Capteurs en fibres optiques



Documents pareils
DIFFRACTion des ondes

Caractéristiques des ondes

PRODUIRE DES SIGNAUX 1 : LES ONDES ELECTROMAGNETIQUES, SUPPORT DE CHOIX POUR TRANSMETTRE DES INFORMATIONS

Acquisition et conditionnement de l information Les capteurs

Chapitre 02. La lumière des étoiles. Exercices :

PRINCIPE MICROSCOPIE CONFOCALE

Chapitre 18 : Transmettre et stocker de l information

LES CAPTEURS CCD/CMOS

UE 503 L3 MIAGE. Initiation Réseau et Programmation Web La couche physique. A. Belaïd

Comprendre l Univers grâce aux messages de la lumière

Un spectromètre à fibre plus précis, plus résistant, plus pratique Concept et logiciel innovants

QUELLE FIBRE UTILISER EN FONCTION DE MES APPLICATIONS. OM1, OM2 ou OM3, QUELLE EST LA FIBRE QU IL ME FAUT POUR MON INSTALLATION?

Chapitre 2 Les ondes progressives périodiques

Chapitre 22 : (Cours) Numérisation, transmission, et stockage de l information

TP 2: LES SPECTRES, MESSAGES DE LA LUMIERE

Mise en pratique : Etude de spectres

1STI2D - Les ondes au service de la santé

D ETECTEURS L UXMETRE SUR TIGE C OMPTEUR DE FRANGES A FIBRE OPTIQUE. Détecteurs

Classe : 1 ère STL Enseignement : Mesure et Instrumentation. d une mesure. Titre : mesure de concentration par spectrophotométrie

Manuel d'utilisation de la maquette

La Fibre Optique J BLANC

Des ondes ultrasonores pour explorer le corps humain : l échographie

Systèmes de distributeurs Systèmes de distributeur selon la norme ISO , taille 2, série 581. Caractéristiques techniques

Multichronomètre SA10 Présentation générale

CHAPITRE IX : Les appareils de mesures électriques

CORRECTION TP Multimètres - Mesures de résistances - I. Mesure directe de résistors avec ohmmètre - comparaison de deux instruments de mesure

Utilisation du visualiseur Avermedia

I- Définitions des signaux.

Mesures de PAR. Densité de flux de photons utiles pour la photosynthèse

Parrainage par Monsieur Philippe PAREIGE de notre classe, presentation des nanotechnologies.

Niveau 2 nde THEME : L UNIVERS. Programme : BO spécial n 4 du 29/04/10 L UNIVERS

Dossier table tactile - 11/04/2010

PROPRIÉTÉS D'UN LASER

G.P. DNS02 Septembre Réfraction...1 I.Préliminaires...1 II.Première partie...1 III.Deuxième partie...3. Réfraction

Chapitre 2 Caractéristiques des ondes

TEMPÉRATURE DE SURFACE D'UNE ÉTOILE

Relais statiques SOLITRON MIDI, Commutation analogique, Multi Fonctions RJ1P

Chapitre n 6 MASSE ET ÉNERGIE DES NOYAUX

EXERCICE II : LE TELEPHONE "POT DE YAOURT" (5 points)

COMMUNICATION ENTRE DEUX ORDINATEURS PAR LASER MODULE EN CODE MORSE OU BINAIRE.

Université de Nice Sophia Antipolis Licence de physique

EXERCICE 2 : SUIVI CINETIQUE D UNE TRANSFORMATION PAR SPECTROPHOTOMETRIE (6 points)

LES CARACTERISTIQUES DES SUPPORTS DE TRANSMISSION

Spectrophotométrie - Dilution 1 Dilution et facteur de dilution. 1.1 Mode opératoire :

Le Bon Accueil Lieu d art contemporain - Sound Art INTERFÉRENCES ATELIERS / EXPOSITION / CONCERT

Le polissage par laser

Sensibilisation à la Sécurité LASER. Aspet, le 26/06/2013

Systèmes pour la surveillance et la commande lors de l entreposage et du transvasement de liquides. BA

