La figure ci-contre décrit trois situations particulières de visibilité correspondant à un faisceau conique incident issu du point objet B.



Documents pareils
Sujet. calculatrice: autorisée durée: 4 heures

Exposition. VLR plongée e commission photo

Chapitre 2 : Caractéristiques du mouvement d un solide

"La collimation est la première cause de mauvaises images dans les instruments amateurs" Walter Scott Houston

Ensemble léger de prise de photo sous UV-A Tam Photo Kit n 1 pour appareil photo compact

TP SIN Traitement d image

Mesurer les altitudes avec une carte

Les bases des objectifs interchangeables

Réussir et traiter ses photos sous UV avec Photoshop

Nom : Groupe : Date : 1. Quels sont les deux types de dessins les plus utilisés en technologie?

Vision industrielle et télédétection - Détection d ellipses. Guillaume Martinez 17 décembre 2007

PRINCIPE MICROSCOPIE CONFOCALE

Sujet. calculatrice: autorisée durée: 4 heures

ÉPREUVE COMMUNE DE TIPE Partie D. TITRE : Comment s affranchir de la limite de la diffraction en microscopie optique?

La Photographie - Page 1 / 13

Lightroom. Chambre noire numérique. Organisation. Lightroom Catalog.lrcat. Lightroom Catalog Previews.lrdata 2005, 2006, 2007

OPTIQUE GEOMETRIQUE POLYCOPIE DE COURS

GMEC1311 Dessin d ingénierie. Chapitre 1: Introduction

DURÉE DU JOUR EN FONCTION DE LA DATE ET DE LA LATITUDE

G.P. DNS02 Septembre Réfraction...1 I.Préliminaires...1 II.Première partie...1 III.Deuxième partie...3. Réfraction

Baccalauréat L spécialité, Métropole et Réunion, 19 juin 2009 Corrigé.

PES PILOT HDpro. La nouvelle référence en matière de vidéo-endoscopie

Collection de photos échantillons

- un Sigma DP1 Quattro (

Université Bordeaux 1 MIS 103 OPTIQUE GÉOMÉTRIQUE

Fonctions de deux variables. Mai 2011

Photographier le ciel avec votre appareil photo

Par Richard Beauregard. Novembre 2011

TSTI 2D CH X : Exemples de lois à densité 1

7. Exemples de tests pour détecter les différents troubles de la vision.

Les bases de l optique

Galerie de photos échantillons SB-910

I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES

Chapitre 2 : étude sommaire de quelques instruments d optique 1 Grandeurs caractéristiques des instruments d optique Grossissement

Q6 : Comment calcule t-on l intensité sonore à partir du niveau d intensité?

PHYSIQUE-CHIMIE. Partie I - Spectrophotomètre à réseau

404 CAMCORDER FONCTIONS CAMÉSCOPE ET APPAREIL PHOTO

Voyez la réponse à cette question dans ce chapitre.

Choisir entre le détourage plume et le détourage par les couches.

AC AB. A B C x 1. x + 1. d où. Avec un calcul vu au lycée, on démontre que cette solution admet deux solutions dont une seule nous intéresse : x =

DIFFRACTion des ondes

Aperture Principes fondamentaux de la photographie numérique

TD1 PROPAGATION DANS UN MILIEU PRESENTANT UN GRADIENT D'INDICE

Caractéristiques Techniques LEICA M MONOCHROM (Typ 246)

Opérations de base sur ImageJ

L espace de travail de Photoshop

UN COURS DE PHOTO. le cadeau idéal pour progresser en photo. en 4 heures pour une personne. Des cours collectifs à choisir parmi 8 thèmes :

INSTRUCTIONS COMPLÉTES

Glossaire technique Veditec

Chapitre 1 Régime transitoire dans les systèmes physiques

Chapitre 18 : Transmettre et stocker de l information

- Enlever les imperfections de la peau avec l'outil clonage. - Donner plus d'impact à la chevelure du personnage

L'astrophotographie au Cercle

Dessiner dans Galaad FRANÇOIS PALLUT

La perspective conique

LES CARACTERISTIQUES DES SUPPORTS DE TRANSMISSION

Quand doit-on utiliser un grand-angle?

