en température du Sunny Boy et du Sunny Tripower

Circuit comportant plusieurs boucles

Tutoriel sur l enregistrement en classe Janvier Jean-Claude Boudet (académie de Bordeaux) 1. Le matériel

LUT QU EST-CE QUE C EST? Version 1.0 Mars 2010

CARACTERISTIQUE D UNE DIODE ET POINT DE FONCTIONNEMENT

CORRIGES DES CAS TRANSVERSAUX. Corrigés des cas : Emprunts

Eléments constitutifs et synthèse des convertisseurs statiques. Convertisseur statique CVS. K à séquences convenables. Source d'entrée S1

Stopack : logiciel pour l entrepôt

Circuits intégrés micro-ondes

Les transistors à effet de champ.

Apllication au calcul financier

Fabriquer son TBI avec une manette de jeu WII

Voyez la réponse à cette question dans ce chapitre.

LES DECIMALES DE π BERNARD EGGER

Comment créer votre propre lampes LED

EXCEL et base de données

Formation Bâtiment durable-energie Cycle 2013

Contribution à la conception par la simulation en électronique de puissance : application à l onduleur basse tension

Notice de paramétrage Version 1.1

TP, première séquence d exercices.

NOTICE D UTILISATION

Dérivation CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES

En recherche, simuler des expériences : Trop coûteuses Trop dangereuses Trop longues Impossibles

LA MAIN A LA PATE L électricité Cycle 3 L électricité.

Version Manuel de l utilisateur. Logiciel technico-économique de dimensionnement solaire

Hémomixer Etude des sollicitations du corps d épreuve

CAC, DAX ou DJ : lequel choisir?

La chanson lumineuse ou Peut-on faire chanter la lumière?

Traitement des données avec Microsoft EXCEL 2010

Transcription:

Comment déterminer la "vrai" puissance de son installation Les caractéristiques des modules qui sont fournies par le constructeur sont des moyennes. Il indique d'ailleurs toujours l'écart à la moyenne sous forme d'un pourcentage. Dans la pratique, lors de la construction, chaque module est testé en sortie de la ligne d assemblage. On le soumet très brièvement à un éclairage dans une enceinte recréant les conditions STC de 1000W/m², 25 C, AM 1,5. On appelle ça le «flashage» Une fois tous les modules flashés, le constructeur fait des lots en triant les modules en puissance. Tous les modules d un lot auront donc la même puissance + ou quelques pourcent. Cela dépend des fabricants, on peut avoir +-3% ou 5+10%, Chaque module est donc unique dans ses caractéristiques. Pour qu une installation photovoltaïque fonctionne le mieux possible, il est donc préférable que tous ses modules soient les plus semblables possibles. En effet, l installation est constituée de plusieurs modules mis en série (string) et en parallèle. Lorsque l on met les modules en série, les tensions s ajoutent mais le courant reste constant et sera égal au courant du module le plus faible. De même, lorsque l on met des modules en parallèle, les courants s ajoutent mais la tension reste constante et sera égale à la tension la plus faible. Comme l on met généralement plus de module en série qu en parallèle, on va donc essayer d avoir des modules ayant des courants similaires ensembles. Jusque là tout va bien! Sauf qu un module n a pas toujours la même tension ni le même courant : c est un générateur d énergie qui va s adapter à la demande en puissance que l on fait. C est exactement comme une pile d une lampe de poche : si vous ne branchez rien dessus, la pile aura une tension donnée et un courant nul. On peut voir cela comme un «potentiel» d énergie à donner. Si vous créez un court-circuit entre les bornes + et -, vous aurez un courant élevé et une tension nulle (le potentiel est nul, la pile donne tout ce qu elle a dans le ventre!). Cet état n est pas durable car la pile va rapidement s épuiser. Entre ces deux extrêmes, il existe une infinité d états accessibles qui seront déterminés par la charge (la résistance de l ampoule) que vous mettrez entre les 2 pôles. Notre module fonctionne de la même manière sauf qu il est rechargé en permanence par les photons du Soleil (l explication de ce mécanisme sera pour une autre fois!). Chacun de ses états accessibles correspond à une puissance fournie. La puissance est obtenue comme le produit du courant par la tension. Dans les 2 cas extrêmes, la puissance est nulle puisque l une des deux valeurs est nulle. Entre ces 2 points existe un point ou la puissance est maximale. C est ce point que l on cherche à atteindre en permanence et c est là le boulot de l onduleur : faire en sorte qu à tout moment les modules donnent le maximum de puissance. On appelle ce point Pmpp, la tension associé Umpp et le courant associé Impp. MPP vient de l anglais Maximal Power Point : Point de Puissance Maximale. Concrètement, on peut visualiser cela par une courbe I = f(u) et une autre P = f(u). Par exemple pour un module de Sanyo de 210Wc, on a :