LEADER MONDIAL DU PLAFOND TENDU. > solutions. Cabinets dentaires. Solutions Lumière Solutions Acoustics Solutions Print Qualité & Sécurité

Interférences et applications

Notice d'utilisation Capteur de niveau TOR. LI214x /00 10/2010

LE PHYSICIEN FRANCAIS SERGE HAROCHE RECOIT CONJOINTEMENT LE PRIX NOBEL DE PHYSIQUE 2012 AVEC LE PHYSICIEN AMERCAIN DAVID WINELAND

Leica DISTO A2. The original laser distance meter

Chapitre 6 La lumière des étoiles Physique

Observer TP Ondes CELERITE DES ONDES SONORES

Isole des bruits de musique, TV, rires, cris, ronflements, toux, machine à laver

L'évolution de VISUAL MESSAGE CENTER Architecture et intégration

DETERMINATION DE LA CONCENTRATION D UNE SOLUTION COLOREE

APPLICATION DU SCN A L'EVALUATION DES REVENUS NON DECLARES DES MENAGES

Colonnes de signalisation

Chapitre 13 Numérisation de l information

PUISSANCE ET ÉNERGIE ÉLECTRIQUE

10. Instruments optiques et Microscopes Photomètre/Cuve

Electron S.R.L. - MERLINO - MILAN ITALIE Tel ( ) Fax Web electron@electron.it

1. PRESENTATION DU PROJET

Lampes à DEL EcoShine II Plus

UNIVERSITE MOHAMMED V Rabat Ecole Normale Supérieure

BACCALAURÉAT TECHNOLOGIQUE STD ARTS APPLIQUÉS

Le multiplexage. Sommaire

La spectrophotométrie

Généralités. Aperçu. Introduction. Précision. Instruction de montage. Lubrification. Conception. Produits. Guides à brides FNS. Guides standards GNS

Sujet. calculatrice: autorisée durée: 4 heures

Q6 : Comment calcule t-on l intensité sonore à partir du niveau d intensité?

MESURE DE LA TEMPERATURE

Conservation des documents numériques

Système M-Bus NIEVEAU TERRAIN NIVEAU AUTOMATION NIVEAU GESTION. Domaines d'application

III. Transformation des vitesses

PASSAGE A NIVEAU HO/N

J TB/TW Limiteur de température, contrôleur de température avec afficheur LCD, montage sur rail oméga 35 mm

La recherche d'indices par fluorescence

Module HVAC - fonctionnalités

Vous avez dit... LED??? DOCLED V2 Page 1 / 14

GAMME UVILINE 9100 & 9400

MICROSENS. Module Bridge Ethernet / Fast Ethernet. fiber optic solutions. Description. Construction

Chapitre 1 : Introduction aux bases de données

Activité 1 : Rayonnements et absorption par l'atmosphère - Correction

BACCALAURÉAT PROFESSIONNEL EPREUVE DE TRAVAUX PRATIQUES DE SCIENCES PHYSIQUES SUJET A.1

pka D UN INDICATEUR COLORE

LISACode. Un simulateur opérationnel pour LISA. Antoine PETITEAU LISAFrance - le 16 mai 2006

SDLV120 - Absorption d'une onde de compression dans un barreau élastique

CAPTEURS - CHAINES DE MESURES

Comment suivre l évolution d une transformation chimique? + S 2 O 8 = I SO 4

F = B * I * L. Force en Newtons Induction magnétique en teslas Intensité dans le conducteur en ampères Longueur du conducteur en mètres

La chanson lumineuse ou Peut-on faire chanter la lumière?