Nombre dérivé et tangente

Les Conditions aux limites

AUTRES ASPECTS DU GPS. Partie I : tolérance de Battement Partie II : tolérancement par frontières

FICHE METIER. «Opérateur de prises de vue» Opérateur de prises de vue vidéo. Cadreur. Pointeur vidéo APPELLATION(S) DU METIER DEFINITION DU METIER

Sur le grossissement des divers appareils pour la mesure des angles par la réflexion d un faisceau lumineux sur un miroir mobile

Panorama Caractéristiques Spécificités Techniques Accessoires Produits Compatibles Avis de consommateurs

EXERCICE 2 : SUIVI CINETIQUE D UNE TRANSFORMATION PAR SPECTROPHOTOMETRIE (6 points)

Muret Laurentien MC. Classique et Versatile

Savoir construire une photographie. Connaitre la base en technique photographique. Savoir traduire le message du mouvement en image.

LCD COLOR MONITOR (English French Translation)

Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en Énoncé.

Formats d images. 1 Introduction

Les interférences lumineuses

LES LOIS PHYSIQUES APPLIQUÉES AUX DEUX-ROUES : 1. LA FORCE DE GUIDAGE

5 ème Chapitre 4 Triangles

Utilisation du visualiseur Avermedia

point On obtient ainsi le ou les points d inter- entre deux objets».

Les mesures à l'inclinomètre

La magnitude des étoiles

La photo numérique. sous-marine. Guide expert. Isabelle et Amar Guillen. Groupe Eyrolles, 2005 ISBN :

DIPLÔME INTERUNIVERSITAIRE D ECHOGRAPHIE. Examen du Tronc Commun sous forme de QCM. Janvier h à 16 h

Vidéo Haute définition pour Station Service

Continuité et dérivabilité d une fonction

Comprendre l Univers grâce aux messages de la lumière

LA MESURE DE PRESSION PRINCIPE DE BASE

DP 500/ DP 510 Appareils de mesure du point de rosée mobiles avec enregistreur

DOCM Solutions officielles = n 2 10.

Fonctions de plusieurs variables

PROGRAMME D HABILETÉS EN FAUTEUIL ROULANT (WSP-F)

Utiliser le logiciel Photofiltre Sommaire

LES CAPTEURS CCD/CMOS

Physique: 1 er Bachelier en Medecine. 1er juin Duree de l'examen: 3 h. Partie 1: /56. Partie 2 : /20. Nom: N ō carte d étudiant:

Chapitre 0 Introduction à la cinématique

Tp_chemins..doc. Dans la barre "arche 2" couleur claire 1/5 21/01/13

IMAGE BASED MODELING généralités et utilisation des outils de photomodélisation. 123D Catch de Autodesk.

Cours de numérisation sur Epson Perfection

DÉCOUVERTE DE CAPTURE ONE

UNE TECHNIQUE ÉPROUVÉE : LE ZONE SYSTEM

Découverte du logiciel ordinateur TI-n spire / TI-n spire CAS

I. Polynômes de Tchebychev

TD : Codage des images

Savoir lire une carte, se situer et s orienter en randonnée

Zone 2 L aventure de la copie

Transcription:

Chapitre 7 : champs d un objectif et pertes d éclairement dans le champ de l image 1 Champ des instruments 1.1 Définition Le champ total d un instrument est la région tridimensionnelle de l espace dont les points objets sont optiquement reproduits par l instrument. Les rayons lumineux issus des points objets appartenant à ce volume forment des faisceaux traversant l instrument pour atteindre le récepteur (rétine de l œil pour les instruments subjectifs et récepteur physique pour les instruments objectifs). Les systèmes optiques des instruments sont généralement des systèmes centrés, leur champ est donc un volume conique de révolution autour de l axe optique. Pour étudier ce champ, onlecaractérisepardeuxdimensionslinéairesouunangleetunelongueur: Le champ en largeur ou champ transversal, mesuré dans une direction quelconque perpendiculaire à l axe optique, dans un plan de front objet ; il est limité vers l extérieur par un cercle. Lorsque le plan objet est à l infini, le champ en largeur est défini par un diamètre apparent. Le champ comprend aussi des points qui se trouvent en arrière ou en avant du plan de mise au point et qui donnent sur le récepteur des images acceptables. Ces points sont situés entre deux plans de front dont la distance définit la profondeur de champ ou champ axial.

