Vous avez dit... LED??? DOCLED V2 Page 1 / 14



Documents pareils
CHAPITRE VIII : Les circuits avec résistances ohmiques

CHAPITRE IX. Modèle de Thévenin & modèle de Norton. Les exercices EXERCICE N 1 R 1 R 2

Electrocinétique Livret élève

Chapitre 7: Énergie et puissance électrique. Lequel de vous deux est le plus puissant? L'énergie dépensée par les deux est-elle différente?

CHAPITRE IX : Les appareils de mesures électriques

Sciences physiques Stage n

1 000 W ; W ; W ; W. La chambre que je dois équiper a pour dimensions : longueur : 6 m largeur : 4 m hauteur : 2,50 m.

Module 3 : L électricité

Exercice n 1: La lampe ci-dessous comporte 2 indications: Exercice n 2: ( compléter les réponses sans espaces)

Les puissances La notion de puissance La puissance c est l énergie pendant une seconde CHAPITRE

HAM841K CENTRALE D'ALARME POUR SYSTEMES DE SECURITE COMMERCIAUX ET D'HABITATION

Le circuit électrique

L ÉLECTROCUTION Intensité Durée Perception des effets 0,5 à 1 ma. Seuil de perception suivant l'état de la peau 8 ma

SOMMAIRE. B5.1 Première approche

CARACTERISTIQUE D UNE DIODE ET POINT DE FONCTIONNEMENT

I GENERALITES SUR LES MESURES

Objet : Alimentation pour ordinateur portable et autre. Alimentation Schéma 1

Manuel d'utilisation de la maquette

CH 11: PUIssance et Énergie électrique

Electricité Générale

Séquence 14 : puissance et énergie électrique Cours niveau troisième

Comparaison des performances d'éclairages

Choix multiples : Inscrire la lettre correspondant à la bonne réponse sur le tiret. (10 pts)

Mesure. Multimètre écologique J2. Réf : Français p 1. Version : 0110

Statif universel XL Leica Mode d emploi

CORRECTION TP Multimètres - Mesures de résistances - I. Mesure directe de résistors avec ohmmètre - comparaison de deux instruments de mesure

Driver de moteurs pas-à-pas DM432C

Les Mesures Électriques

La charge électrique C6. La charge électrique

PRODUCTION DE L ENERGIE ELECTRIQUE

Chapitre 7 : CHARGES, COURANT, TENSION S 3 F

CHROMOPHARE Génération F : éclairage innovant à réflecteur avec LED. Un concept et un design d'éclairage qui réunissent fonctionnalité et esthétique

Chapitre 1 - Les circuits électriques

Eléments du programme

ARDUINO DOSSIER RESSOURCE POUR LA CLASSE


Panneaux solaires. cette page ne traite pas la partie mécanique (portique, orientation,...) mais uniquement la partie électrique

F = B * I * L. Force en Newtons Induction magnétique en teslas Intensité dans le conducteur en ampères Longueur du conducteur en mètres

Module Relais de temporisation DC V, programmable

Circuit comportant plusieurs boucles

MODULE DIN RELAIS TECHNICAL SPECIFICATIONS RM Basse tension : Voltage : Nominal 12 Vdc, Maximum 14 Vdc

Afficheurs 7 segments à LEDs Géant

Comment créer votre propre lampes LED

Ces deux systèmes offraient bien sur un choix, mais il était limité à deux extrêmes.

INSTALLATIONS ÉLECTRIQUES CIVILES

PRODUIRE DES SIGNAUX 1 : LES ONDES ELECTROMAGNETIQUES, SUPPORT DE CHOIX POUR TRANSMETTRE DES INFORMATIONS

SYSTEMES ELECTRONIQUES NUMERIQUES

Electricité : caractéristiques et point de fonctionnement d un circuit

Utilisation du visualiseur Avermedia

CONTRÔLE DE BALISES TYPE TB-3 MANUEL D'INSTRUCTIONS. ( Cod ) (M H) ( M / 99G ) (c) CIRCUTOR S.A.

