Etude du comportement en roulement d un pneu d avion



Documents pareils
NOTIONS ÉLEMENTAIRES SUR LES PNEUS

ÉTUDE DE L EFFICACITÉ DE GÉOGRILLES POUR PRÉVENIR L EFFONDREMENT LOCAL D UNE CHAUSSÉE

A propos des pneus. Le savoir-faire Pirelli. TOUT SUR LES DIMENSIONS INTERNATIONALES. Lecture d une dimension:

PNEUS FREINS ABS ESP HUILE VITESSES

Goodyear Les pneumatiques longue distance qui font économiser du carburant

Guide des pneumatiques

2012 LE NOUVEAU LABEL PNEUMATIQUE EUROPÉEN

LES LOIS PHYSIQUES APPLIQUÉES AUX DEUX-ROUES : 1. LA FORCE DE GUIDAGE

En cyclo cross il y a certaines particularités au niveau du matériel, j analyse point par point ces différences.

innovation et haute technologie

Plus de 40 ans de positionnement pluie!

Concours EPITA 2009 Epreuve de Sciences Industrielles pour l ingénieur La suspension anti-plongée de la motocyclette BMW K1200S

Physique. interaction pneu-chaussée facteurs liés à l adhérence calcul de la distance de freinage

MOINS DE CONSOMMATION, PLUS DE SECURITE, AVEC IVECO DRIVER TRAINING (la formation conducteur IVECO).

Tout savoir sur les pneumatiques. Conseils et astuces pour rouler en toute sécurité

TP 7 : oscillateur de torsion

VISEZ LES ÉTOILES. INFORMATIONS CONCERNANT LES PNEUS ET ROUES COMPLÈTES D ORIGINE BMW/MINI MARQUÉS D UNE ÉTOILE.

Assurer la liaison Engin ou machine / Sol afin de transmettre le couple moteur nécessaire au déplacement. Les pneumatiques dits Agricoles

Adaptation d'un véhicule au revêtement de la piste

Brochure technique 2012

Sujet proposé par Yves M. LEROY. Cet examen se compose d un exercice et de deux problèmes. Ces trois parties sont indépendantes.

Fiche de lecture du projet de fin d étude

GAMME DES PNEUS 2015 DE COMPÉTITION

MAGNA TYRES GROUP GENIE CIVIL MANUTENTION PORTUAIRE MANUTENTION INDUSTRIELLE. Exploitez tous les avantages de la Technologie Magna Tyre!

GROUPE HOLDIM Leader mondial de l optimisation moteur. DYNORACE 2WD /DF2 Banc 2 roues motrices. Banc de puissance Disponible en 3 versions :

Comprendre le rechapage. Les pneus rechapés sont aussi sûrs et durables que n importe quel pneu neuf similaire

Pneumatiques industriels. Les spécialistes du confort et de la durée de service.

Épisode 6 : «Le pneu moto en 10 leçons»

Pneus de camions poids lourd

10 leçon 2. Leçon n 2 : Contact entre deux solides. Frottement de glissement. Exemples. (PC ou 1 er CU)

Contrôlez vos PNEUS 1

1. PRESENTATION GENERALE DU PRODUIT

SIMULATION DU PROCÉDÉ DE FABRICATION DIRECTE DE PIÈCES THERMOPLASTIQUES PAR FUSION LASER DE POUDRE

Chapitre XIV BASES PHYSIQUES QUANTITATIVES DES LOIS DE COMPORTEMENT MÉCANIQUE. par S. CANTOURNET 1 ELASTICITÉ

Pourquoi un fort intérêt de l industrie du pneumatique pour les nanomatériaux?

Dimensionnement d une roue autonome pour une implantation sur un fauteuil roulant

Travaux de Normalisation des Pneumatiques pour la France

Exemples de dynamique sur base modale

document proposé sur le site «Sciences Physiques en BTS» : BTS AVA 2015

Vis à billes de précision à filets rectifiés

GOOD311 CONSUMER TT FRENCH 10/26/01 4:37 PM Page 1. Pneus Tourisme. La technologie du pneu. Edité par Goodyear Europe 115/1101/FRA

Le turbo met les gaz. Les turbines en équation

L ADHÉRENCE ET LE GLISSEMENT DES PNEUMATIQUES

Un siècle d innovations

P M L R O G W. sylomer. Gamme de Sylomer Standard. Propriétés Méthode de test Commentaires. Polyuréthane (PUR) Cellulaire mixte

DISQUE DUR. Figure 1 Disque dur ouvert

Gamme Michelin compétition

Oscillations libres des systèmes à deux degrés de liberté

Utilisation historique de nanomatériaux en pneus et possibilités de nouveaux développements

LE LIVRE BLANC. Pour véhicules Légers (autos, motos et 4x4) et Utilitaires Légers (camionnettes)

Le pneumatique dans un environnement «technologie véhicule évolutif» : impacts et perspectives

Figure 1 : représentation des différents écarts

Modélisation 3D par le modèle de turbulence k-ε standard de la position de la tête sur la force de résistance rencontrée par les nageurs.