1.2 Champ transversal : champ de pleine lumière, champ de contour, champ total Le champ objet transversal correspond à la portion d un plan de front objet perpendiculaire à l axe au point A, visible à travers l instrument. Il est délimité par un cercledont le rayon est la largeur du champ. Un point B du plan de front objet, situé dans le champ, doit émettre au moins un rayon utile qui traverse la totalité de l instrument pour atteindre le récepteur et contribuer à la formation de l image. Cette condition très générale impose une limite à la largeur du champ. En effet, le passage des rayons est en général gêné par la présence d autres éléments mécaniques(diaphragmes). Le cône de sommet B dont les génératrices s appuient sur le contour de la pupille d entrée [PE], délimite le faisceau utile : les rayons intérieurs à ce cône, d angle solide Ω, traversent tous les diaphragmes de l instrument. Lorsque le point B s éloigne de A, l ouverture du faisceau lumineux issu de B est de plus en plus petite : l angle solide du faisceau utile n est plus que d une fraction de Ω. Quand B atteint une certaine position limite, le cône se réduit à un rayon unique. La figure ci-contre décrit trois situations particulières de visibilité correspondant à un faisceau conique incident issu du point objet B.

Champ de pleine lumière Lorsque le point B arrive en B p, les rayons marginaux du faisceau incident utile s appuient sur le contour de la pupille d entrée [PE]. Le faisceau conique est tangent à un autre diaphragme appelé lucarne d entrée[le]. Lespointsde(AB p )appartiennentauchampdepleinelumière.lesrayonslumineuxissusd un point de (AB p ) et traversant l ouverture de la pupille d entrée ne peuvent pas être arrêtés ultérieurement par un autre diaphragme; ils participent tous à la formation de l image. Champ de contour Lorsque le point B dépasse B p, le faisceau issu de B est partiellement intercepté par le diaphragme [LE] ; une partie du faisceau incident atteint l ouverture de la pupille d entrée. Les rayons ayant traversé [LE] et [PE] participent donc à la formation de l image dont l éclairement est réduit. Lorsque le point objet arrive en B t, le faisceau incident est entièrement intercepté. Les positions entre B p et B t sont dites dans le champ de contour, le faisceau lumineux est de plus en plus échancré par [LE] à mesure que le point B s éloigne de l axe. L éclairement du point image diminue brusquement.

Champ total L ensemble de ces champs de pleine lumière et de contour constitue le champ transversal total. Au-delà de B t les points sont hors du champ. Les rayons lumineux du faisceau ne peuvent pas parvenir au plan image. L éclairement de l image s annule à la limite du champ total.

Deux exemples concrets Dans tous les objectifs photographiques, il existe toujours une inclinaison maximale admissible pour les rayons, en entrée et donc en sortie, qui va définir le champ de vision utile de l objectif côté objet et la surface effectivement éclairée dans l image. C est à dire du côté de l objet l ensembledespointsdelascènecapablesdeformeruneimagesurlefilmouledétecteur. À l ensemble de ces points-objets correspond l ensemble des points-images appelé champ total. On dit qu un point de l image est à l intérieur du champ total s il y a au moins un rayon qui relie l objet à l image en passant à travers tout l objectif sans être intercepté par une monture ou par le diaphragme. Lorsque tous les rayons délimités par le diaphragme arrivent dans l image, on dit qu on est dans le champ de pleine lumière. Si le cône de rayons est délimité à la fois par le diaphragme et le bord d une monture de lentille, la luminosité de l image disparaît rapidement, on dit qu on est dans le champ de contour.

On considère un objectif de prise de vue à 6 lentilles, l'objet est à l'infini. Un iris placé au centre de l'objectif sert de diaphragme d'ouverture au système. Les pupilles d'entrée et de sortie sont virtuelles. Les points du champ de pleine lumière sont éclairés par des faisceaux uniquement limités par le D.O. La figure ci-dessous montre le bord du champ de pleine lumière image, pour un point au-delà, le faisceau de lumière sera limité, en partie, par les montures des lentilles.

1.3 Champ moyen, diaphragme de champ et lucarnes Champ moyen L existence du champ de contour qui correspond à une variation rapide de l éclairement dans le plan image peut être gênante pour l observation visuelle ou en photographie. En pratique, on essaie de le supprimer. On peut pour cela limiter le champ au champ moyen en plaçant un diaphragme dans le plan d une image réelle intermédiaire ; ce diaphragme est alors le diaphragme de champ et le conjugué objet de ce diaphragme est alors la lucarne d entrée ; elle se trouve dans le plan objet observé. L œil qui accentue les contrastes ne perçoit pas la diminution d éclairement sur les bords du champ.