Chapitre 3 CONDUCTEURS ET ISOLANTS

CORRIGÉS DES EXERCICES

Série 77 - Relais statiques modulaires 5A. Caractéristiques. Relais temporisés et relais de contrôle

Chapitre 1 Régime transitoire dans les systèmes physiques

EM Chargeur universel de portable

Appareils de signalisation optiques Colonnes lumineuses préconfigurée Kompakt 71

ELECTRICITE. Introduction

PUISSANCE ET ÉNERGIE ÉLECTRIQUE

Mesure de Salinité Réalisation d'un conductimètre

Carte Relais GSM (Manuel Utilisateur)

Alternateur à grande capacité avec un régulateur à plusieurs étages

CIRCUIT DE CHARGE BOSCH

VMT Mod : Ventilation modulée pour le tertiaire

L'intelligence en mouvement. Caméras AUTODOME 7000 avec fonction de suivi intelligent

Relais statiques SOLITRON MIDI, Commutation analogique, Multi Fonctions RJ1P

BD 302 MINI. Etage de puissance pas à pas en mode bipolaire. Manuel 2059-A003 F

Système de surveillance vidéo

Autoconsommation en photovoltaïque Principe et intérêt

Cours d électricité. Introduction. Mathieu Bardoux. 1 re année. IUT Saint-Omer / Dunkerque Département Génie Thermique et Énergie

Eléments constitutifs et synthèse des convertisseurs statiques. Convertisseur statique CVS. K à séquences convenables. Source d'entrée S1

!" #$$%& Disque dur 2.5 pouces Firewire Apple MacOS FR V2.4 - Page 1/17

Circuits RL et RC. Chapitre Inductance

JUPITER /20/27/61m. Contact NF, 50mA à 24v max. avec R50 Ohms en série

Références pour la commande

Mémo. Infrastructure de charge des véhicules électriques

Instructions de montage et mode d'emploi. Détecteur de fumée basic

Les schémas électriques normalisés

La polarisation des transistors

500 W sur 13cm avec les modules PowerWave

Solution parfaite pour une expérience bureautique transparente. Récapitulatif. Processeur Teradici avancé, haute performance

MESURE DE LA TEMPERATURE

Relais d'arrêt d'urgence, protecteurs mobiles

Fiche 1 (Observation): Définitions

LECTEUR D'EMPREINTE DIGITALE SERRURE ÉLECTRONIQUE MOTORISÉE

ACADÉMIE D ORLÉANS-TOURS NOTE D INFORMATION n 25

MultiPlus sans limites

Chapitre 6 ÉNERGIE PUISSANCE - RENDEMENT. W = F * d. Sommaire

Chapitre 1 : Introduction aux bases de données

CH IV) Courant alternatif Oscilloscope.

Union générale des étudiants de Tunisie Bureau de l institut Préparatoire Aux Etudes D'ingénieurs De Tunis. Modèle de compte-rendu de TP.

LES APPAREILS A DEVIATION EN COURANT CONTINU ( LES APPREILS MAGNETOELECTRIQUES)

Aiguilleurs de courant intégrés monolithiquement sur silicium et leurs associations pour des applications de conversion d'énergie

SOMMAIRE. Qu est-ce que le compteur électronique... page 1. Comment consulter les informations... page 1. Les différentes options tarifaires...

REALISATION D UNE CALCULATRICE GRACE AU LOGICIEL CROCODILE CLIPS 3.

Module 3 : L électricité

Mode d emploi Flip Box

MODENA - GASOFEN BEDIENUNGSANLEITUNG MODE D EMPLOI ISTRUZIONI OPERATIVE INSTRUCTIONS FOR USE BEDIENINGSHANDLEIDING

LAMPES FLUORESCENTES BASSE CONSOMMATION A CATHODE FROIDE CCFL

Notice d installation de la Centrale VIGIK DGM1

LE PROBLEME DU PLUS COURT CHEMIN

Transcription:

