Expérimentation de capteurs solaires thermiques peu coûteux et intégrés au bâtiment



Documents pareils
NOTICE TECHNIQUE SSC : Système Solaire Combiné eau chaude sanitaire / appui chauffage maison / appui eau chaude piscine

Système d énergie solaire et de gain énergétique

Energie solaire

À DRAINAGE GRAVITAIRE

Domosol : Système solaire combiné (SSC) de production d eau chaude et chauffage

Auré. AuréaSystème. Les solutions solaires. Chauffe-Eau Solaire. Combiné Solaire Pulsatoire 90% Système solaire AUTO-VIDANGEABLE et ANTI-SURCHAUFFE

L offre DualSun pour l eau chaude et le chauffage (SSC)

ROTEX Solaris - Utiliser l énergie solaire gratuite. Nouveau : Chauffe-eau électro-solaire ROTEX HybridCube 343/0/0

ballons ECS vendus en France, en 2010

RAPPORT COMPLET D'ETUDE DUALSYS

2.0. Ballon de stockage : Marque : Modèle : Capacité : L. Lien vers la documentation technique :

DROUHIN Bernard. Le chauffe-eau solaire


Principe de fonctionnement de la façade active Lucido. K:\15.Lucido \Dossier d'envoi\annexe\2011_12_explicatif du principe de la façade Lucido.

2 e partie de la composante majeure (8 points) Les questions prennent appui sur six documents A, B, C, D, E, F (voir pages suivantes).

kst ag Module thermoactif klima system technologie klima system technologie

Stockage de chaleur solaire par sorption : Analyse et contrôle du système à partir de sa simulation dynamique

Une introduction aux chauffe-eau solaires domestiques

Maison Modèle BIG BOX Altersmith

Comment peut-on produire du chauffage et de l'eau chaude à partir de l'air? EFFICACITÉ POUR LES MAISONS

Annexe 3 Captation d énergie

de faible capacité (inférieure ou égale à 75 litres) doivent être certifiés et porter la marque NF électricité performance.

Performances énergétiques de capteurs solaires hybrides PV-T pour la production d eau chaude sanitaire.

Proposé et animé par Jean-Claude ESCALLIER et Véronique LESAGE 2 Chemin des Bleuets AIGUES-VIVES Tél:

le chauffe-eau solaire individuel

Infos pratiques. Choisir sa solution de production d eau chaude sanitaire (ECS) Solution économique. Solution confort. Les chauffe-eau solaires

Contrôle thermographique Tarifs et prestations :

Eau chaude sanitaire FICHE TECHNIQUE

Whitepaper. La solution parfaite pour la mise en température d un réacteur. Système de régulation. Réacteur. de température

Version 1. Demandeur de l étude : VM - BETON SERVICES 51 Boulevard des Marchandises L'HERBERGEMENT. Auteur * Approbateur Vérificateur(s)

Que sont les sources d énergie renouvelable?

Soltherm Personnes morales

2 Trucs et Astuces 2

Energies. D ambiance REFERENCES : ACTIONS MENEES : CONTACT : DESCRIPTION TECHNIQUE DES ACTIONS ENGAGEES : GAINS OU BENEFICES DEGAGES : renouvelables

Ce dispositif fiscal, mis en place en 2005, est en vigueur jusqu'en 2016.

possibilités et limites des logiciels existants

Tables des matières. Gymnase de Nyon C d ERN Physique

Solar Heating System Factsheet (SHSF) - Dossier guide

MUNICIPALITE DE GLAND

Retours d expériences: le suivi de bureaux. Christophe Schmauch Pierrick Nussbaumer CETE de l Est

Yutampo La solution 100 % énergie renouvelable

MANUEL D INSTALLATION ET DE MISE EN SERVICE SOMMAIRE. Fonction. Avertissements Gamme de produits Caractéristiques techniques

Thermodynamique (Échange thermique)

PANNEAUX SOLAIRES THERMIQUES

Projet d auto-construction d un chauffe-eau solaire au pays des Cigales

R-SUN Le toit canadien

Le chauffe-eau thermodynamique à l horizon

Etude de faisabilité

L opération étudiée : le SDEF

SOLAIRE BALLERUP LA VILLE CONTEXTE. (Danemark) Ballerup

J O U R N E E S G EOT H E R M I E EN R E G I O N C E N T R E

QU EST-CE QU UN CHAUFFE-EAU THERMODYNAMIQUE?

Le chauffe-eau à pompe à chaleur: fiche technique à l intention des installateurs

Formulaire standardisé pour un chauffe-eau solaire

COLLOQUE Solaire thermique & Habitat collectif. François GIBERT directeur EKLOR. Instrumentation et régulation : la vision d un fabricant

Remeha ZentaSOL. La nouvelle norme en matière de simplicité, design et rendement

D 4.5 : MONITORING AND EVALUATION REPORT FOR MOUNTEE PILOTS

CARACTÉRISTIQUES GÉNÉRALES MODÈLE A. De fabrication robuste, il est composé d un réservoir en acier doux où en acier inoxydable (stainless steel).

le chauffage et l eau chaude solaires

GLEIZE ENERGIE SERVICE

Le confort toute l année

CHAUFFAGE ET EAU CHAUDE SOLAIRE

CONSTRUCTION D UN CHAUFFE EAU SOLAIRE

Comment optimiser la performance énergétique de son logement?

Eau. Chaude. Gratuite. La nouvelle génération des solutions solaires compactes design

Formulaire standardisé pour un chauffe-eau solaire

MODÈLE C MANUEL D UTILISATION ET D ENTRETIEN

Points clefs pour l'adaptation du Chauffe-Eau Solaire Bon Marché (CESBM) dans d'autres pays

1,2,3 SOLEIL EN AVANT PREMIERE

Récapitulatif de l audit énergétique de la copropriété 1 relais de la Poste à RANTIGNY 25/11/13

VERSION Ce document doit être complété et signé par l installateur agréé Soltherm ayant réalisé les travaux

Stockage ou pas stockage?