Diaphragme de champ et lucarnes La description précédente n a fait intervenir qu un seul diaphragme limitant le champ. Le conjugué antérieur (D l ) qui échancre les faisceaux incidents un peu à la manière d une lucarneestlalucarned entrée[le].lediaphragmeréel( l )correspondantestlediaphragme dechamp[dc]etsonimagepostérieure(d l)estlalucarnedesortie[ls]. Il existe toujours un diaphragme de champ sinon le champ serait illimité. La lucarne d entrée est toujours vue du point objet A sous un angle supérieur à celui sous lequel est vue la pupille d entrée. Par exemple, pour un objectif photographique constitué d une seule lentille mince convergente, la monture de la lentille est la pupille d entrée, la pupille de sortie et le diaphragme d ouverture; le champ réel est limité par la plaque photographique. Lorsque plusieurs diaphragmes sont susceptibles de limiter le champ (cf. figure 11.9), le diaphragme de champ ( l ) est celui dont la lucarne [LE] est vue du centre de la pupille d entrée sous le plus petit angle θ p. Il peut se faire que les limites du champ de pleine lumière et du champ total soient fixées par deux diaphragmes de champ différents.

1.4 Mesure linéaire ou angulaire des champs Après avoir déterminé la pupille d entrée et la lucarne d entrée, il est possible de mesurer les différents champs comme le décrit la figure ci-dessous. Mesure linéaire: champ linéaire Si le plan de front objet observé est proche (observation avec un instrument du type microscope), on mesure les champs par les diamètres 2AB p, 2AB m et 2AB t des cercles qui délimitent ces champs: ces diamètres sont qualifiés de champs linéaires. Mesure angulaire: champ angulaire Si le plan objet est très éloigné(observation avec un instrument du type télescope), on utilise les diamètres apparents correspondants 2ω p, 2ω m, 2ω t définissant les champs angulaires.

Champs dans l espace objet Le champ de pleine lumière est mesuré par 2AB p ou 2 ω p. Pour le déterminer on joint (dans un plan méridien) les points de même côté appartenant aux contours des ouvertures de la pupille d entrée et de la lucarne d entrée. Ici, m 3 est la pupille d entrée, antécédent du diaphragme d ouverture et m 2 est la lucarne d entrée, antécédent du diaphragme de champ. Pour avoir le champ de contour (2AB c ou 2ω c ) on joint des points diamétralement opposés des contours des ouvertures de la pupille d entrée et de la lucarne d entrée. Le champ total est déterminé par 2AB t ou2ω t.

En général, on détermine approximativement le champ d un instrument par le champ moyen (2AB m ou 2ω m ) obtenu en joignant le centre de l ouverture de la pupille d entrée aux points du contour de l ouverture de la lucarne d entrée. On suppose donc que l ouverture de la pupille d entrée se réduit à un point. Le rayon Ab m est la demi-somme des rayons du champtotaletduchampdepleinelumière. Ici, m 3 est la pupille d entrée, antécédent du diaphragme d ouverture et m 2 est la lucarne d entrée, antécédent du diaphragme de champ.

Calcul des champs objets dans le cas d un plan objet à distance finie Soient R o et R c les rayons de la pupille et de la lucarne d'entrée; A et L les distances du plan objetetdelalucarneàlapupilled'entrée. EnconsidérantlestrianglessemblablesHB p M'etKMM': onobtientpourlerayonduchampdepleinelumière: Demême,onobtientpourlerayonduchamptotal: etpourlerayonduchampmoyen:

Calcul des champs objets dans le cas d un plan objet à distance infinie Lorsque le plan objet est rejeté à l'infini, on obtient : pour le demi-champ de pleine lumière pour le demi-champ total pour le demi-champ moyen

2 Phénomène de vignettage, définition La construction de l objectif ainsi que les accessoires employés en prise de vue (monture de filtre, pare-soleil, etc.) peuvent être la cause de pertes de lumière (assombrissement) dans les zones marginales de l image(périphérie du champ), voire l apparition d un anneau noir au bord du champ. Ce phénomène porte le nom de vignettage ou vignetage, et correspond à la diminution progressive ou brutale du niveau d'éclairement de l'image formée par un objectif, en allant du centre de cette image vers sa périphérie. En pratique, il se manifeste donc avant tout aux angles et parfois sur les bords de l'image. Cet assombrissement est généralement considéré comme nuisible à la qualité des photographies mais comme toujours, il se trouve des artistes qui savent tirer profit de ce genre de défaut pour produire des images intéressantes.

Le vignettage est particulièrement visible dans les zones de teinte uniforme

Illustration du phénomène de vignettage

3 Mesure du vignettage On mesure l affaiblissement de l éclairement du support sensible dû au vignettage le long de ladiagonaledel imageparuncoefficientdevignettagev P (en%)définipar: v P EP (%) =.100 E où E P est l éclairement du film au point Pet E O l éclairement au centre du film. O Il est possible de tracer la courbe de vignettage qui traduit la variation de l éclairement du centre vers les bords de l objectif. On obtient par exemple: Chaque objectifest caractérisé par une courbe de vignettage particulière. De plus, pour un objectif fixé, la courbe obtenue (et donc l affaiblissement de l éclairement) dépend de l ouverture. La perte d éclairement augmente si l objectif est plus ouvert.