MOTO ELECTRIQUE. CPGE / Sciences Industrielles pour l Ingénieur TD06_08 Moto électrique DIAGRAMME DES INTER-ACTEURS UTILISATEUR ENVIRONNEMENT HUMAIN

ÉTUDE SUR L EFFICACITÉ DES PNEUS D HIVER EN ÉTÉ RÉALISÉE PAR CAA-QUÉBEC

Chapitre 2/ La fonction de consommation et la fonction d épargne

ZA SUD - RUE PASCAL FALAISE - Tél Mobile Mail : info@dynapneu.fr - Site :

q Pneus tourisme q 4x4 q camionnette Manuel technique 2011

Contenu : Pose d escalier préfabriqué monobloc en béton Rédaction : Hediger Damien / Etudiant ETC 3 ème année Date : 1 er octobre 2008

Compte rendu de LA37 B, TP numéro 1. Evolution de la température et du degrée d'hydratation

TP2 ACTIVITE ITEC. Centre d intérêt : AUBE D UN MIRAGE 2000 COMPORTEMENT D UNE PIECE. Documents : Sujet Projet Dossier technique - Document réponse.

Guide pour l analyse de l existant technique. Partie 3

Le Point sur La Sécurité : prendre la route l hiver

À PROPOS DE LA PRESSION EXERCÉE PAR LES PNEUS, CHENILLES ET SABOTS MARIE-AMÉLIE DE PAUL MICHEL BAILLY

véhicule hybride (première

Pneus hiver

Actions de réduction de bruit sur un moteur poids lourd

Projet SETHER Appel à projets Adrien Patenôtre, POWEO

Eau Sol. Air Eau Sol. Mes sources. Comment se fait la compaction? L impact de la compaction.

Avec les pneus MICHELIN, gagnez sur tous les plans!

LA PUISSANCE DES MOTEURS. Avez-vous déjà feuilleté le catalogue d un grand constructeur automobile?

Chapitre 0 Introduction à la cinématique

La fonction exponentielle

hérence d L'a Le pneu

PROTECTION ET ENTRETIEN DES PNEUS AVIATION MISE A JOUR - 10/04

Généralités. Aperçu. Introduction. Précision. Instruction de montage. Lubrification. Conception. Produits. Guides à brides FNS. Guides standards GNS

6 CONTINENTS. PLUS DE 120 PAYS. LEADER MONDIAL DES PNEUS HORS ROUTES

Cours 9. Régimes du transistor MOS

T2- COMMENT PASSER DE LA VITESSE DES ROUES A CELLE DE LA VOITURE? L E T U N I N G

À propos des pneus d'hiver Ce que vous devez savoir à propos des pneus d'hiver

Rupture et plasticité

LE DEVELOPPEMENT DES PNEUS VTT MICHELIN

Analyse dynamique du phénomène d auto-blocage dans les charnières de type Carpentier

SDLV120 - Absorption d'une onde de compression dans un barreau élastique

NOTE SUR LA MODELISATION DU RISQUE D INFLATION

Entretien et soin des pneus : Protégez l environnement, votre investissement et votre sécurité

INTRODUCTION. A- Modélisation et paramétrage : CHAPITRE I : MODÉLISATION. I. Paramétrage de la position d un solide : (S1) O O1 X

Manuel de validation Fascicule v4.25 : Thermique transitoire des structures volumiques

Conseils d utilisation des pneumatiques MICHELIN

Rencontre avec les Actionnaires Familiaux Silica

Les correcteurs accorderont une importance particulière à la rigueur des raisonnements et aux représentations graphiques demandées.