Caractéristique I = f(u) Caractéristique P = f(u) On observe bien les points : - en vert : Tension de circuit ouvert Uoc et courant de court-circuit Icc - en bleu : la tension Umpp et le courant Impp liés au point de fonctionnement maximal - en rouge : le point de puissance maximale : Pmpp Voilà pour le comportement d un module. Lorsque l on met plusieurs modules en série, on obtiendra au final le même genre de courbe. On peut considérer l ensemble de l installation comme un unique et énorme panneau! La détermination de la puissance de cet unique panneau n est pas évidente puisque chaque module entité est un peu différent. En première approximation, on peut additionner l ensemble des puissances, mais cela ne sera pas exact. Pour avoir un résultat exact, il faut déterminer pour chaque string sa tension et son courant.

Comment déterminer la tension d une string? Première approche : Repérons dans le groupe des modules en série qui composent la string celui qui a le courant le plus faible. On doit ensuite regarder pour chacun des autres modules qu elle est la tension qui correspond à ce courant (sur sa courbe I=f(U)). Une fois cela fait, il suffit d ajouter toutes les tensions obtenues pour obtenir la tension de la string. En multipliant par le courant, on obtient la puissance «réelle» de la string. Si l installation ne comporte qu une string nous avons là sa puissance. Maintenant si on a 2 string en parallèle. On peut faire la même opération que précédemment sur les 2 strings. Si les tensions obtenues sont identiques (cas fort peu probable!), pas de problème, la puissance de notre installation sera le produit de la tension par la somme des courants des 2 strings : P = U_string x (I_string1 + I_string2). Mais si les tensions sont différentes? Les choses se compliquent mais on peut s en sortir. On peut considérer chaque string comme un unique module. Comme ils sont en parallèles, les tensions doivent être les mêmes et égales à la tension la plus faible. Le string-module qui a sa tension la plus élevée devra la baisser ce qui aura pour conséquence de modifier son courant. On peut déterminer ce courant en traçant la caractéristique de se string-module. Une fois le courant déterminé, on retrouve le cas précédent ou les 2 string ont des tensions identiques. Ce raisonnement est en fait pas tout à fait correct car nous ne sommes pas dans une situation statique. En effet, au bout de nos modules, il y a l onduleur qui en permanence cherche le Pmpp et pour ce faire fait varier la tension. L onduleur ne voyant pas les modules individuellement, il fait varier la tension globale de chaque string. Chaque module va donc voir sa tension bouger un peu ainsi que son courant puisqu ils sont liés (on se promène sur la caractéristique I=f(U)). La solution de prendre le courant le plus faible est donc un peu perturbée et dans la réalité le courant de la string sera un peu plus élevé. Si vous êtes arrivé jusque là, vous vous dites : c est bien joli tout ça, mais qu en est-il de la «vrai» puissance de mon installation! J y arrive! Mais il y encore quelques considérations un peu techniques qu il me faut exposer. Elles ne sont cependant pas nécessaire pour l utilisation du programme et vous pouvez donc les sauter et aller directement à l exemple ci-dessous. L exposé ci-dessus montre que la solution du problème tourne autour du calcul de la caractéristique d un module. Il existe plusieurs modèle mathématique du fonctionnement d un module, mais tous utilisent la diode comme base en y rajoutant une ou plusieurs résistances. Une excellente introduction est donnée par M. Matagne là : http://www.lei.ucl.ac.be/~matagne/solaire/sem10/s10p13.htm