Le vignettage est donc réduit en diaphragmant. Vignettage avec le Planar50/1,4 ; prise de vue à grande ouverture f1,4 à gauche avec fort vignettage optique et à plus petite ouverture f 5,6 à droite avec peu de vignettage.

4 Différents types de vignettage Les causes du phénomène de vignettage sont multiples et on attribue souvent un qualificatif pour les distinguer : on parlera par exemple de vignettage optique ou de vignettage naturel (en cas d assombrissement vers les bords) ou de vignettage mécanique (en cas d apparition d un anneau noir en bordure du champ). 4.1 Vignettage naturel Le vignettage naturel, inhérent à toutes les lentilles, découle d une loi physique appelée loi en cos 4 Θ qui décrit la diminution naturelle de l éclairement (illumination falloff en anglais) du planimageenfonctiondel angle Θparrapportàl axeoptique. E Θ TLΘ Acos = 2 Q 4 Θ L'angle Θ considéré est celui que fait le faisceau lumineux tombant dans l'objectif avec l'axe de ce dernier(axe optique). Si les rayons arrivent dans l'axe, l'angle est nul, son cosinus vaut 1 et il n'y a pas d'affaiblissement. Pour un angle non nul, par exemple 20, le cosinus vaut 0,94 et en l'élevant à la puissance 4, on trouve 0,78, ce qui correspond à une perte relativement modérée. En revanche,pourunanglede45,cettevaleurtombeà0,25etl'éclairementproduitestdonc4 fois plus faible que pour les rayons axiaux, ce qui correspond à la fermeture du diaphragme de deux crans.

La figure ci-dessous représente la variation de l'éclairement selon la diagonale d'un format 24 x 36, pour différentes valeurs de la distance focale. La perte de luminosité dans les angles est pratiquement nulle avec les téléobjectifs puissants, puisque tous les rayons lumineux servant à former l'image sont paraxiaux (peu inclinés par rapport à l'axe optique). Pour les objectif de très courte focale, capables de capter des rayons très obliques, la perte est en revanche considérable, au point de rendre nécessaire le recours à certains subterfuges. Lesobjectifsgrandangulairessontaprioriceuxquiposentleplusdeproblèmes;ilsimposent parfois aux opticiens de réaliser de véritables exploits pour limiter ce défaut.

4.2 Vignettage optique Le faisceau lumineux qui traverse un objectif est toujours limité par diverses ouvertures qui peuvent être les barillets des montures des lentilles ou, bien sûr, le diaphragme. Le diaphragme n'intervient pas lorsque l'objectif est utilisé à son ouverture maximale et c'est dans ces conditions que le vignettage optique est le plus important. Le vignettage optique est donc surtout marqué à pleine ouverture et diminue lorsque l on diaphragme. Le vignetage optique est plus important pour les objectifs grands angles et les zooms. Le vignettage optique s'ajoute au vignettage naturel mais en fermant le diaphragme d'un ou deux crans, les montures des lentilles n'interviennent plus et le vignettage optique disparaît alors complètement. Le vignettage optique trouve son origine dans le fait que la pupille d entrée de l objectif n est pas la même pourun point objetsitué dans l axe de l objectif et un point objetsitué hors axe : en quelque sorte, on pourrait dire que les montures des lentilles avant font de l'ombre aux lentilles arrières et donc réduisent la transmission des rayons obliques.

4.3 Vignettage mécanique Le vignettage mécanique ou effet de silhouettage provient surtout de l ajout d un élément mécanique (comme un pare-soleil, un filtre) devant l objectif qui crée un obstacle devant la pupille d entrée de l objectif pour les rayons incidents fort obliques. Comme le vignettage optique, le vignettage mécanique diminue lorsque l on diaphragme. Ce type de vignettage se produit lorsque les rayons obliques sont interceptés, volontairement ounon,parunélémentétrangeràl'objectifetsituédevantlui. Le vignettage mécanique a un effet beaucoup moins progressif que les autres, particulièrement lorsque le diaphragme est très fermé, auquel cas la transition est très abrupte. Les causes en sont multiples : montage d'un filtre de trop faible diamètre ou trop épais, montage d'un empilement de filtres, pare-soleil mal adapté ou cache disposé là de façon intentionnelle en vue de provoquer un assombrissement des bords,avecparexempleuneffet«troudeserrure».