U7/R7 Un éclairage avancé dans un design unique

Caractérisation non linéaire de composants optiques d une chaîne laser de forte puissance

Electrocinétique Livret élève

Les lières. MSc in Electronics and Information Technology Engineering. Ingénieur civil. en informatique. MSc in Architectural Engineering

Transcription:

Heig-vd OTI Optique Classe MI 2009 El Maudni El Alami Samir Prof. resp. : M. Zago Le 6 février 2009 Capteurs en fibres optiques

Table des matières Page 1 Introduction... 3 1.1 Une technologie récente... 3 1.2 Définition et classement des capteurs à fibres optique... 3 1.3 Avantages et inconvénients... 3 2 Différents types de capteurs à fibres... 5 2.1 Architecture des capteurs en fibre optique... 5 2.1.1 Capteurs à modulation d'intensité... 6 2.1.2 Capteurs à modulation de phase... 6 2.1.3 Capteurs à modulation de longueur d'onde... 7 2.1.4 Capteurs à modulation de temps... 7 2.1.5 Capteurs planimétriques... 7 2.2 Produits industriels... 7 2.2.1 Mesure de température... 8 2.2.2 Mesure de flux... 8 2.2.3 Mesure de position... 8 2.2.4 Mesure de vibrations... 9 3 L'avenir des capteurs à fibres... 9 3.1 Technologie... 9 3.2 Économie... 9 4 Conclusions... 10 Page 2 sur 11

1 Introduction : 1.1 Une technologie récente : Les capteurs à fibres optiques sont issus de la rencontre de deux technologies : les fibres optiques utilisées en télécommunication et l'optoélectronique. L'une et l'autre ont connues un développement extraordinaire ces deux dernières décennies, amélioration des performances, diminution des coûts, miniaturisation. Tout cela à permis l'émergence de ces capteurs dont le champ d'application recouvre entièrement celui des capteurs traditionnels et offre également de nouvelles possibilités. 1.2 Définition et classement des capteurs à fibres optique : La définition d un capteur en fibre optique est : Un dispositif dans lequel l'information est créée dans le chemin optique par réaction de la lumière à la grandeur à mesurer, avant d'être acheminée vers le récepteur optique par l'intermédiaire d'une ou plusieurs fibres optiques. Cette définition exclue les assemblages comportant un capteur conventionnel et un système de transmission par fibres optiques. Par contre, l'élément optique sensible à la mesure, le transducteur, peut être ou non la fibre optique. Dans le premier cas, on parlera de capteur intrinsèque, dans l'autre de capteur extrinsèque. Il existe des cas où cette définition est incomplète par exemple quand la mesure se fait à l'interface entre la fibre et le milieu externe. On distingue également capteurs actifs et capteurs passifs. Dans le premier cas, la source de lumière est générée par une source optique. L'onde lumineuse qui se propage dans la fibre est modifiée directement ou indirectement par le phénomène physique dont on veut déterminer la mesure. Dans le second cas, la lumière est générée par le phénomène physique lui-même. 1.3 Avantages et inconvénients : Avant de décrire un certain nombre de systèmes, faisons un rapide tour d'horizon des nombreux avantages et des quelques inconvénients des capteurs à fibres. Les avantages sont liés soit aux propriétés intrinsèques des fibres optiques en générale soit aux propriétés spécifiques de certaines fibres ou certains systèmes. Avantages intrinsèques : Discret le capteur ne perturbe pas son environnement. Il peut notamment être employé en environnement explosif. son insensibilité électromagnétique est parfaite (très hautes tensions, parasites électromagnétiques, discrétion). Page 3 sur 11