CHARGEUSES COMPACTES À PNEU

Calculs Computional fluide dynamiques (CFD) des serres à membrane de Van der Heide

Les Rencontres Scientifiques Colas

1- Gaz-mm British standrad to mm. DIAMÈTRE EXTÉRIEUR FILETÉ mm. DIAMÈTRE INTÉRIEUR TARAUDÉ mm

Influence de la géométrie du conducteur sur la température dans un poste sous enveloppe métallique

des pneumatiques MICHELIN

Les composites thermoplastiques

GENERALITES SUR LA MESURE DE TEMPERATURE

1 Problème 1 : L avion solaire autonome (durée 1h)

Transcription:

Etude du comportement en roulement d un pneu d avion A. KONGO KONDÉ a, I. ROSU b, F. LEBON b, O. BRARDO a, B. DÉVESA a a. AIRBUS, 36 route de Bayonne, 36 Toulouse cedex 3 b. LMA-CNRS, Marseille, 3 chemin Joseph-Aiguier, 342 Marseille Cedex 2 Résumé : Ce travail présente une méthode d éléments finis pour la simulation du roulement d un pneu d avion. Le caractère incompressible des matériaux, les grandes transformations ainsi que le contact unilatéral avec frottement de Coulomb sont pris en compte. Le modèle numérique permettra d estimer le torseur des efforts au contact pneu - sol sous des conditions critiques et extrêmes pour la sécurité de l avion. Nous montrerons l influence des paramètres de chargements et du dérapage sur le moment d autoalignement (M z ) et le coefficient de frottement calcul(µ Y ). Abstract : This paper addresses the finite element method used to simulate the aircraft tire/ground interaction. The material incompressibility, the large transformation and the unilateral contact with Coulomb friction have been taken into account. The numerical model allows the estimation of the forces involved in the tire/ground contact under critical and extreme conditions for airplane safety. The results illustrate the influence of different loading parameters and the sliding on self-aligning torque (M z ) and on the computed friction coefficient (µ Y ) Mots clefs : Pneu d avion, Méthode éléments finis, contact, non linéarités matérielles et géométriques, grandes transformations. Introduction La géométrie et les exigences de la modélisation d un pneumatique sont complexes, les conditions de chargement amènent des conditions sévères de contact, et la nature du chargement (charge verticale ou latérale) va du quasi statique à la dynamique rapide.. Revue bibliographique La plupart des études sur le pneumatique ont été essentiellement réalisées [] sur des pneus de voitures. Certains auteurs [2] se sont particulièrement intéressés aux pneumatiques de camions et ce, dans le domaine militaire pour des simulations de mouvement du véhicule sur tout type de terrain (sec, mouillé, boueux). D autres [3] ont travaillé sur des pneumatiques pour motocycles. Dans le domaine aéronautique, les premières études ont été réalisées par la NASA [6, 7, 8]. Elles ont été expérimentales et ont traité de l aspect thermique (influence de la température et de sa distribution dans l évolution du coefficient de frottement pneumatique/sol). Des travaux récents [4] ont traité du développement d outils numériques de simulation et ont défini les jalons de l aspect de modélisation qui pose encore beaucoup de problèmes aux chercheurs et ingénieurs à cause de très nombreux phénomènes non-linéaires, mais aussi des conditions de chargement et d utilisation qui intéressent l industrie aéronautique. Comme dans l automobile, les pneumatiques aéronautiques à carcasse conventionnelle sont en train d être progressivement remplacés par des pneumatiques à carcasse radiale plus performants (aire de contact peu variable et dérive moins importante). Néanmoins, les conditions d utilisation d un pneumatique aéronautique diffèrent fortement de celles d un pneumatique automobile. Si les pneus de voiture sont gonflés à environ 2 bars, la pression de gonflage standard d un pneumatique aéronautique est d environ 5 bars. Les niveaux de chargements eux aussi diffèrent complètement : charges de à 6 tonnes pour l automobile légère et lourde, et une vingtaine de tonnes pour l aéronautique [4]. Dans les conditions d utilisation qui nous intéressent, le pneumatique présente de nombreuses non-linéarités qui sont liées aux matériaux le composant, à sa géométrie, aux conditions de chargement (pression), au contact, au frottement, etc. La difficulté de développer un maillage fin et efficace, mais aussi le coût de calcul élevé qui exige beaucoup de ressources [] imposent de réduire les modèles numériques (sculptures et rainures). Le challenge réside, donc,