Origine et effet du vignettage mécanique Un objectif Distagon28/2 sans et avec le pare-soleil Contax. Photo réalisée avec le Distagon 28/2 muni du pare-soleil Contax. Le paresoleil engendre un vignettage mécanique.

4.4 Vignettage dû à la surface sensible Dans le cas des films, d'autres effets viennent s'ajouter à l'assombrissement des bords. D'une part, les rayons obliques sont davantage réfléchis sur la surface que les rayons axiaux, d'autre part ils doivent traverses une épaisseur plus grande de gélatine, dans la couche de protection, avant d'arriver aux cristaux sensibles. Ces phénomènes, sauf cas particuliers, sont habituellement considérés comme de peu d'importance par rapport aux autres causes de vignettage et il n'existe d'ailleurs aucun moyen de les corriger. Dans le cas des capteurs numériques, il en va tout autrement. Le phénomène de variation de la réflexion en fonction de l'angle est plus important que pour les films, car les surfaces des capteurs sont plus brillantes, mais surtout l'éclairement des photosites varie beaucoup avec l'angle d'incidence. Pour comprendre ce phénomène, on peut s'imaginer que les capteurs sont constitués d'un ensemble de boîtes cubiques sans couvercle et dont les fonds constituent les surfaces sensibles. Si ces boîtes ne reçoivent que des rayons axiaux ou paraxiaux, leurs fonds sont bien éclairés mais il n'en est pas de même si elles reçoivent des rayons obliques car l'ombrage provoqué par les parois latérales devient très vite important.

Le logiciel de traitement d'images embarqué dans la plupart des appareils compacts numériques tient compte de ce phénomène lorsqu'il produit une image JPEG ou TIFF à partir des données du capteur. Pour les appareils reflex c'est un peu plus compliqué en raison des changements d'objectifs et donc des variations possibles des angles d'incidence sur la périphérie de l'image. Dans les capteurs des générations les plus récentes, les fabricants s'efforcent de rapprocher les éléments sensibles de la surface pour éviter ou minimiser ces effets d'ombrage ; l'adjonction de micro-lentilles permet aussi de concentrer la lumière aux endroits stratégiques. Coupe schématique d'un capteur Nikon montrant les microlentilles

4.5 Influence du diaphragme sur les divers types de vignettage le vignetage naturel est peu sensible aux variations de l'ouverture du diaphragme; le vignetage optique diminue et disparaît lorsque l'on ferme le diaphragme d'un ou deux crans; le vignetage mécanique provoque des transitions d'autant plus brutales que le diaphragme estplusfermé; le vignetage dû à la surface sensible est à peu près indifférent au réglage du diaphragme dans le cas des films, mais il n'y a pas de règle générale dans le cas des capteurs numériques.

4.6 Mesure du vignettage par les indices de lumination Le vignetage se mesure en tenant compte de la différence totale de luminosité entre le centre etlesbordsdel'image. Cette mesure n'a de sens que si l'on considère la surface effectivement enregistrée. Par exemple, un objectif Canon EF conçu pour le format 24 x 36 mm peut être monté devant un capteur dit «APS-C» à peu près deux fois moins étendu et qui n'enregistrera que la zone centraledel'image,làoùlevignettageestleplusfaible. Lerésultatdelamesureseradonctrèsdifférentselonlecas:unobjectifmédiocredupointde vue du vignettage devant un film 24 x 36 sera peut-être très bon devant un capteur demiformat. Il est commode de chiffrer le vignettage en utilisant les indices de lumination (IL) pour quantifier l'écart entre lez zones les plus sombres et les plus claires, donc entre les coins et le centre des images. On admet communément qu'un vignettage de 0,1 IL est sans effet pratique. Ce phénomène devientnettementvisibleàpartirde0,3iletfranchementgênantà1iletau-delà.rappelons que 1 IL correspond à une division ou une multiplication par 2, et correspond donc à une division de diaphragme en plus ou en moins.

5 Vignettage optique et mécanique (silhouettage et champ de contour) Sur ces schémas, M désigne un obstacle, par exemple une monture, PE la pupille d entrée de l objectif(c est-à-dire l image du diaphragme iris). le point objet C participe complètement à l image puisque tous les rayons qui s appuient sur lapupillepepeuventpasserparm:onditqu ilappartientauchampdepleineouverture. le point objet D participe partiellement à l image (effet de silhouettage) puisque certains rayonsquis appuientsurlapupillepesontbloquésparm:onditqu ilappartientauchampde contour.lepointimagededseraplussombre. le point objet E ne participe plus à l image comme tous les rayons sont bloqués par M (vignettage mécanique).