Dalle Activ Kerkstoel Activation du noyau de béton

Note technique. Consommation électrique d'un poêle à granulés à émission directe

Fiche explicative pour la saisie des équipements du génie climatique dans la RT2012

SUIVEUR SOLAIRE : Informations complémentaires

Chapitre 11 Bilans thermiques

Pompe à chaleur Air-Eau. Confort et économies

F.I.C. n 2013/AI TH PS 01-B

Formation Bâtiment Durable :

TACOTHERM DUAL PIKO MODULE THERMIQUE D APPARTEMENT MULTI CONFIGURABLE

Incitants relatifs à l installation de pompes à chaleur en Région wallonne

Économie d énergie dans les centrales frigorifiques : La haute pression flottante

International. RETScreen ANALYSE DE PROJETS D ÉNERGIES PROPRES : MANUEL D INGÉNIERIE ET D ÉTUDES DE CAS RETSCREEN

ALFÉA HYBRID DUO FIOUL BAS NOX

Prévisions ensoleillées

Etude et amélioration du comportement thermique d une habitation

SYSTÈMES DE CHAUFFAGE HYDRONIQUE PAR RAYONNEMENT

FLUXUS Energie. Gérer efficacement l'énergie en utilisant la technologie de mesure non-intrusive. Mesure de débit énergétique et d'air comprimé

CAHIER DES CHARGES. Etude de faisabilité : Version septembre Chaufferie bois. Agence de l'environnement et de la Maîtrise de l'energie

Comment économiser de l électricité dans le bloc traite?

L énergie sous toutes ses formes : définitions

CHAUFFAGE RADIANT RÉCHAUFFER LA MAISON AVEC UN PLANCHER CHAUFFANT. Construction Automobile Industrie

Le confort de l eau chaude sanitaire. Gamme complète certifiée ACS pour le traitement de l eau chaude sanitaire

Eau chaude sanitaire

LE PLANCHER CHAUFFANT BASSE TEMPERATURE

le chauffe-eau solaire individuel

ROTEX Solaris - Energie solaire pour la production d eau chaude sanitaire et le chauffage. Le Chauffage!

Chaudières et chaufferies fioul basse température. Olio 1500, 2500, 3500, 4500, 7000

Le nouvel immeuble du groupe BEI : Climat interne et environnement

Transcription:

GROUPE DE RECHERCHES ECOLOGIQUS DE LA BAIE Expérimentation de capteurs solaires thermiques peu coûteux et intégrés au bâtiment Rapport de stage Master 2 Génie de l habitat Université Paul Sabatier TOULOUSE III Tuteur universitaire : Mlle Sandra Spagnol Maitre de stage : Mr Patrick Déry Pierre MOLLIER 01/08/2011 Présentation d une méthodologie de mesure et d analyse de performance de capteurs solaires thermiques peu coûteux et intégrés au bâtiment.

Remerciements Je tiens à remercier et à témoigner ma reconnaissance à toutes les personnes intégrant le Groupe de Recherches Ecologiques de la Baie, pour leur accueil et pour cette expérience très enrichissante, pleine d intérêt, aussi bien d un point de vue personnel que professionnel. Je remercie tout particulièrement mon tuteur de stage, Monsieur Patrick Déry, pour son accueil, ses conseils, sa patience et pour m avoir fait partager son expérience, ses idées, ses compétences et pour le temps qu il m a consacré. Je remercie également ma tutrice universitaire Mlle Spagnol, Monsieur Bertaud, Madame Lartigue et Madame Thellier pour leurs suivis et leur présence malgré la distance. De plus j adresse mes remerciements à l université Paul Sabatier, département Génie de l habitat, à l ensemble des professeurs et intervenants et avant tout, à toute l équipe pédagogique, pour ces trois heureuses années d enseignements et de collaboration. Je n oublie pas non plus mes camarades de promotion 2010/2011, fort dynamique et fédérée!

SOMMAIRE Remerciements... 1 I/ Présentation du GREB... 1 1.1 Le GREB, Groupe de Recherches Ecologiques de la Baie... 1 1.2 L équipe du GREB... 1 1.3 La recherche de solutions... 1 1.4 Domaines d intervention... 2 1.5 Travail réalisé au sein du GREB... 2 1.5.1 Evaluation de capteurs solaires thermiques peu coûteux et intégrés au bâtiment... 2 1.5.2 Evaluation de la captation de la chaleur excédentaire d une serre par fluide caloporteur... 3 II/ Intérêt de développer des capteurs solaires thermiques peu coûteux au Québec... 4 2.1 Introduction... 4 2.2 Contexte au Québec : du potentiel solaire mais très peu d incitation... 4 2.2.1 Le Québec : un potentiel solaire intéressant... 4 2.2.2 Le solaire thermique Québécois bénéficie d une aide financière peu populaire... 5 2.3 Auto-construction de capteurs solaires peu coûteux en réponse à ces contraintes... 6 2.4 L énergie solaire thermique accessible à tous... 7 III/ Méthodologie de mesure et d analyse des capteurs solaires thermiques du GREB... 7 3.1 Proposition de protocole et d analyse des mesures... 8 3.2 Journée de mesure... 8 3.2.1 Conditions nécessaires des mesures en laboratoire... 8 3.2.2 Limites et contraintes des mesures in-situ :... 9 3.3 Condition générale de mesures (mesures effectuées et appareils utilisés)... 10 3.4 Acquisition de données et calibration des entrées... 11 3.5 Mémorisation des données... 11 3.6 Traitement des données et calcul du rendement... 11 3.7 Détermination des caractéristiques du capteur en fonction des courbes de rendement et comparaison... 11 3.8 Détermination de la production de chaleur et de l intérêt économique... 13 3.9 Archivages des données... 13