sa dimension transversale est très faible, ce qui lui ouvre la voie aux applications en médecine notamment. sa dimension longitudinale est grande : le capteur peut être positionné à grande distance, sans perte de signal. sa légèreté (associée à l'absence de conduction de la chaleur) en fait un candidat pour les applications spatiales et aéronautiques. Avantages spécifiques : plus grande sensibilité et plus grande dynamique que les capteurs traditionnels : les montages interférométriques permettent d'atteindre des résolutions relatives de 10-6. grande souplesse de configuration géométrique : le capteur autorise notamment des mesures sans contact sur des objets en mouvement, ou dans des milieux interdisant tout contact physique entre l'unité sous test et les sondes de mesures. possibilité de fonctionner à hautes températures. Les fibres utilisées sont le plus souvent en silice, parfois en plastique. La silice a un point de fusion à 1850 C et peut transmettre sans problème jusqu'à 60 0 à 700 C. Dans la pratique, c'est l'enduction extérieure en époxy acrylate qui limite la température de ces fibres entre -30 C et +60 C. Des fibres spéciales sont utilisées dans des environnements à hautes températures. Une enduction polymères de polyamide permet de fonctionner jusqu'à 400 C par exemple. bonne résistance aux rayonnements nucléaires ainsi qu'aux impulsions électromagnétiques qui seraient dues à une explosion atomique. sécurité intrinsèque liée aux faibles intensités mises en jeu dans les fibres. bonne adaptation à toute mesure à distance : le capteur à fibres optiques se prête à la télétransmission pour le contrôle des processus industriels mettant en œuvre des matières toxiques ou dangereuses (certains lasers, chimie pétrolière, centrales nucléaires). capacité à effectuer des mesures au moyen de capteurs répartis sur toute la longueur d'une même fibre optique : le développement des réseaux de communications de terrain ouvre la voie à l'exploitation cohérente de réseaux complexes de capteurs chargée de la saisie de données dans les processus industriels ou pour les structures intelligentes. Inconvénients La fibre n'est pas dénuée d'inconvénients. Les plus fréquemment mentionnés sont: La complexité de la connectique associée; La limitation en température pour certaines fibres (+85 C pour les fibres en plastique); La difficulté de détecter un défaut dans les fibres (épissures, cisaillement); Le prix du capteur à fibre optique est (pour l'instant) plus élevé que celui d'un capteur traditionnel, sans pour autant être plus performant dans les applications usuelles. Sa technologie n'a pas bénéficié des investissements réalisés par l'industrie des Communications. Page 4 sur 11

2 Différents types de capteurs à fibres : 2.1 Architecture des capteurs en fibre optique : Figure 1 : principe de fonctionnent d un capteur a fibre optique L'architecture d'un capteur à fibres optiques comporte les sous-ensembles suivants : un émetteur de lumière cohérente ou non (DEL, diodes laser), un guide d'onde optique (fibre monomode ou multi mode, guide d'onde intégré), composé d une fibre optique de mesure et d une fibre optique de référence. La première (fibre de mesure) est mise en tension et est liée mécaniquement à la structure par deux points de fixation et peut donc suivre ses déformations en élongation et en raccourcissement. La seconde (fibre de référence) est fixée aux mêmes points que la fibre de mesure mais avec un montage libre, flottant dans le même corps de capteur. Chacune des fibres est parcourue par une même onde lumineuse générée par une LED. Des miroirs situés aux points de fixation renvoient cette onde lumineuse vers le coupleur qui recombine les faisceaux déphasés lorsqu il y a déformation et les dirige vers l analyseur. Celui-ci se comporte comme un interféromètre de basse cohérence contrôlant et mesurant avec précision le déphasage obtenu. Il comporte aussi le transducteur ainsi qu'un récepteur, un démodulateur et des circuits d'alimentation énergétique. Nous allons maintenant, nous intéresser au transducteur et à ses différentes possibilités de mesure. Suivant la grandeur physique à mesurer, on aura différents phénomènes optiques de modulation. Page 5 sur 11

2.1.1 Capteurs à modulation d'intensité : Figure 2 : a - Champ évanescent dans une fibre optique. b - Principe du transducteur à champs évanescent La grandeur à mesurer module directement l'intensité de la lumière traversant la fibre optique. Cette modulation est la plus simple à réaliser, et est souvent réservée aux mesures "tout ou rien". La lumière ainsi modulée est mesurée par une photo détectrice linéaire. Une méthode consiste à mesurer la quantité de lumière qui sort d'une fibre et rentre dans une autre. Dans certain systèmes, fibre émettrice et fibre réceptrice sont confondues. La mesure peut être faite par transmission, réflexion ou diffusion par le capteur mobile. 2.1.2 Capteurs à modulation de phase : Figure 3 : décomposition des deux trajectoires inverses des deux demi-faisceaux La modulation de phase due à différentes causes (élévation de température, pression...) est mesurée indirectement. En effet, les fréquences optiques ne permettent pas de mesurer directement la phase d'une onde. Néanmoins par interférométrie, il est possible d'avoir accès à la phase et cela d'une manière très précise. Plusieurs interféromètres peuvent être utilisés : Michelson, Fabry-Perot ou Sagnac. Page 6 sur 11