Le modèle est le suivant : Ce qui se traduit pour notre caractéristique I=f(U) par : Dans cette formule, nous avons : - I et U le courant et la tension aux bornes du module - I L : le courant photogénéré - I 0 : le courant de saturation inverse - γ : le facteur de qualité de la diode - R s : la résistance série - R sh : la résistance de Shunt - e : la charge de l électron - k : la constante de Boltzman A partir des points données par le fabricant (tension à vide, courant de court-circuit, coefficients de température) il est possible de résoudre cette équation et d obtenir ainsi la caractéristique complète du module. M. Matagne propose un programme Basic résolvant cette équation, j en ai fait une adaptation plus complète disponible là : http://tinyurl.com/cakksr EXEMPLE 1 : Considérons un module Sanyo HIP-210NKHE1. Le constructeur donne les caractéristiques moyennes suivantes : Nombre de cellules : 72 (ça c est pas une moyenne!) Tension Mpp : Umpp = 41,3 V Courant Mpp : Impp = 5,09 A Tension en circuit ouvert : Uco = 50,9 V Courant de court circuit : Icc = 5,57 A Coeff. de température de Uco : -127 mv/ C Coeff. de température de Icc : 1,67 ma/ C Coeff. de température de Pmpp : -0,3 %/ C Et les courbes :

Voilà les courbes obtenues avec le programme pour l évolution en fonction de l irradiation : On constate une bonne correspondance bien que les coudes des pentes soient moins brutales que ce qu elles devraient être. Faut dire aussi que les modules Sanyo HIP ont une technologie hybride cristallin/amorphe que le modèle ne sait pas reproduire. Considérons maintenant une installation constituée de 14 de ces modules dont les données techniques sont (flash-list) : N Uoc [V] Isc [A] Umpp [V] Impp [A] Pmpp[W] 1 51,06 5,500 41,82 5,087 212,7 2 51,18 5,504 41,49 5,128 212,7 3 51,24 5,464 41,84 5,083 212,6 4 51,45 5,453 41,92 5,108 214,1 5 51,18 5,456 41,82 5,098 213,2 6 50,89 5,516 41,22 5,153 212,4

7 51,19 5,493 41,66 5,083 211,7 8 51,32 5,475 41,50 5,082 210,9 9 51,39 5,521 41,84 5,092 213,1 10 51,22 5,498 41,85 5,079 212,5 11 51,47 5,469 42,09 5,051 212,6 12 51,38 5,484 42,12 5,016 211,3 13 51,22 5,462 41,83 5,032 210,5 14 51,46 5,506 42,54 5,005 212,9 La somme brutale des puissances donnent : 2973,2Wc. Nous allons considérer 2 cas d installation : la première avec une seule string de 14 modules, la secondes avec 2 strings de 7 modules. Cas 1 : une string de 14 modules. Dans ce cas, trier ne sert à rien. Si on calcule la puissance avec la méthode du courant minimal, on obtient : Pmpp = Utotal x Imin = 585,54 x 5,005 = 2930,6Wc En utilisant les caractéristiques des modules, on obtient : Pmpp=2971,82Wc, Umpp=585,42V, Impp=5,08A On constate une puissance proche de celle obtenue par la somme brute. On voit aussi que le courant est supérieur au courant minimal. Cas 2 : deux string de 7 modules. Dans ce cas, on peut faire des tris afin d améliorer les choses (?). Le tableau ci-dessous regroupe plusieurs tests (les valeurs pour String 1 & 2 correspondent à la string isolée) : Résultats Sans tri Pmpp=2972,98Wc, Umpp=292,43V, Impp=10,17A String 1 : Pmpp=1489,33Wc, Umpp=291,82V, Impp=5,10A String 2 : Pmpp=1483,28Wc, Umpp=293,61V, Impp=5,05A Tri en puissance Pmpp=2972,47Wc, Umpp=292,06V, Impp=10,18A String 1 : Pmpp=1490,78Wc, Umpp=293,04V, Impp=5,09A String 2 : Pmpp=1481,11Wc, Umpp=292,23V, Impp=5,07A Tri en courant Pmpp=2972,58Wc, Umpp=291,76V, Impp=10,19A String 1 : Pmpp=1490,65Wc, Umpp=292,07V, Impp=5,10A String 2 : Pmpp=1482,03Wc, Umpp=293,68V, Impp=5,05A Conclusion, le tri n apporte rien! Les écarts ne sont pas significatifs pour être relevant. En fait, il se trouve que le groupe de module est très homogène. EXEMPLE 2 : Nous allons maintenant considérer un module SDM 185Wc. Les caractéristiques sont : Nombre de cellules : 72 Tension Mpp : Umpp = 34,6 V Courant Mpp : Impp = 5,35 A Tension en circuit ouvert : Uco = 44 V Courant de court circuit : Icc = 5,8 A Coeff. de température de Uco : -156 mv/ C Coeff. de température de Icc : 3,074 ma/ C