IV/ Expérimentation des capteurs solaires thermiques du GREB... 14 4.1 Description du 1 er Prototype... 14 4.1.1 Composition du capteur... 14 4.1.2 Description du réseau... 15 4.2 Recueil de mesures et analyse du premier capteur... 16 4.2.1 Détermination du rendement du 1 er capteur... 17 4.2.2 Comparaison aux systèmes conventionnels... 17 4.2.3 Optimisation visant la réalisation et l évaluation d un second capteur... 18 4.3 Réalisation et évaluation du 2 nd capteur optimisé... 19 4.3.1 Description du 2 nd capteur... 19 4.3.2 Montage et réalisation du 2 nd capteur... 20 4.3.3 Détermination du rendement et des caractéristiques du 2 nd capteur... 21 4.4 Analyse des productions d ECS et de l intérêt économique... 24 4.4.1 Détermination des besoins... 24 4.4.2 Détermination de la production solaire d eau chaude sanitaire... 24 4.4.3 Détermination de l intérêt économique... 27 4.4.4 Caractéristiques du capteur GREB... 28 V/ Perspectives d avenir et conclusion... 29 ANNEXES... 30 ANNEXE 1 : La calibration des mesures... 31 ANNEXE 2 : Caractéristique de la couverture transparente polycarbonate... 34 ANNEXE 3 : Caractéristique appareils de mesure... 36 Annexe 3.1 : Température extérieure... 36 Annexe 3.2 : Température en entrée et sortie de capteur... 37 Annexe 3.3 : Rayonnement solaire global... 37 ANNEXE 4 : Nuage de points caractéristique des rendements des prototypes... 38 ANNEXE 5 : Informations générales et efficacité du capteur modèle... 39 G32-P... 39 ANNEXE 6 : Représentation graphique surfacique du rendement... 44 ANNEXE 7 : Evolution de la température du réservoir durant une journée de mesure représentative. Prototype 2... 45 ANNEXE 8 : Descriptif quantitatif et prix des capteurs GREB... 46 Bibliographie générale... 47

I/ Présentation du GREB 1.1 Le GREB, Groupe de Recherches Ecologiques de la Baie Le GREB (Groupe de Recherches Ecologique de la Baie) a débuté ses opérations en 1990. Il est constitué sous la forme d un organisme à but non-lucratif (OBNL) dont la mission est de favoriser l essor d un mode de vie écologiquement, socialement et économiquement viable. Cette recherche s effectue avec une forte préoccupation pour une occupation et un développement rationnels du territoire. Les trois axes d intervention du GREB sont les suivants : recherche, expérimentation, éducation et action civique. La spécificité du GREB consiste en l application dans la vie quotidienne des solutions élaborées par les chercheurs. En mettant directement en œuvre les solutions préconisées, il est possible d en découvrir non seulement les forces et les avantages mais aussi les obstacles, les difficultés et les failles. Les réalisations à l actif du GREB ont donc passé le test de la pratique et de la vie et ce, tant du point de vue technique et économique que du point de vue social et psychologique. Le GREB regroupe un certain nombre d entités juridiques et physiques, liées ou non au site de l Écohameau de La Baie dont le GREB est fondateur. Ainsi, sont mis en réseau au sein du GREB la coopérative de consommateurs du GREB, la ferme expérimentale Les Vallons de Chambreule, des individus, des organismes et des entreprises. Les membres du GREB élaborent la vision et les concepts qui les réunissent en son sein et qui motivent leur action. 1.2 L équipe du GREB Président : Patrick Déry, B.Sc., M.Sc, physicien. Domaines : analyses et politiques énergétiques, projets d énergies renouvelables, analyses des méthodes agricoles, d aménagement du territoire et d urbanisme au regard de l énergétique. Vice-président : Pierre Gilbert, chargé de projet. Domaines : construction en paille technique du GREB, foyers de masse thermique, conférences. Secrétaire : Dominique Coulombe, B.A. communication. Domaines : communication publique, représentation, éducation traditionnelle et alternative, art-thérapie. Trésorière : Marie-Thérèse Thévard, agricultrice. Domaines : éducation alternative, jardinage écologique Martin Simard, B.A. architecture. Domaines : design architectural, ébénisterie. Pascal Gagnon, B. Sc. Informatique. Domaines : marketing, relocalisation économique, économie postpétrolière. Mario Girard, B.Sc., M.Sc. physicien. Domaines : matériaux composites, modélisation, microturbines hydrauliques, moteurs stirling, projets d énergies renouvelables. 1.3 La recherche de solutions Le GREB recherche des solutions concrètes aux problèmes environnementaux, économiques et sociaux, qu ils soient locaux ou globaux. Applicables dans la vie quotidienne, ces solutions concernent le Mollier Pierre Master Génie de l habitat, UPS Toulouse Stagiaire au GREB 1