Vous avez dit... LED??? DOCLED V2 Page 1 / 14

Bonjour. Le but de ce document est d'éclaircir certains points de fonctionnement de ces composants très pratiques que sont les LEDS. Il décrit dans les grandes lignes le principe de ces composants, sachant que les valeurs données ici sont généralistes devront être remplacées par les valeurs spécifiques au type de LEDS que vous utiliserez. GENERALITES Une LED est une diode. Son fonctionnement s'apparente donc à celui de toute autre diode. Son fonctionnement n'est donc pas identique à celui d'une ampoule. AMPOULE : Dans une ampoule, on a une relation (quasi-)proportionnelle entre la tension qu'on lui applique et le courant qui la traverse (En gros, plus on met de tension, plus elle consomme, et plus elle éclaire fort). On peut donc dire qu'on peut piloter une ampoule grâce à la tension qu'on lui applique. LED Dans une LED, la puissance d'éclairage est quasi-proportionnelle au courant qui la traverse (diagramme de droite). Par contre (sniff), le courant qui la traverse n'est pas proportionnel à la tension qu'on lui applique (diagramme de gauche). Il faut donc piloter une LED en courant, et pas en tension (argghhh). En simplifiant, la plupart des générateurs dont on dispose (piles, accus, alimentations) sont des générateurs de tension. En branchant directement une LED sur un tel générateur, on va simplement la griller (ou écrouler le générateur s'il n'est pas assez puissant... mais bon, vu la puissance d'une LED...). Il faut donc transformer notre générateur de tension en générateur de courant. Si le nombre de LEDs et la tension d'alimentation ne varient pas, la transformation va se réduire à l'insertion d'une résistance en série dans le circuit d'alimentation de notre LED. Pour calculer la valeur de cette résistance il faut connaître 2 caractéristiques de la LED : Son courant nominal Inom (le courant nécessaire pour qu'elle éclaire de façon optimale). Ce courant peut varier (valeurs indicatives) entre 20 ma et 400 ma selon le type de LEDs. La tension nominale Unom (la tension aux bornes de la LED lorsqu'elle est traversée par le courant nominal). Cette valeur peut varier (valeurs indicatives) entre 1,2V et 4V selon le type de LEDS Pensez à les demander à votre revendeur lorsque vous achetez les LEDS, ou consultez la documentation DOCLED V2 Page 2 / 14

technique relative à votre type de LED sur le net. Les Leds infrarouges, qui nous interessent pour la réalisation de Freetrack, présentent souvent une tension nominale comprise entre 1,2 et 1,5 V. Le choix des montages sera donc effectué à partir de cette caractéristique. Il faut aussi connaître la valeur de la tension d'alimentation disponible : Ualim Pour les exemples suivants, nous prendrons comme valeurs : Ualim : 9 V Unom : 1.5 V Inom : 20 ma = 0,02 A (dans toutes les formules, les courants sont exprimés en Ampères) RACCORDEMENT DES LEDS Anode et cathode Une LED est une diode, il existe donc un sens pour la brancher. Dans une LED conventionnelle, le courant circule de l'anode vers la cathode. Il faudra donc raccorder : L'anode en direction de la sortie + de votre générateur. La cathode en direction de la sortie de votre générateur Dans les schémas, la LED est représentée par une «flèche», et le courant circule dans le sens de la flèche. Dans la réalité : l'anode est constituée par le picot le plus petit, la cathode par le picot le plus grand dans le corps de la LED. (SAUF POUR CERTAINES LEDS DE PUISSANCE POUR LESQUELLES LES TAILLES DE PICOTS SONT INVERSEES). Il y a un méplat sur le boîtier de la LED du côté de la cathode Le fil de raccordement de l'anode est plus long (s'ils n'ont pas été recoupés) Sur la photo, l'anode est à droite En cas d'incohérence flagrante entre les tailles de picots et la position du méplat, ignorer les picots et ne se fier qu'au méplat DOCLED V2 Page 3 / 14