Coeff. de température de Pmpp : -0,485 %/ C La modélisation donne la caractéristique suivante : Faisons les mêmes opérations que dans l exemple précédent en considérant les 14 modules suivants : N Uoc [V] Isc [A] Umpp [V] Impp [A] Pmpp[W] FF 1 44,56 5,584 35,4 5,145 182,1 0,732 2 44,88 5,637 36,31 5,132 186,3 0,737 3 44,82 5,618 35,98 5,2 187,1 0,743 4 44,77 5,571 35,77 5,203 186,1 0,746 5 44,84 5,611 36,01 5,195 187,1 0,744 6 44,81 5,533 35,8 5,174 185,2 0,747 7 45,02 5,563 36,3 5,137 186,5 0,745 8 44,99 5,52 36,09 5,064 182,7 0,736 9 44,96 5,564 35,99 5,158 185,7 0,742 10 44,64 5,633 35,82 5,088 182,2 0,725 11 44,83 5,589 35,66 5,228 186,4 0,744 12 44,49 5,55 35,72 5,047 180,3 0,73 13 44,69 5,716 35,72 5,248 187,5 0,734 14 45 5,47 36,31 5,063 183,8 0,747 La somme brutale des puissances donnent : 2589Wc. Cas 1 : une string de 14 modules. Aucun tri nécessaire. Si on calcule la puissance avec la méthode du courant minimal, on obtient : Pmpp = Utotal x Imin = 502,88 x 5,047 = 2538,03Wc En utilisant les caractéristiques des modules, on obtient : Pmpp=2586,03Wc, Umpp=502,98V, Impp=5,14A On constate une puissance proche de celle obtenue par la somme brute. On voit aussi que le courant est supérieur au courant minimal.

Cas 2 : deux string de 7 modules. Dans ce cas, on peut faire des tris afin d améliorer les choses (?). Le tableau ci-dessous regroupe plusieurs tests (les valeurs pour String 1 & 2 correspondent à la string isolée) : Résultats Sans tri Pmpp=2586,54Wc, Umpp=251,53V, Impp=10,28A String 1 : Pmpp=1300,12Wc, Umpp=251,53V, Impp=5,17A String 2 : Pmpp=1286,48Wc, Umpp=251,43V, Impp=5,12A Tri en puissance Pmpp=2588,09Wc, Umpp=251,71V, Impp=10,28A String 1 : Pmpp=1306,34Wc, Umpp=251,71V, Impp=5,19A String 2 : Pmpp=1281,19Wc, Umpp=251,06V, Impp=5,10A Tri en courant Pmpp=2588,73Wc, Umpp=251,92V, Impp=10,28A String 1 : Pmpp=1304,70Wc, Umpp=251,14V, Impp=5,20A String 2 : Pmpp=1283,54Wc, Umpp=252,06V, Impp=5,09A La encore le tri n apporte pas grand chose, tout juste 2Wc de gagner. Conclusion : Dans le cas d une petite installation et sous réserve que le lot de modules fourni est homogène, une excellente approximation de la puissance de l installation sera obtenue en faisant simplement la somme des puissances des modules de la flash-list et faire un tri ne s impose pas.