plus souvent les modes de vie (adaptation sociale aux problèmes) mais elles sont aussi souvent techniques ou technologiques (adaptation technique aux problèmes). Le seul point de vue économique n est pas viable à moyen et long terme car, généralement, les conséquences sont reportées sur les générations futures. Aussi, les solutions «toutes technologiques» ne garantissent pas non plus la viabilité à long terme de nos sociétés, si les habitudes de vie et les structures de fonctionnement ne sont pas repensées en profondeur. Au GREB, la recherche et l expérimentation de solutions viables à la société dans son ensemble est une préoccupation constante. Chaque solution sociale, technique ou technologique est expérimentée de façon concrète et quotidienne par des chercheurs, ce qui permet d en évaluer autant les avantages que les obstacles, une condition essentielle pour déterminer les conditions réelles d application. Ces solutions expérimentées quotidiennement touchent notamment l énergie (sources alternatives, efficacité énergétique, habitudes de consommation ), l aménagement du territoire (urbanisme écologique, écohameaux et écovillages, transport ), l architecture (construction bioclimatique solaire, cycle de vie des matériaux, mécanique du bâtiment ) et l agroalimentaire (agriculture de proximité, maintien de la fertilité, alimentation de saison ). De plus, le GREB réalise des études pour divers clients et ce, autant pour des projets concrets que pour des questions touchant les politiques énergétiques, agricoles ou d aménagement du territoire. 1.4 Domaines d intervention Le GREB développe la recherche et des expérimentations sur les thèmes des énergies renouvelables (bois-énergie, biocarburants, micro-hydroélectricité, solaire passif et thermique, éolien, etc.), de l habitat et de l architecture écologiques (bioclimatique, efficacité énergétique), des écohameaux, du développement rural et local, de l occupation et de l aménagement du territoire, des économies territoriales, de l agriculture paysanne, biologique, écologique et durable et des modes de vie écologique (simplicité volontaire, sobriété), de l alimentation locale et saine etc Il réalise également des actions publiques et civiques dans les domaines de l architecture, l énergie, les ressources renouvelables et non renouvelables, les transports, le développement territorial, l agriculture, la foresterie, les modes de vie et santé, les approches communautaires, la sécurité alimentaire et la biosécurité et la gouvernance locale 1.5 Travail réalisé au sein du GREB 1.5.1 Evaluation de capteurs solaires thermiques peu coûteux et intégrés au bâtiment - Méthodologie ; - Instrumentation ; - Mesures expérimentales sur le premier capteur ; - Design d un second capteur ; - Fabrication second capteur ; - Mesures expérimentales sur le second capteur ; - Réalisation de deux feuilles de calcul pour la simulation de la production d ECS. 2

1.5.2 Evaluation de la captation de la chaleur excédentaire d une serre par fluide caloporteur - Méthodologie ; - Instrumentation ; - Mesures expérimentales ; - Ajustements du système de captation en place ; - Réalisation d une feuille de calcul pour simulation de la production d eau chaude pour pisciculture et/ou piscine. Ce rapport de stage traite du projet lié à l évaluation de capteurs solaires thermiques peu couteux et intégrés à la toiture de l un des bâtiments multifonctionnels du GREB. 3

II/ Intérêt de développer des capteurs solaires thermiques peu coûteux au Québec 2.1 Introduction Ce rapport porte sur la conception, la réalisation et l évaluation énergétique et économique de capteurs solaires peu couteux, intégrés au bâtiment et réalisé par le GREB. Le document présente tout d abord la méthodologie suivie pour effectuer les mesures, permettant l analyse des performances et une comparaison avec des systèmes conventionnels équivalents et une méthode de réalisation. L objectif est avant tout d évaluer la pertinence d une telle réalisation, ses avantages et ses inconvénients, condition essentielle pour déterminer ses possibilités réelles d applications. L analyse se portera tout d abord, sur la présentation et l évaluation du rendement d un premier capteur thermique, déjà conçu à mon arrivée (voir photo ci-contre). L analyse de ce premier capteur permet d évaluer un premier niveau de performance, rapidement utilisé comme base pour la réalisation d un second capteur optimisé, sur lequel se portera l analyse principale. Le concepteur d un système de chauffage solaire a besoin de données sur le rendement thermique des capteurs pour deux raisons : d abord, ces données sont utilisées pour classer les capteurs par valeur, facteur déterminant pour leur sélection ensuite, ces données sont indispensables au niveau même de leur conception. Plus spécifiquement, ces données servent à déterminer le format de la batterie de capteurs nécessaires pour satisfaire à une demande de chauffage particulière. L objectif du GREB est de donner libre accès à cette technologie, de basse complexité pour permettre le déploiement de l énergie solaire thermique sur l ensemble du territoire québécois notamment dans les milieux ruraux. L intérêt est tout d abord de proposer une solution alternative à une énergie «gratuite» bien trop inaccessible au Québec ; le solaire thermique résidentiel. En effet, l achat et l installation de capteurs solaires thermiques trop couteux, corrélée à des aides financières insuffisantes et un coût de l énergie faible, ne favorise guère l essor du solaire thermique résidentiel au Québec. De plus, le contexte environnemental actuel d épuisement des énergies fossiles, laisse présager une forte augmentation du coût de ces systèmes aussi bien pour leur fabrication, transport qu au niveau de la maintenance. Ceci s applique particulièrement en zones rurales, ou l impact économique et environnemental lié au transport et à la maintenance des systèmes accroissent le surcoût. L enjeu est donc de permettre à tous, l accès à une énergie propre et très peu coûteuse, facilement accessible (afin de limiter son impact environnementale et économique, tout en garantissant un certain niveau de performance) et réalisable, dans un pays comme le Québec, où le potentiel solaire est très intéressant. 2.2 Contexte au Québec : du potentiel solaire mais très peu d incitation 2.2.1 Le Québec : un potentiel solaire intéressant 4