Schéma de branchement d'une LED simple Dans ce circuit, la led et la résistance sont en série : On envisage de faire fonctionner la LED à courant Inom, pour avoir l'intensité lumineuse optimale. La tension aux bornes de la LED sera donc : Unom. La LED et la resistance étant en serie, elles sont toutes les 2 traversées par le même courant Inom. La tension aux bornes de la résistance sera donc Ures = Ualim-Unom la valeur de la résistance est calculée par la loi d'ohm : R = U / I ( dans notre cas : Rres = Ures / Inom ) La puissance dissipée dans la résistance sera : P = R * I 2 (dans notre cas : Pres = Rres * Inom * Inom ) Valeurs exemples : Ures = Ualim - Unom = 9-1.5 = 7.5 V Rres = Ures / Inom = 7.5 / 0.02 = 375 Ohms Pres = Rres * Inom * Inom = 375 * 0.02 * 0.02 = 0.15 W Donc une résistance 375 Ohms 0.15 W est nécessaire. Dans les tables de résistances, une valeur proche est 390 Ohms. On prendra donc une résistance 390 ohms 1/4W DOCLED V2 Page 4 / 14

Groupements de LEDS Quand on veut grouper des LEDs, la règle à suivre est d'essayer au maximum de les grouper en série (moins de composants nécessaires, moins de courant consommé). On n'utilise les autres groupements (parallèle, serie/parallèle) qu'en cas de besoin. Les groupements en serie On utilise ce type de groupement lorsqu'on doit alimenter plusieurs LEDs de même caractéristique Inom, et que la tension d'alimentation Ualim est assez élevée pour le permettre. Dans ce type de montage : On met une résistance de charge et plusieurs LEDS, le tout en série les unes avec les autres. On a besoin d'une tension d'alimentation plus élevée. On ne consomme que le courant nécessaire pour une LED.!!! Pour que ce montage fonctionne, la tension Ualim doit être supérieure à N fois Unom (N étant le nombre de LEDS), et conserver un peu de marge (au moins 1V à 2V) pour une bonne valeur de résistance de charge. Exemple : LEDs de valeur Unom=1.2 V et alimentation de 5V ==> nombre maxium de LEDs : 3 (3,6V aux bornes de l'ensemble de LEDs et 1,4 V restants pour la resistance de charge). Dans ce circuit, les LEDs et la résistance sont en série : - On envisage de faire fonctionner les LED à courant Inom, pour avoir l'intensité lumineuse optimale. - La tension aux bornes des LEDs sera donc : Unom x Nb LEDs. - Les LEDs et la resistance étant en serie, elles sont toutes traversées par le même courant Inom. - La tension aux bornes de la résistance sera donc Ures = Ualim- ( Unom x Nb LEDs ) - la valeur de la résistance est calculée par la loi d'ohm : R = U / I ( dans notre cas : Rres = Ures / Inom ) - La puissance dissipée dans la résistance sera : P = R * I * I (dans notre cas : Pres = Rres * Inom * Inom ) Valeurs exemples : Ures = Ualim - Unom = 9 - ( 1.5 x 4 ) = 3 V Rres = Ures / Inom = 6 / 0.02 = 300 Ohms Pres = Rres * Inom * Inom = 300 * 0.02 * 0.02 = 0.12 W DOCLED V2 Page 5 / 14

Les groupements en Parallèle On n'utilise le montage en parallèle que : Lorsque la tension d'alimentation est trop faible pour alimenter plus d'une LED simultanément dans le cas d'un montage série Lorsqu'on veut alimenter des LEDs ayant des caractéristiques différentes ou nécessitant un courant différent. Dans le montage en parallèle, on place côte à côte plusieurs montages LEDS simples. Chaque montage LED simple est composé d'une LED et de sa resistance de charge propre. ERREUR A NE PAS COMMETRE : Ce branchement est mauvais car il n'offre aucune garantie concernant le courant de chaque LED. Une petite différence dans les caractéristiques d'une LED par rapport à l'autre peut provoquer le passage d'un fort courant dans l'une et d'un faible courant dans l'autre. Cela se traduit dans le meilleur des cas par une différence d'éclairage des 2 LEDs, dans le pire des cas par une surchauffe de l'une des LEDs puis éventuellement par une destruction des 2 LEDs l'une après l'autre. MONTAGE CORRECT : une résistance par branche du circuit. Dans ce type de montage on considère chaque branche du circuit (groupe de 1 LED et de 1 résistance) séparément des autres. Les calculs pour chaque branche sont donc ceux d'un montage simple (décrit plus haut). Le courant total consommé par l'ensemble du montage sera la somme des courants de chaque branche. Les groupements en Série-Parallèle On utilise le groupement en Série-parallèle lorsque : La tension d'alimentation est assez importante pour alimenter plusieurs LEDs en série, mais trop faible pour les alimenter toutes. On désire fournir à plusieurs groupes de LEDs des courant de charge différents (types de LEDs différents ou puissance lumineuse souhaitée différente. Dans le montage en serie-parallèle, on place côte à côte plusieurs montages LEDS série. Chaque montage LED série est composé de plusieurs LEDs et de la resistance de charge. Dans ce type de montage on considère chaque branche du circuit (groupe de N LEDs en série et de 1 résistance) séparément des autres. Les calculs pour chaque branche sont donc ceux d'un montage LEDs série (décrit plus haut). DOCLED V2 Page 6 / 14