2.1.3 Capteurs à modulation de longueur d'onde : Ces capteurs exploitent les propriétés à des différentes composantes spectrales de la lumière corrélativement avec la valeur du paramètre mesuré. Pour l'analyse des différentes longueurs d'ondes, on fait appel au spectrophotomètre à système dispersif ou à des filtres optiques. Avec de tels systèmes, on peut atteindre une bonne précision (+/-l%). On peut mesurer des vibrations par le déplacement de deux filtres colorés qui se déplacent devant des diodes électroluminescentes. 2.1.4 Capteurs à modulation de temps : Il s'agit d'un type de capteur actif pour lequel la source de lumière est pulsée. L'impulsion optique traverse la zone sensible et est analysée par comparaison entre l'entrée et la sortie. On peut ainsi mesurer la température par simple mesure du temps passé dans la fibre dont la longueur est thermiquement dépendante. 2.1.5 Capteurs planimétriques : Figure 4 : Représentation schématique d'un capteur planimétrique Dans la majorité des cas les capteurs planimétriques utilisent une source polarisée linéairement qui est injectée à 45 des axes princi paux de la fibre biréfringente afin que les deux modes de propagation (lente et rapide) soient également excités. L'utilisation d'une lame demi-onde peut grandement faciliter l'ajustement de l'orientation de la polarisation d'entrée. En sortie de la fibre biréfringente, un analyseur est placé devant le détecteur pour connaître l'état de polarisation (voir figure 3). Le mesurande va faire tourner la polarisation entraînant une variation d'intensité vue par le détecteur. Cette configuration possède l'inconvénient d'être sensible aux variations d'intensité de la source ou de l'injection. 2.2 Produits industriels : Initialement, les capteurs à fibres optiques étaient employés dans des environnements hostiles où il pouvait y avoir des hautes températures, des matériaux corrosifs, des interférences électromagnétiques intenses, des risques d'explosion et enfin où les capteurs et transducteurs traditionnels ne fonctionnaient pas bien. Nous Page 7 sur 11

allons maintenant présenter une liste des possibilités de mesures actuellement utilisées en industrie. 2.2.1 Mesure de température : La fibre optique peut être à la fois capteur et transmetteur de l'information : si en extrémité de la fibre on réalise un micro corps noir, on peut capter le rayonnement émis par le corps dont on veut connaître la température. On peut aussi utiliser la photoluminescence, c'est à dire envoyer un rayonnement au bout de la fibre équipé d'une pastille luminescente qui émet en retour des raies caractéristiques de sa température. 2.2.2 Mesure de flux : Plusieurs techniques sont également disponibles pour cette grandeur. L'une d'elles consiste à, placer une fibre monomode tendue à travers un tube de fluide. La fibre engendre un tourbillon qui lui même induit des déformations alternatives de la fibre. L'analyse spectrale des oscillations permet alors de remonter au débit. Pour les fluides contenant des particules, il est possible d'utiliser la vélocimétrie laser à effet Doppler distant. Le système est constitué de trois fibres et d'un laser. Deux fibres reliées au laser sont focalisées de manière à interférer. La troisième fibre lie le signal. Celui-ci est constitué de l'intensité variable dans le temps due aux particules alternativement éclairées par le réseau d'interférence. Dans les écoulements diphasiques liquide-gaz, on peut utiliser la fibre à extrémité en forme de en prisme afin de détecter le rapport entre les deux phases. 2.2.3 Mesure de position : Constituant un marché important des capteurs à fibres, les capteurs de position sont surtout utilisés dans le domaine de l'emballage et du conditionnement. La technique des micro-rupteurs est utilisée depuis les années 1960. Dans les micro-rupteurs, la fibre amène un faisceau lumineux, pas forcément cohérent, qui se réfléchi sur la surface dont on veut connaitre la distance. La lumière réfléchie ou diffusée est captée par une fibre identique à la première ou non, puis dirigée vers une cellule photosensible. Diverses configurations avec des faisceaux de fibres permettent d'obtenir une précision de 0,1 nm ou moins sur une échelle de quelques millimètres. Une autre technique consiste à intercaler entre un réseau 1D ou 2D une plaque perforée. Ce système est plus utilisé pour connaître la position absolue de pistons ou de vannes. Page 8 sur 11