Le Québec possède des ressources solaires tout à fait intéressantes et suffisantes pour le développement du solaire thermique. Cependant, cette filière est largement en retard par rapport à grand nombre de pays Européens qui, pour autant, ne profite pas d une quantité d ensoleillement aussi importante qu au Québec. Le potentiel photovoltaïque atteints plus de 1100 kwh/kw au Québec, alors qu il est d environ 850 kwh/kw à Berlin ou à Tokyo (voir tableau 1 suivant), capitales de deux pays qui font figure de pionniers dans ce domaine. Ce tableau, relatif au potentiel photovoltaïque (PV) et non au solaire thermique, permet tout de même d indiquer de niveau du potentiel solaire du Québec. Figure 1 : Classement PV des municipalités en fonction du potentiel PV annuel (panneau PV orienté vers le sud avec inclinaison=latitude) 1 Le Québec profite de fait d un niveau d ensoleillement enviable. Selon la Société de l énergie solaire du Canada, Montréal enregistre un potentiel photovoltaïque annuel de 1 185 kilowatts/heure (kwh) sur une surface plane. C est beaucoup plus que Londres (728 kwh) ou Paris (938 kwh). Berlin, capitale de la République fédérale d Allemagne, et pays phare de l énergie solaire, ne totalise que 848 kwh. «Il ne faut pas confondre température élevée et potentiel solaire². À titre de comparaison, Rio de Janeiro, avec 1 253 kwh, n affiche qu une performance à peine supérieure à Québec ou Montréal» selon Jean-Pierre Desjardins. Les conditions d ensoleillement sont donc tout à fait suffisantes pour l utilisation d un chauffe-eau solaire. Malgré son climat rigoureux, le Québec bénéficie donc d un niveau d ensoleillement élevé, même en hiver. Le potentiel est là, il suffit donc d en tirer le meilleur parti, au meilleur coût possible, puisque même les incitations financières gouvernementales, ne suffisent pas pour le moment, à développer cette filière. En effet, les coûts de fabrication mais surtout les frais d installation bien trop élevés ; 2.2.2 Le solaire thermique Québécois bénéficie d une aide financière peu populaire Le retard du solaire thermique au Québec est dû en majeure partie au laxisme des gouvernements fédéraux et provinciaux à investir dans la recherche et le développement de la filière solaire. Le peu de sensibilisation des Québécois à l'énergie solaire, obnubilés par l'hydroélectricité bon marché et 1 Cartes d ensoleillement et du potentiel d énergie solaire photovoltaïque du Canada : https://glfc.cfsnet.nfis.org/mapserver/pv/rank.php?lang=f4 ² Portail du bâtiment durable au Québec : http://www.voirvert.ca/nouvelles/dossiers/le-ciel-s%e2%80%99eclaircit-pour-l%e2%80%99energiesolaire-au-quebec 5

directement accessible, explique aussi pourquoi le Québec est si en retard dans ce domaine. De plus, le Québec compte peu de vendeurs et d installateurs d équipements d énergie solaire thermique, ce qui explique en grande partie des coûts d installation si élevés. Ainsi le potentiel de retombées locales est très faible tout d abord au niveau de l installation mais aussi pour la fabrication, les équipements étant fabriqués en quasi-totalité, si ce n est totalement, à l extérieur du Québec. L'énergie solaire est généralement méconnue et laissée pour compte par les programmes gouvernementaux de développement des énergies renouvelables au Québec. Cependant, en juin 2009, un programme de subventions à l'achat de chauffe-eau solaires à été lancé par l'agence de l'efficacité énergétique (AEE) pour tenter de développer ce domaine au Québec, mais celui-ci n'a pas connu le succès espéré. L Agence de l efficacité énergétique espérait recruter 600 clients. Au terme du projet, soit plus d un an plus tard, seulement 70 systèmes étaient installés. Le programme n a pas fonctionné à cause d un coût d achat et d installation beaucoup plus élevé que prévu pour cette technologie avec un retour sur investissement alors estimé à 36 ans 1! Ce flop est principalement lié au manque d installateurs qualifiés et à une technologie trop coûteuse comme nous l avons vu précédemment. Le développement de cette filière solaire se bute ainsi à trois grands obstacles : La croyance populaire d un Québec, patrie du froid où le potentiel solaire est perçu comme faible ou inexistant ; La grande disponibilité de l hydroélectricité, une ressource renouvelable et très peu coûteuse ; La quasi-absence d incitatifs gouvernementaux qui, lorsqu ils existent, requiert de fortes exigences, augmentant d autant plus les coûts investis. 2.3 Auto-construction de capteurs solaires peu coûteux en réponse à ces contraintes Ce projet d auto-construction de capteurs solaires thermiques peu coûteux du GREB, répond parfaitement à ces problématiques en proposant une «low-technologie» accessible à tous. La production de capteurs solaires thermiques toujours plus performants nécessite une forte consommation d énergie, de la production au transport jusqu'à l implantation. Ce rapport présente l évaluation de capteurs solaires thermiques, réalisables par des personnes qualifiées ou non, en utilisant des matériaux accessibles afin de limiter l impact environnemental et économique d une telle conception, tout en garantissant un certain niveau de performance. Leur intégration au bâti est une condition principale de leur implantation puisque cela permet de réduire fortement les coûts d investissement : l isolant et la tôle architecturale faisant office d absorbeur sont compris dans le prix de la toiture. Ainsi l objectif est de définir une construction simple avec des matériaux accessibles, un niveau de performance, pour une bonne durée de vie et une faible maintenance. En effet, les enjeux technologiques concernent des questions de diminution de coûts d installation principalement mais également de fabrication (avec l augmentation continue du prix des énergies fossiles), permettant de réduire le temps d amortissement de ces systèmes, dans un pays comme le Québec où le potentiel solaire est satisfaisant. Le moyen le plus significatif pour réduire au maximum les coûts de production et d installation, tout en limitant l impact environnemental lié à la conception et au transport de ces systèmes, serait alors de les produire localement par le biais d ateliers coopératifs, d ouvriers de la 1 Chauffe-eau solaire : flop d un projet vert : http://www.protegez-vous.ca/maison-et-environnement/chauffe-eau-solaire-flop.html 6