APPLICATIONS PRATIQUES A FREETRACK RAPPEL DES FORMULES Calcul de la résistance d'une branche : Rappel : une branche est composée d'une résistance et d'une LED ou plusieurs LEDs en série R = ( U alim - ( U led x NB led ) ) / I led P = R x I led x I led avec : R P U alim U led I led Nb led Valeur de la résistance (en Ohms) Puissance dissipée dans la résistance (en Watts) Tension d'alimentation de la pile ou du bloc d'alimentation (en Volts) Tension aux bornes d'une LED en fonctionnement optimal (en Volts) Intensité optimale d'une LED (en Ampères) Nombre de LEDs en série dans la branche Choix des résistances : Les formules de calcul donnent une valeur théorique pour les résistances. Il faudra choisir une valeur approchante dans les séries standard disponibles chez votre revendeur. Celui-ci disposera habituellement des series E6 (6 valeurs sur une décade),e12 (12 valeurs sur une décade) et E24 (24 valeurs sur une décade). Selon les séries disponibles chez votre fournisseur, on choisira l'une ou l'autre valeur On prendra TOUJOURS la valeur SUIVANT la valeur théorique (Résistance plus forte = moins de courant = plus de sécurité). On prendra TOUJOURS une resistance de puissance suffisante pour supporter la puissance dissipée. En règle générale, prendre une résistance de puissance égale à au moins 2x la puissance calculée est une bonne sécurité (ex : prendre 1/4W pour 0.1W calculés, 1/2W pour 0.2W calculés,...) Séries de résistances : Ces séries se répètent toutes les décades (ex: 120 dans le tableau donne également 12, 1.2, 0.12...) E6 E12 E24 Val 100 110 120 130 150 160 180 200 220 240 270 300 330 360 390 430 470 510 560 620 680 750 820 910 Les puissances les plus courantes sont : 1/4W 1/2W 1W 2W Il existe d'autres puissances de résistances, mais elles sont inutiles pour le montage présent. (si vous parvenez pour votre montage à une puissance dissipée dans la résistance supérieure à 2W, alors vous avez un petit problème avec votre alimentation... ;) ). DOCLED V2 Page 7 / 14

MONTAGES A 4 LEDS 1 pile de 1,5V Type de montage à déconseiller!!!! La tension de la pile est trop proche de la tension de travail des Leds pour qu'on puisse efficacement utiliser une résistance de charge. (Si par contre, vous disposez du multimètre pour tester individuellement chaque LED, et l'associer à la bonne résistance, alors ce montage est possible...). 2 piles rechargeables de 1,2V (2,4v) Le seul montage utilisable est le montage en parallèle. Avec tous les autres type de montages, la tension aux bornes des LEDs devient plus importante que la tension disponible par les piles. On a 4 branches, chacune étant composée d'une résistance et d'une LED Ualim = 2,4V R = ( 2,4 Uled) / Iled Le courant total consommé par ce montage est la somme des courants de chaque branche, à savoir : 4 x Iled. Exemple 1 : Led : 1,5V - 100 ma R = ( 2,4 1,5 ) / 0,1 = 9 ohms P = 9 * 0,1 * 0,1 = 0,09 W On prendra une resistance de 9,1 Ohms (serie E24) ou 10 Ohms (serie E6 ou E12) Exemple 2 : Led : 1,2V - 20 ma R = ( 2,4 1,2 ) / 0,02 = 60 ohms P = 60 * 0,02 * 0,02 = 0,024 W On prendra une resistance de 62 Ohms (serie E24) ou 68 Ohms (serie E6 ou E12) DOCLED V2 Page 8 / 14