dans le compromis à trouver entre la finesse des détails à modéliser : modèles de matériaux et géométrie du pneumatique (pain de gomme, rainures, etc.) desquelles découlent les performances de calcul et la qualité des résultats attendus..2 Objectif du travail Dans ce travail, nous présentons un modèle numérique à bande de roulement lisse (sans aspérités ni rainures) développé pour simuler le roulement en dérapage d un pneumatique d avion. Le maillage éléments finis est créé par révolution du modèle 2D complet axisymétrique. Un deuxième modèle à bande de roulement rainurée est présenté pour des simulations à faibles vitesses et comparé au modèle lisse. Les effets des paramètres (chargement, vitesse, pression, dérapage) sur le comportement mécanique du pneu au contact avec le sol sont étudiés. En conditions extrêmes (atterrissage en crabe par exemple), la forte dissipation d énergie au niveau des pneumatiques se traduit par une augmentation de température, une usure or le coefficient de frottement local (µ local ) dépend a priori, fortement de la température, de l usure, de la vitesse, etc. Pour mettre en évidence les effets de ces variations dans le comportement mécanique global du coefficient de frottement latéral (µ Y ) et du moment d auto alignement (M z ), nous ferons dans un premier temps l hypothèse de décroissance linéaire de µ local. A cette fin, une comparaison du modèle µ local variable et µ local constant est réalisée pour en évaluer l influence, et tenter d expliquer et d exprimer la décroissance observée expérimentalement au-delà d une valeur maximale d angle de dérapage (β). Nous comparerons les deux stratégies roulement classique et roulement stationnaire que nous détaillerons dans la suite. Les Figures ne montrerons que les tendances de résultats numériques, les valeurs spécifiques étant volontairement ôtées. 2 Modèle Eléments Finis En général, le modèle 3D éléments finis est créé en deux étapes. Dans un premier temps, le maillage 2D (axisymétrie du pneu) est créé. Dans un second temps, une révolution autour de l axe du pneumatique génère le modèle 3D complet. 2. Méthode et approche de l analyse Une première stratégie est l approche roulement stationnaire ou analyse à vitesse stabilisée. C est une approche mixte eulérienne/lagrangienne dans laquelle un observateur lié au repère de référence voit le pneu comme un ensemble fixe tandis que le matériau le constituant est en mouvement à travers ce maillage stationnaire. Une deuxième stratégie a été testée. C est le roulement classique. Cette approche permet de simuler le roulement réel du pneu dans une configuration lagrangienne. Ici, l observateur lié au repère de référence voit le pneu rouler et les éléments, tour à tour, toucher et quitter le sol. La première stratégie présente l avantage de déterminer en une simulation la courbe complète de la réponse du système et permet, ainsi, une réduction importante du coût de calcul. La deuxième approche ne détermine qu un point de la courbe à chaque simulation, ce qui augmente considérablement les temps de calcul. D un point de vue numérique, les incréments sont temporels pour l analyse en roulement classique et en dérapage (β) pour l approche roulement stationnaire. L analyse statique complète commence par une phase gonflage en 2D et en 3D (équilibre) avant une translation du sol qui entre en contact avec le pneu. Enfin, le pneu est chargé incrémentalement par la jante jusqu à la charge voulue. L analyse roulement stationnaire débute par une phase de détermination de la vitesse de roue libre à dérapage nul avant de simuler le dérapage. En roulement classique, le pneu est accéléré en dérapage pendant un demitour et continue son dérapage en vitesse constante. 2.2 Modèle éléments finis La Figure montre le maillage élément fini du pneu 2D. Ce modèle est, essentiellement, formé d éléments incompressibles axisymétriques à 4 nœuds et de quelques éléments incompressibles axisymétriques à 3 nœuds nécessaires pour modéliser avec exactitude les géométries de transition au passage flanc/bande de roulement et épaule/flanc. La révolution autour de l axe de pneu transforme ces éléments, respectivement, en des éléments 3D à 8 et 6 nœuds. Les renforts métalliques et en tissu sont modélisés en utilisant des éléments à 8 et 6 nœuds. La Figure 2 montre le modèle éléments finis 3D complet. Le nombre total des éléments et des nœuds est de 8657 et 8337, respectivement. Une caractérisation expérimentale des matériaux composant le pneu a permis la détermination des propriétés mécaniques utilisées dans cette simulation. Le modèle hyperélastique de Mooney Rivlin [9] est utilisé pour modéliser la gomme. Les renforts sont représentés par des modèles de matériaux orthotropes et élastiques.