Le champ totalest formé du champ de pleine ouvertureet du champ de contour. Naturellement, on réduit l effet de silhouettage en diaphragmant.

Origine du vignettage optique : l effet œil de chat pour les points objets situés hors-axe. On voit que cet effet augmente si le diaphragme est fort ouvert (figures de gauche).

Le vignettage optique trouve son origine dans la longueur physique d un objectif. Les rayons incidents obliques sont interceptés par les bords des lentilles, qui délimitent une pupille d entrée en forme d œil de chat (cat s eye). On peut observer ci-contre en blanc les pupilles d entrée associées à chaque lentille et l œil de chat(en sombre) qui en résulte.

Dans un système optique à deux diaphragmes prépondérants (on suppose que les autres diaphragmations ne jouent pas), le calcul du champ de pleine lumière s'effectue de la manière suivante: Les diaphragmes sont ramenés dans le même espace, espace image, par exemple. LapupilleestleconjuguéobjetouimageduD.Ovusouslepluspetitangledepuislecentredu champ image(point A). Lalucarneestleconjuguéobjetouimagedudiaphragmedechamp Le bord du champ de pleine lumière(point B) s'obtient en cherchant l'intersection avec le plan image, la plus proche du centre du champ, du rayon joignant le bord de la pupille et le bord de la lucarne(dans le même espace: objet, image ou intermédiaire). Pour un point hors du champ de pleine lumière (point C, par exemple), les rayons issus de la pupille convergents en C sont en partie obturés par la lucarne, la diaphragmation est en «œil dechat».

6Loiencos 4 duvignettagenaturel 6.1 Introduction Dans le cas idéal (c est-à-dire si le vignettage optique est nul, ce qui est possible en fermant assez le diaphragme), la perte d éclairement du film pour un point P, incliné d un angle α par rapport à l axe optique de l objectif, varie en fonction de la quatrième puissance du cosinus de l angle α. 4 E E α P O.cos Cetteloiportelenomdeloiencos 4 duvignettagenaturel. Silevignettageoptiquevn estpasnul,lecoefficientdevignettagetotalvautdonc: 4 vtotal = v.cos α

Effet de l ouverture sur le vignettage naturel et comparaison avec le vignettage théorique

Comparaison du vignettage de deux objectifs grands angulaires, pour diverses ouvertures. On voit que la perte d éclairement par vignettage augmente lorsque l objectif est plus ouvert.

6.2 étude théorique du vignettage naturel dans l approximation de la lentille mince Raisonnons dans un premier temps en assimilant l objectif à une lentille mince, munie d un diaphragme circulaire collé à la lentille. Dans ce cas, le diaphragme, la pupille d entrée et la pupille de sortie de l objectif coïncident.

Considéronsunobjetplan,situéàunedistanceobjetPdelalentille. Comme la pupille d entrée est confondue avec la lentille, la distance R de l objet à la pupille d entrée vaut donc aussi P(distance de mise au point). Par définition de la luminance L Θ, un élément infinitésimal de cet objet, d aire a, formant un angle Θ avec l axe de la lentille envoie dans la direction du centre de la pupille d entrée une intensitélumineusei Θ donnéepar: I = L a cos Θ Quel flux lumineux issu de l élément infinitésimal va entrer dans l objectif? Θ Θ Par définition de l intensité lumineuse, ce flux vaut: Φ = I ω Θ où ω est l angle solide, dont le sommet est l élément infinitésimal d aire a de l objet et s appuyant sur la surface de la pupille d entrée. A' Par définition de l angle solide, il vaut approximativement: ω = 2 R ' où A est la surface de la pupille d entrée, projetée dans la direction de l élément infinitésimal de l objet et R est la distance de l élément infinitésimal objet au centre de la pupille d entrée.