2 piles de 1,5V (3v) Le montage Série-Parallèle peut être envisagé si on utilise des leds de moins de 1,5V de tension nominale. Néanmoins, la faible tension aux borne de la résistance de charge rend délicat le choix de résistance. Le montage conseillé est donc le montage parallèle On a 4 branches, chacune étant composée d'une résistance et d'une LED Ualim = 3V R = ( 3 Uled) / Iled Le courant total consommé par ce montage est la somme des courants de chaque branche, à savoir : 4 x Iled. Exemple 1 : Led : 1,5V - 100 ma R = ( 3 1,5 ) / 0,1 = 15 ohms P = 15 * 0,1 * 0,1 = 0,15 W On prendra une resistance de 15 Ohms (disponible dans toutes les séries) Exemple 2 : Led : 1,2V - 20 ma R = ( 3 1,2 ) / 0,02 = 90 ohms P = 90 * 0,02 * 0,02 = 0,036 W On prendra une resistance de 91 Ohms (serie E24) ou 100 Ohms (serie E6 ou E12) DOCLED V2 Page 9 / 14

1 pile de 4,5V (ca existe encore?????) Port USB, ou prise 5v ou bloc d'alim 5v Bloc d'alim 6v Pour ces 3 types de tensions d'alimentation, le montage le plus efficace est le montage série-parallèle. Les tensions sont insuffisantes pour un montage série, mais un montage parallèle augmenterait inutillement le courant par doublement des branches, et la puissance dissipée dans les résistances de charge ( effet «chaufferette» sur la casquette) On a 2 branches, chacune composée d'une résistance de charge et de 2 LEDs en série. 4,5V 5V 6V R = ( 4,5 2 x Uled) / Iled R = ( 5 2 x Uled) / Iled R = ( 6 2 x Uled) / Iled Le courant total consommé par ce montage est la somme des courants de chaque branche, à savoir : 2 x Iled. Exemple 1 : Led : 1,5V - 100 ma Alimentation 5v R = ( 5 2 * 1,5 ) / 0,1 = 20 ohms P = 20 * 0,1 * 0,1 = 0,2 W On prendra une resistance de 20 Ohms (serie E24) ou 22 Ohms (serie E6 ou E12) Exemple 2 : Led : 1,2V - 20 ma R = ( 5 2 * 1,2 ) / 0,02 = 130 ohms P = 130 * 0,02 * 0,02 = 0,052 W On prendra une resistance de 130 Ohms (serie E24) ou 150 Ohms (serie E6 ou E12) DOCLED V2 Page 10 / 14

9V ou plus (pile 9V, bloc d'alimentation 9V, bloc d'alimentation 12V,...) Au-delà de 7v (environ), le montage le plus «économique» est le montage serie : La tension est assez importante pour alimenter les 4 leds en série Il ne faudra qu'une résistance pour l 'ensemble du montage La résistance ne supportera qu'une faible tension, car les LEDs auront déjà fait notablement chuter la tension d'alimentation. Le courant consommé par le montage complet est le plus faible de tous les types de montages (une seule branche) 9 V 12 V R = ( 9 4 x Uled) / Iled R = ( 12 4 x Uled) / Iled Exemple 1 : Led : 1,5V - 100 ma Alimentation 9V R = ( 9 4 * 1,5 ) / 0,1 = 30 ohms P = 30 * 0,1 * 0,1 = 0,3 W On prendra une resistance de 30 Ohms (serie E24) ou 33 Ohms (serie E6 ou E12)!!!! attention prendre une résistance de puissance suffisante (1/2W ou plus) Exemple 2 : Led : 1,2V - 20 ma Alimentation 9V R = ( 9 4 * 1,2 ) / 0,02 = 210 ohms P = 210 * 0,02 * 0,02 = 0,084 W On prendra une resistance de 220 Ohms (disponible dans toutes les séries) DOCLED V2 Page 11 / 14