2.2.4 Mesure de vibrations : Tout comme Our la mesure de pression, il existe un système pour lequel la fibre est prise entre deux mâchoires, l'une fixe et l'autre mobile. C'est sur cette dernière que l'on place une masse plus ou moins importante selon la gamme d'accélération qui nous intéresse. On peut ainsi, mesurer des fréquences allant de 0 à 1000 Hz avec une déviation de moins de 3% par rapport au cas idéal. 3 L'avenir des capteurs à fibres : 3.1 Technologie : D'un point de vue technologique il y aura des améliorations au niveau de la miniaturisation et de la complexité. Les recherches en laboratoires sont nombreuses et variées. La possibilité de pouvoir mesurer des grandeurs physiques différentes de manière simultanée contrebalanceront quelque peu son prix parfois élevé. On peut citer comme applications prometteuses les spectrophotomètres portables qui permettent de déterminer la contenance de substance emballées sans manipulation ou attente indésirable. La gamme de ces spectrophotomètres va de l'uv à l'infrarouge suivant le type de fibres utilisées. 3.2 Économie : Le domaine des capteurs à fibres est en pleine expansion. Développé à partir de la fin des années 1970 sous l'impulsion de plusieurs programmes militaires, il est aujourd'hui présent avec des systèmes de mesure industriels (déplacement, accélération, pression, température,...). Beaucoup de systèmes sont encore en laboratoire ou peu utilisés (chimie, mesure simultanée de plusieurs grandeurs physique...). Ils sont promis à un grand avenir et devraient se développer dans la décennie qui arrive grâce à plusieurs facteurs dont la baisse des coûts des éléments constitutifs des capteurs à fibres et la miniaturisation des ces éléments. Les capteurs à fibres optiques représentent un marché très prometteur. De 50 millions de dollars en 1992, puis, suivant les sources, entre 55 et 200 millions de dollars en 1994 il devrait dépasser le milliard de dollars en 1999 grâce à un rythme de croissance de plus de 36% par an. Les États-Unis, qui profitent de leur avance, représentent 60% du marché mondial et sont loin devant l'europe ou l'asie qui se partagent à parts égales les 40% restant. Les prévisions jusqu'en 1999 montrent une légère augmentation de la part des États-Unis. Page 9 sur 11

4 Conclusions : La fibre optique représente assurément le meilleur moyen actuel pour transporter de très hauts débits d'informations numériques, et les besoins dans ce domaine vont probablement augmenter très fortement dans un avenir proche. Les capteurs en fibre optique deviennent de plus en plus performants et rapides. La vision est un sens capital pour l homme, la machine aussi se voit bénéficier de cet avantage qui permet sans doute d améliorer ses capacités, ce qui augmente la fiabilité des systèmes équipées par des capteurs très développés, surtout les robots autonomes. Lieu : Yverdon-les-Bains Date : 06/02/2009 Signatures : El Maudni El Alami Samir Page 10 sur 11

Page 11 sur 11

Nom du document : Travail de recherche Répertoire : C:\Documents and Settings\Helpdesk\Mes documents Modèle : C:\Documents and Settings\Helpdesk\Application Data\Microsoft\Templates\Normal.dotm Titre : Labo de régulation Sujet : Indentification de systèmes fondamentaux Auteur : Classe MI9-1 Mots clés : Commentaires : Date de création : 13.11.2008 18:12:00 N de révision : 60 Dernier enregistr. le : 06.02.2009 11:46:00 Dernier enregistrement par : HEIG-VD Temps total d'édition : 1'298 Minutes Dernière impression sur : 06.02.2009 11:50:00 Tel qu'à la dernière impression Nombre de pages : 11 Nombre de mots : 2'658 (approx.) Nombre de caractères : 14'623 (approx.)