construction, de petites entreprises locales ou par le particulier suffisamment habile. Cela permettrait de développer le potentiel socio-économique encore inexploité, du solaire thermique au Québec. 2.4 L énergie solaire thermique accessible à tous Le GREB, association à but non lucratif, à choisi d investir ses propres fonds dans cette recherche pour permettre un libre accès à l énergie solaire thermique au Québec. En effet les retombées financières directe de ce type de recherche sont faibles voire nulles, elles ne permettent donc pas de financer le projet en lui-même. Ceci n intéresse pas les plus gros laboratoires de recherche qui quand à eux, nécessitent des investisseurs et donc des retombées financières. Ainsi il n est pas possible d investir et d utiliser une méthode et des appareils équivalents à ceux de plus grands laboratoires certifiant les capteurs solaires thermiques mais il est cependant, fortement possible de s en inspirer. Au Québec, ce type de recherche n est pas finançable, puisque l objectif n est pas d obtenir des bénéfices mais d aider simplement la population à faire eux même les choses (empowerment ou autonomisation), en l occurrence subvenir à ses propres besoins énergétiques. La population en milieu rural perd ses possibilités d accéder de façon durable à l énergie, les aides au développement rural étant faibles. Ce type de recherche peut donc s apparenter à de la recherche sociale ou communautaire. La finalité serait de permettre le développement de micro entreprises capables de réalisées ses propres capteurs, voire même de réaliser et de fournir d autres systèmes de production d énergie, accessibles, efficaces et économiques. Ceci permettrait alors un réel développement social et économique des zones rurales concernées. Cette étude pourrait également être développée à plus grande échelle et s appliquer à d autres pays, comme ceux en voie de développement, où l accès à l énergie est bien souvent limité ou inexistant, ou dans des pays industrialisés où le prix de l énergie est bien plus important qu au Québec. L objectif du GREB est donc de fournir une méthode de conception et d analyse des performances de ces capteurs, afin d évaluer leurs pertinences et leurs domaines d application. III/ Méthodologie de mesure et d analyse des capteurs solaires thermiques du GREB L objectif de ce chapitre est de présenter une méthode d analyse pour que cette étude soit reproductible dans le temps, en vue d une amélioration continue des capteurs proposés. Afin de déterminer au mieux les performances des capteurs solaires thermique réalisés par le GREB, il est important de proposer une méthode de mesure et d analyse, simple, rigoureuse mais également peu couteuse. Ainsi le GREB s inspire des méthodes d analyse effectuées dans les laboratoires (NITS et ASHRAE) certifiant les capteurs solaires conventionnels, pour réaliser ces mesures et analyses et ainsi permettre une certaine compatibilité des résultats. Voici, dans un premier temps, le protocole suivis pour les mesures dans d autres laboratoires, puis au GREB, les appareils utilisés ainsi que les méthodes de calculs de rendement et de production annuelle. 7

3.1 Proposition de protocole et d analyse des mesures Relevé des mesures Journée de mesure (voir 3.1.2) et relevé des différentes mesures (voir 3.1.3). T C ambiante, T C capteur, rayonnement global, débit. Acquisition de donnée calibration Mémorisati on des données Acquisition des données par système d'acquisition DATAQ Instrument (voir 3.1.4). Conversion et calibration des tensions mesurées selon l'unité souhaitée. Vérification des calibrations et visualisation des mesures. Analyse des mesures et mémorisation des données sur logiciel Windaq (voir 3.1.5). Traitement des données Archivage Traitement des données sur tableur Excel, logicel MATlab (voir 3.1.6) Détermination des rendements, déduction des caractéristiques du capteur et des productions et comparaison avec d'autres capteur sconventionnels (voir 3.1.7 ; 3.1.8 et 3.1.9). Tenu du cahier de laboratoire tout au long des expérimentations. Rédaction de rapport en vue de la publication. 3.2 Journée de mesure 3.2.1 Conditions nécessaires des mesures en laboratoire Les caractéristiques du rendement thermique d'un capteur peuvent être calculées par analyse, en utilisant les propriétés optiques et les propriétés de transfert de chaleur connues des éléments constituants ou encore de façon expérimentale. Comme de nombreux capteurs commerciaux sont fabriqués à partir de matériaux et de méthodes qui ne sont pas adéquatement décrits au point de vue transfert de chaleur et propriétés optiques, il est maintenant pratique courante de déterminer les caractéristiques de rendement thermique des capteurs de façon expérimentale, au moyen de rayonnement solaire naturel ou simulé. Les matériaux utilisés pour la conception des capteurs thermiques du GREB sont obtenus localement, leurs propriétés optiques et thermiques ne sont jamais clairement définies, c est pourquoi les rendements sont uniquement déterminés par des mesures expérimentales sur rayonnement solaire naturel sur une ou plusieurs journées de mesures. Le calcul des caractéristiques de rendement thermique d'un capteur a d'abord été formalisé par le National Bureau of Standards en 1974 (aujourd hui nommé NITS) avec une méthode de mesure extérieure. Ainsi, leurs essais statiques sont pratiqués pour une gamme de température du fluide caloporteur à l'entrée du capteur, dans des conditions de rayonnement clair et constant, le soleil étant près de son azimut ou lorsque le rayonnement solaire est presque normal à la surface du capteur. Il est reconnu que les caractéristiques d'un capteur déterminées à partir de l'angle d'incidence presque nul, ne représentent pas fidèlement le comportement d'un capteur en fonctionnement normal, parce que l angle d incidence varie selon l heure du jour. Pour pallier cette déficience, I'American Society of Heating, Refrigerating and Air Conditioning Engineers (ASHRAE), a mis au point la norme ASHRAE 93-77, pour les essais thermiques des capteurs. La méthode est similaire à celle du NITS, mais elle comprend aussi un essai intérieur pour déterminer les variations du rendement du capteur avec l angle d'incidence et un autre pour déterminer le 8