(a) Modèle lisse (b) Modèle rainuré Figure Modèles gonflés axisymétriques 2D à bande de roulement lisse (a) et rainurée (b) (a) Pneu chargé (b) Pneu dérapage Figure 2 Modèle éléments finis 3D complet Les constantes de Mooney Rivlin (C et C ) et les modules élastiques sont déterminés à partir des essais mécaniques. La jante et le sol sont considérés comme rigides. Les nœuds à l interface pneu - jante sont solidaires de la jante. On négligera la viscosité de la gomme. 3 Résultats Les simulations ont été réalisées pour une gamme variée de : vitesses (v = 5 à 3 km/h) charges verticales (F z =, 7 et 25 tonnes) pressions de gonflage nominales (P = 4,5 ; 5 ; 5,5 bars) angles de dérapage (β = 4, 8, 6 ) pour la simulation en roulement classique coefficient de frottement constant (µ c = 8) et variable (µ v = environ 2 % de µ c ). 3. Modèle lisse et modèle rainuré Ce paragraphe compare les deux modèles présentés dans ce travail et traite de l influence des rainures dans l étude globale du comportement du pneumatique. La Figure 3 reprend les réponses du pneumatique à des vitesses faibles (5 et 5 km/h), pour des charges de 2 et 25 tonnes et de pression de gonflage de 5 et 6 bars. A cause de limites numériques, les simulations sur le modèle rainuré n ont pas encore donné des résultats de qualité pour les grandes vitesses. Nous avons présenté ces difficultés plus haut. WITH et WITHOUT LATERAL FRICTION COEFFICIENT WITH et WITHOUT (5kph) Model with grooves (5kph) Model without grooves (5kph) Model with grooves (5kph) Model without grooves(5kph) Model with grooves (5kph) Model without grooves (5kph) Model with grooves (5kph) Model without grooves(5kph) Figure 3 M z et µ Y avec et sans rainure Nous constatons que l écart entre ces deux modèles est de 6 % en moyenne (estimée sur les 5 points des courbes). M z et µ Y sont directement liés à la variation de l aire de contact. La suppression des rainures modifie

l aire de contact et, ainsi, la valeur maximale de M z et µ Y. La Figure 4 montre la mise en trapèze de l aire contact générant une translation du point d application des efforts et créant un couple de rappel (M z ) (a) Modèle rainuré (b) Modèle lisse Figure 4 Aires de contact à 6 de dérapage pour les modèles rainuré et lisse 3.2 Effets vitesse La Figure 5 présente les résultats comparés des simulations réalisées à charge, pression et coefficient de frottement constants, respectivement de 25 tonnes, 5 bars et 8. Nous observons une indépendance du coefficient de frottement latéral (µ Y ) par rapport à la vitesse de roulage, mais qu il existe une vitesse limite à partir de laquelle l amplitude du moment d autoalignement (M z ) diminue avec la vitesse croissant sans modifier l angle (β max ) pour lequel M z est maximal. Les grandes vitesses influent sur l amplitude du M z. LATERAL FRICTION COEFFICIENT 3 km/h, 5 bars, 25 tonnes 3 km/h, 5 bars, 25 tonnes 2 km/h, 5 bars, 25 tonnes km/h, 5 bars, 25 tonnes 5 km/h, 5 bars, 25 tonnes 3 km/h, 5 bars, 25 tonnes 3 km/h, 5 bars, 25 tonnes 2 km/h, 5 bars, 25 tonnes km/h, 5 bars, 25 tonnes 5 km/h, 5 bars, 25 tonnes beta( ) beta( ) Figure 5 Effets vitesse sur le moment d autoalignement (M z ) et le frottement latéral (µ Y ) 3.3 Effets Charge verticale et Effets pression de gonflage Les Figures 6 et 7 montrent, respectivement, l évolution de M z par rapport à la charge et à la pression. L influence de la charge sur la réponse mécanique du pneu est importante. Nous observons, en effet, une augmentation de l amplitude de M z et une croissance de β max avec la charge verticale. Cette observation était prévisible. En effet, les forces de réaction au contact croissent proportionnellement avec la charge. De ce fait, β max correspondant à l angle pour lequel tous les nœuds en contact glissent, augmente. LATERAL FRICTION COEFFICIENT 3 km/h, 5 bars, 25 tonnes 3 km/h, 5 bars, 7 tonnes 3 km/h, 5 bars, tonnes 3 km/h, 5 bars, 25 tonnes 3 km/h, 5 bars, 7 tonnes 3 km/h, 5 bars, tonnes Figure 6 Effets charge sur M z et µ Y Pour étudier les effets de la pression de gonflage, nous avons considéré des pressions nominales d utilisation d un avion gros porteur. Sur la Figure 7, nous pouvons remarquer une très faible influence de la pression sur