SoitAlasurfacedelapupilled entrée. La surface A de la projection de la pupille d entrée dans la direction de l élément infinitésimal del objetvaut: A' = Acos Θ Delamêmemanière,onpeutrelierlesdistancesRetR par: R ' = R cos Θ Donc, on obtient, pour l angle solide ω, en remplaçant A et R, l expression: A' ω = = R ' Acos R 2 2 3 Θ Le flux lumineux Φ provenant de l élément infinitésimal de l objet et entrant par la pupille d entrée, vaut donc: Φ = I ω = Θ LΘaAcos 2 R 4 Θ

Nous devons maintenant déterminer l aire infinitésimale a de l élément d image qui correspond à notre élément infinitésimal objet, d aire a. Legrandissementmdusystèmevauttiragesurdistancedemiseaupoint,donc: Donc, l élément image infinitésimal correspondant à l élément infinitésimal objet a une aire a reliéeàlasurfaceadel objetpar: 2 2 a ' = m a = a 2 Le flux lumineux Φ reçu par cet élément infinitésimal de l image est égal au flux lumineux entrant Φ par la pupille, issu de l élément infinitésimal objet, multiplié par la transmittance T de la lentille, donc l éclairement correspondant à cet élément de l image vaut: Q P m = Q P E Θ Φ ' TΦ TLΘ P Acos = = = 2 2 a ' a ' R Q 2 4 Θ ou encore, comme dans notre approximation de l objectif par une lentille mince P=R, l éclairementdufilmdansladirection Θvaut: E Θ TLΘ Acos = 2 Q 4 Θ

On peut reformuler cette décroissance de l éclairement sous la forme: EΘ / L Θ 4 = cos Θ N E / L 0 0 où E 0 est l éclairement produit par un point objet situé sur l axe de la scène, de luminance dansl axel 0,E Θ estl éclairementproduitparunpointobjetsitué horsdel axedelascène,de luminancel Θ. Insistons sur le fait que dans cette dérivation, l angle, noté ici Θ N est mesuré dans l espace objet.

6.3 généralisation à un objectif réel Lorsque l on envisage un objectif réel, et plus simplement une lentille mince, les pupilles d entrée et de sortie ne sont plus confondues. Dansce cas,l anglemesurantla positiond unpointobjetsituéhorsaxe (vu depuislecentrede la pupille d entrée) ne correspond plus à l angle mesurant la position de l image de ce point(vu depuislecentredelapupilledesortie)danstouslescas. En fait, ces angles restent égaux tant que les pupilles d entrée et de sortie se trouvent dans les plans principaux(mais ce n est pas toujours le cas pour les objectifs). Une étude théorique générale du phénomène de vignettage naturel est donc beaucoup plus complexe.

On trouve dans la littérature différentes formules pour le vignettage naturel, mais aucune n est parfaitement justifiée sur le plan théorique, et ne rend compte du vignettage naturel observé dans le cas idéal. Ontrouveparexemple: EΘ / L Θ 4 = cos Θ X E / L 0 0 où Θ X correspond cette fois à l angle mesurant la position de l image d un point hors-axe (mesuré dans l espace image, depuis le centre de la pupille de sortie de l objectif). Cette formule est un peu plus précise que la formule dérivée précédemment. On trouve encore une formule intermédiaire: E E / L Θ Θ 3 cos cos 0 / = Θ Θ N X L0

7 Expression générale de la lumination L expression générale de l éclairement de la surface sensible produit par un objectif de transmittancet,depupilled entréea,misaupointàuntirageqsurunsujetdeluminancel Θ dansladirection Θdel espacesujetvautdonc: E Θ TLΘ Acos = 2 Q Dansl axe,c est-à-diresi Θ=0,sionassimilelapupilled entréeàundisqued aire: π D π f ' A = = 2 4 4 n 2 2 cetteexpressionseréduitàcelletrouvéedanslechapitre5: ouencore,enassimilantletiragep =Qàlafocale: 4 Θ π D E ' = T. L 4 p ' π D E ' = T. L 4 f ' 2 2

En tenant compte du vignettage naturel et du vignettage optique, l exposition ou lumination H delasurfacesensibleestdoncliéeàlaluminancemoyenneldelascèneparlaformule: π. T. v. L. t. f ' q. L. t. f ' π H = + H = + H T v 4 n p ' n p ' 4 2 2 4 4.cos θ 2 2 f avec q=...cos 2 2 f où T est la transmittance de l objectif, v le facteur de vignettage optique, θ l angle du point image par rapport à l axe optique, p la distance image ou tirage, f la focale de l objectif, L la luminance de la scène, t la vitesse d exposition, n le nombre d ouverture de l objectif et H f l exposition flare dans le plan focal. Pour un sujet et un objectif donné, l exposition lumineuse du film (ou du capteur) dépend donc de deux variables conjuguées, le nombre d ouverture de l objectif (n), facteur géométrique qui fixe l éclairement du film, et le temps d obturation ou vitesse(t). θ Quand la caméra est mise au point sur l infini, H f << H,T=9/10, θ=10,cos 4 θ =94/100,etv=98/100,doncqestégal à65/100