temps de réponse thermique du capteur. Les deux méthodes, NITS et ASHRAE, sont loin d'être idéales pour le Canada parce que les conditions requises pour les essais (journées claires et ensoleillées, vents légers et réflexion du sol faible) ne se produisent que rarement au Canada, particulièrement en hiver. Il convient de considérer deux autres méthodes d'essai pour les conditions canadiennes. Il s'agit de la méthode et de la simulation solaire intérieure. La méthode ASE, mise au point en Allemagne, comprend un essai extérieur pour déterminer l'efficacité maximale du capteur et un essai thermique intérieur, pour déterminer les coefficients de perte thermique (voir 3.3.7). 3.2.2 Limites et contraintes des mesures in-situ : Le GREB s inspire ainsi de ces différentes méthodes pour réaliser ses propres journées de mesures. En effet, de nombreuses contraintes ne permettent pas de les reproduire dans l exactitude. Tout d abord, les limites de budget et le fait, que les capteurs sont testés sur leur lieu d implantation, intégrés au bâtiment, ne permet pas d effectuer des mesures intérieures et extérieures sur bancs d essais. La détermination du rendement est représentative de la réalité puisque les mesures sont effectuées sur le site d implantation en extérieur, en mode de fonctionnement normal, lors de journées complètes. Le rayonnement et les angles d incidence sont ainsi variables et représentatif du fonctionnement d utilisation réel du capteur et non en condition optimales, sous un rayonnement simulé en laboratoire. Cependant, Il est important de noter que les capteurs du GREB sont installés selon une orientation à 30 sud-est réduisant tout de même les performances du capteur à hauteur de 5 % environ 1 par rapport au test effectué en laboratoire avec une orientation plein sud. C est pourquoi les rendements obtenus pour nos mesures en champ seront inférieurs à celles obtenus en laboratoire, mais s approcheront suffisamment de la réalité, avec des mesures en condition réelles. Il est important de prendre ainsi du recul lors de la comparaison avec des produits conventionnels testés en laboratoire. Un autre inconvénient provient du nombre important de variables lors des journées de mesure : le rayonnement, la température ambiante, la température intérieure du capteur, soit la quasi-totalité des valeurs nécessaires pour la détermination du rendement. Il faut donc parfois réaliser plusieurs journées de mesure avant d obtenir des résultats significatifs. Une journée de mesure a même été effectuée sur deux autres capteurs conventionnels (un capteur plan et un sous-vide), installés sur le site du GREB et ce pour permettre une corrélation entre les performances obtenues avec des produits conventionnels analysés sur site, et les prototypes du GREB. Ces journées de mesures nécessitent une présence particulière continue tout au long de la journée pour l acquisition des données et non donc pas pu être renouvelées. Elles n ont malheureusement pas permis d obtenir des résultats significatifs en raison de condition météorologique particulière durant cette journée. a) Contraintes sur le rayonnement Les mesures sont effectuées l été 2011, durant le mois de juin et de juillet, lors de journées claires pour obtenir le rayonnement maximum et lorsque le soleil est proche du solstice d été pour s approcher ainsi au mieux du rayonnement maximum simulé en laboratoire (1000 W/m²). Le budget limité lié à ce type d étude à faibles retombées financières, ne permet pas de se doter d appareils de mesure aussi performants qu en laboratoire. Ainsi la mesure du rayonnement solaire reçu ne s effectue pas avec un pyranomètre beaucoup trop couteux, mais avec un capteur d insolation (globale et diffus) dont l incertitude atteint plus ou moins 5% de l échelle totale de rayonnement, soit environ plus ou moins 80 W/m². Lors de certaines journées de mesure, le rayonnement après calibration pouvait atteindre jusqu à 1150 W/m². En pratique, le rayonnement reçu par la Terre au niveau du sol n'est que de 1000 W/m² au maximum. Ce rayonnement n'est obtenu que quelques jours par an sous nos latitudes. Les valeurs de 1 Influence de l orientation sur l énergie captée : http://www.cogesol.be/usr/documentation/capteurs%20solaire%20thermique.pdf 9

rayonnement mesurées sur un plan incliné sont donc trop importantes. Pour palier à ce problème, toutes les valeurs de rayonnement sont normalisées en prenant comme référence, la valeur maximale sur la journée, normalisée à 1000 W/m². b) Contraintes sur les températures Le réseau ne possède pas de régulation. Il n est donc pas possible de choisir une gamme de températures du caloporteur à l'entrée du capteur, nécessaire à la détermination du coefficient de performance maximum et des pertes thermiques du capteur. Le réseau est cependant couplé à un plancher chauffant. Ainsi il est possible de réduire ou d augmenter la température en entrée de capteur en laissant circuler ou non, le fluide caloporteur dans le plancher pour y céder des calories (voir schéma réseau en 4.1.2). Autre variable sur laquelle aucun contrôle n est possible ; celle de la température ambiante puisque le capteur est positionné à l extérieur. Il est donc nécessaire d effectuer un grand nombre de journées de mesure pour espérer obtenir des résultats significatifs en couplant les différentes variables entre elles, afin de déterminer l efficacité maximum et les pertes du capteur, sur toute la plage de température et selon différents rayonnements. 3.3 Condition générale de mesures (mesures effectuées et appareils utilisés) Dans chaque enquête de mesure, les mesures suivantes seront relevées de la même manière et analysées avec les même appareils et systèmes d acquisition de données permettant une meilleure compatibilité entre les résultats. Le tableau suivant présente les différentes mesures nécessaires et le matériel utilisé pour déterminer le rendement des capteurs : Ces mesures doivent être effectuées dans les mêmes conditions : La température extérieure est mesurée sous abris avec un capteur de température et d humidité relative. Le rayonnement solaire est quand à lui mesuré sur la toiture du bâtiment comprenant les deux premiers capteurs testés, avec la même pente et orientation que celle des capteurs. Les températures en entrée et sortie du capteur sont obtenues pas des thermo-résistances placées à- même le collecteur en cuivre, dans lequel circule le fluide caloporteur. Le contact est assuré par de la pâte thermique. 10