l amplitude de M z sans variation de β max. 3 km/h, 4.5 bars, 7 tonnes 3 km/h, 5 bars, 7 tonnes 3 km/h, 5.5 bars, 7 tonnes Figure 7 Effets pression sur M z 3.4 Prise en compte d un coefficient de frottement variable Dans ce qui est présenté précédemment, nous avons découplé les phénomènes mécaniques de la thermique, de l usure et d autres phénomènes pouvant apparaître lorsque le pneu est en dérapage. Cependant, il est vrai que le coefficient de frottement ne devrait pas rester constant ne serait-ce que parce qu en dérapage, dans le contact, le pneu frotte contre le sol, s échauffe et s use. Ces phénomènes altèrent le matériau et, par conséquent, modifient le coefficient de frottement au fur et à mesure que la température et l usure augmentent. Pour prendre en compte ces phénomènes, nous supposons en première approximation que le coefficient de frottement diminue linéairement avec l angle de dérapage. La Figure 8 montre une décroissance de µ Y et de M z au-delà de β max. Ce qui corrobore l allure des courbes expérimentales des pneus de voiture []. LATERAL FRICTION COEFFICIENT mu constant mu variable friction coefficient mu constant mu variable Figure 8 Effets de la prise en compte d un coefficient de frottement variable M z et µ Y 3.5 Roulement stationnaire et roulement classique Nous avons discuté plus haut des avantages et désavantages des deux stratégies présentées : roulement stationnaire et roulement classique. Dans ce paragraphe, nous comparons les résultats de ces méthodes. La Figure 9 montre que numériquement ces stratégies sont équivalentes. Ici, les résultats de simulation en roulement classique se calent très bien sur la courbe en roulement stationnaire. SS et RC LATERAL FRICTION COEFFICIENT SS et RC Roulement stationnaire Roulement classique Roulement stationnaire Roulement classique Figure 9 Comparaison de stratégies roulement stationnaire et roulement classique

4 conclusion Ce travail de simulation a mis en évidence les effets attendus de paramètres de chargement, de vitesse et de pression sur le comportement en roulement sous dérapage d un pneu aéronautique et montré, sous certaines hypothèses, qu une simplification de la géométrie réelle (suppression des rainures) altérait la réponse globale d environ 6 %. La décroissance bien connue de µ Y au-delà d une certaine valeur de dérapage ne peut être obtenue qu en considérant une évolution du coefficient local de frottement µ avec le dérapage. On s attachera donc dans l avenir à établir cette relation probablement liée aux évolutions des caractéristiques du contact de la gomme avec le sol sous l effet des variations de température locale (effet thermique de frottement, transport de chaleur dans le pneu, dissipation dans le milieu ambiant, etc). Références [] Reza M.H., Finite Element Analysis of Steel-Belted Radial Tyre with Tread Pattern under Contact Load, Iranian polymer Journal, 5(8), 667-674, 26 [2] Lacombe J., Tire Model for Simulations of Vehicle Motion on high and Low Friction Road surfaces, Proceedings of the winter 2 Simulation conference, 2. [3] Versteden W.D., Improving a Tire for Motorcycle Simulation, Thesis : Eindhoven University of Technology, 25. [4] Navarro J.P., Contribution à la Modélisation du Pneumatique de l Avion, Thèse : Université Toulouse III - Paul Sabatier, 23 [5] Olatunbosum O. A., Bolarinwa E. O., Finite element simulation of the tyre burst test, Proc.Instn Mech.Engrs, 28, 25-258 [6] Tanner J.A., Dreher R.C., Strubb S.M., Smith E.G., Tire Tread Temperatures During Antiskid Braking and cornering on a Dry Runway, NASA Technical Paper 29, 982. [7] Mc Carthy J.L., Tanner J.A., Temperature Distribution in a Aircraft Tire at Low Ground Speed, NASA Technical Paper 295, 983 [8] Clark S.K., Dogde R.N., Heat generation in Aircraft Tires under Free Rolling Conditions, NASA Contractor Report 3629, 982 [9] Lahellec N., Mazerolle F., Michel J.C., Second-order estimate of the macroscopic behaviour of periodic hyperelastic composites : theory and experimental validation, Journal of the Mechanics and Physics of Solids, 52, 27-49, 24. [] Société de technologie Michelin. Le pneu - L adhérence. Michelin France, 2