MONTAGES A 3 LEDS Dans un montage mettant en oeuvre 3 LEDs, le raccordement série-parallèle perd en grande partie son interêt, car l'une des branches sera toujours composée d'un assemblage simple (1 resistance et 1 LED). Les 2 types de raccordement utilisables sont donc l'assemblage serie et l'assemblage parallèle. Pour simplifier, on utilisera l'assemblage parallèle pour des tensions d'alimentation inférieures à 5V, et l'assemblage série pour des tensions d'alimentation supérieures à 5V. 2 piles 1,5V ou 2 piles rechargeables 1,2V, ou une pile de 4,5V On a 3 branches, chacune composée d'une résistance de charge et de 1 LED. 2 x 1,5V piles 2 x 1,2 V piles rechargeables R = ( 3 Uled) / Iled R = ( 2,4 Uled) / Iled Pile 4,5 V R = ( 4,5 Uled) / Iled Le courant total consommé par ce montage est la somme des courants de chaque branche, à savoir : 3 x Iled. Exemple 1 : Led : 1,5V - 100 ma Alimentation 3V (2 piles 1,5V) R = ( 3 1,5 ) / 0,1 = 15 ohms P = 15 * 0,1 * 0,1 = 0,15 W On prendra une resistance de 15 Ohms (disponible dans toutes les séries) Exemple 2 : Led : 1,2V - 20 ma Alimentation 2,4V (2 piles rechargeables) R = ( 2,4 1,2 ) / 0,02 = 60 ohms P = 60 * 0,02 * 0,02 = 0,072 W On prendra une resistance de 62 Ohms (disponible dans toutes les séries) DOCLED V2 Page 12 / 14

Alimentation 5V, 6V, 9V, 12V On utilisera le montage série, on a 1 branche, composée d'une résistance de charge et de 3 LEDs en série. 5V 6V 9V 12V R = ( 5 3 x Uled) / Iled R = ( 6 3 x Uled) / Iled R = ( 9 3 x Uled) / Iled Le courant total consommé par ce montage correspond au courant Iled d'une seule LED. R = ( 12 3 x Uled) / Iled Exemple 1 : Led : 1,5V - 100 ma Alimentation 6V R = ( 6 3 * 1,5 ) / 0,1 = 15 ohms P = 15 * 0,1 * 0,1 = 0,15 W On prendra une resistance de 15 Ohms (disponible dans toutes les séries) Exemple 2 : Led : 1,2V - 20 ma Alimentation 12V R = ( 12 3 * 1,2 ) / 0,02 = 420 ohms P = 420 * 0,02 * 0,02 = 0,168 W On prendra une resistance de 430 Ohms (serie E24) ou 470 Ohms (série E6 ou E12) DOCLED V2 Page 13 / 14

MONTAGE A 1 LED Calcul de la résistance de charge : R = ( Ualim Uled) / Iled Ualim 2,4V (2x piles rechargeables) R = ( 2,4 Uled) / Iled 3V (2xpiles 1,5V) 5V (alimentation USB) 6V 9V 12V Exemple 1 : Led : 1,5V - 100 ma Alimentation 6V R R = ( 3 Uled) / Iled R = ( 5 Uled) / Iled R = ( 6 Uled) / Iled R = ( 9 Uled) / Iled R = ( 12 Uled) / Iled R = ( 6 1,5 ) / 0,1 = 45 ohms P = 45 * 0,1 * 0,1 = 0,45 W On prendra une resistance de 47 Ohms (Disponible dans toutes les séries).!!!! Prendre une résistance de 1W, vu la puissance à dissiper. Exemple 2 : Led : 1,2V - 20 ma Alimentation 12V R = ( 12 1,2 ) / 0,02 = 540 ohms P = 540 * 0,02 * 0,02 = 0,216 W On prendra une resistance de 560 Ohms (serie E12 ou E24) ou 680 Ohms (série E6)!!!! Prendre une résistance de 1/2W, vu la puissance à dissiper DOCLED V2 Page 14 / 14