3.4 Acquisition de données et calibration des entrées Un système d acquisition de données «DATAQ Instrument» Dl-710 permet de collecter jusqu à 16 valeurs simultanément, ces valeurs doivent être des tensions exprimées en volts. Une calibration permet de convertir les tensions dans l unité des valeurs mesurées ( C, HR% et W/m²). Ainsi la calibration du rayonnement et de la température des capteurs thermiques extérieurs est assez simple puisqu elle est linéaire par rapport à la tension. Ce n est pas le cas des températures d entrée et de sortie du capteur, mesurées par des thermo-résistances qui sont non linéaires et nécessitent donc une calibration particulière. Les différentes calibrations sont présentées en annexe 1. 3.5 Mémorisation des données Les valeurs enregistrées par le système d acquisition DATAQ sont ensuite transférées et analysées avec le logiciel Windaq. Celui-ci permet d ajuster les calibrations effectuées, de visualiser les courbes de mesures obtenues et de mémoriser les valeurs calibrées dans leurs unités respectives. Les données Windaq sont enregistrées sous le format «.wdc». Elles sont ensuite extraites sous format «.csv» permettant leur conversion en format «.xls» pour être analysées sur tableur Excel. 3.6 Traitement des données et calcul du rendement Les données sont alors regroupées sur Excel, y compris les caractéristiques du capteur tel que sa surface, le débit imposé, le volume de stockage etc. Ceci permet de déterminer la puissance délivrée par le capteur et son rendement défini comme le rapport entre la puissance délivrée par le capteur et la puissance solaire reçue : η = Puissance délivrée par le capteur Flux solaire reçu par le capteur La puissance délivrée par le capteur est donnée par la formule suivante : P = q.ρ.cp.(ts-te) avec : - q le débit exprimé en L/min ; - ρ la masse volumique de l eau en Kg/m 3 ; - Cp la capacité thermique massique de l eau (4186 J kg -1 K -1 ) ; - Ts et Te la température (variable) en sortie et en entrée du capteur en C. Le flux solaire est mesuré à proximité du capteur avec un capteur de rayonnement solaire incliné et orienté selon le capteur. Le pas de temps d enregistrement des mesures est d une seconde. Les valeurs sont ensuite moyennées à la minute permettant d effectuer le calcul de puissance et de rendement. Ceci permet enfin de tracer les courbes de rendement représentatives des performances du capteur comme décrites ci-après. 3.7 Détermination des caractéristiques du capteur en fonction des courbes de rendement et comparaison A partir des courbes de rendement, il est possible de définir les caractéristiques optiques et thermiques du capteur en question. La méthode de calcul de rendement présentée par l ISES 11

(International Solar Energy Society) quantifie les pertes thermiques par conduction et convection grâce à un seul coefficient F R U C utilisé dans l équation du 1 er ordre (1), alors que la méthode européenne introduit deux coefficients a 1 (pertes par conduction et conduction) et a 2 (perte par rayonnement) dans l équation du 2 nd ordre (2). Equation du 1 er ordre : η = F R τ S α S F R U C ( DT G ) (1) Figure 2 : Représentation graphique du rendement thermique d'après l'ashrae F R τ S α S est un paramètre utilisé pour caractériser l'efficacité optique (η 0 ) du capteur, représentatif de l efficacité maximum. Le facteur optique est le rapport entre l'ensoleillement absorbé par l'absorbeur et l'ensoleillement incident sur le vitrage. Ce facteur optique est le produit du facteur de transmission du vitrage par le coefficient d'absorption de l'absorbeur. F R U C est un paramètre utilisé pour caractériser les pertes thermiques du capteur [(W/m²)/ C]. DT est la différence de température entre le fluide caloporteur à l'entrée du capteur et la température extérieure [ C]. G est l'intensité du rayonnement global incident dans le plan du capteur [W/m²]. A partir de la courbe de rendement, il est possible de déterminer les caractéristiques de performance du capteur en question. Le facteur optique (F R τ S α S ) est déterminé par la valeur à l interception et le facteur thermique (F R U C ) est déterminé par la pente de la courbe (voir figure 2). La figure 2 est une représentation graphique de l efficacité d'un capteur. Figure 3 : détermination des coefficients Souvent on obtiendra une courbe au lieu d'une ligne droite parce que le coefficient de perte thermique n'est généralement pas constant. Les caractéristiques du capteur FR, Ta et UL peuvent donc être évaluées à partir de la courbe d'efficacité obtenue expérimentalement. La courbe de rendement est tracée en fonction de la différence de température entre le capteur et l air ambiant. Ainsi le rendement du capteur diminue lorsque l écart de température augmente puisque la perte thermique du capteur 12

augmente. Cette courbe est soit fonction du rayonnement (Delta T / G) soit fonction du Delta T uniquement. Equation du 2 nd ordre : η = F R τ S α S a 1 ( DT G ) - a 2 ( DT² G ) (2) Cette équation permet de dissocier les pertes par conduction avec le coefficient a 1 (exprimé en W/K.m²) de celles par convection 1 avec le coefficient a 2 (exprimé en W/K².m²). Cette seconde équation nécessite une analyse sur MATlab pour obtenir une surface représentative en fonction de l écart de température entre le capteur et l air ambiant (variable X), du rayonnement reçu (variable Y) et du rendement obtenu (variable Z). Les variables sont intégrées sous forme matricielle après exclusion des valeurs erronées sur tableur Excel (rendement supérieur à 100% ou inférieur à zéro etc ), pour une meilleure corrélation (supérieure à 90 %) entre valeurs d entrée (points en bleu sur la figure 3) et surface obtenue (surface colorée sur la figure 3). Après ajustage et paramétrage de l équation (2), les valeurs des coefficients de performances du capteur (F R τ S α S, a 1 et a 2 ) sont déterminées (figure 4 ci-contre). Il est ensuite possible de tracer les surfaces représentatives des performances du capteur GREB (Z1) en fonction d un capteur standard (Z2) pour effectuer une comparaison (figure 5), en utilisant le modèle de programmation sous éditeur MATlab suivant : Figure 4 : Editeur surface graphique Figure 5 : Comparatif des surfaces représentatives des rendements 3.8 Détermination de la production de chaleur et de l intérêt économique Le calcul de production de chaleur annuelle est réalisé uniquement sur le second capteur puisqu il présente le meilleur rendement. Plusieurs méthodes sont utilisées pour évaluer la pertinence de chacune. Elles sont présentées dans l analyse de la production de chaleur au 4.4.2. Celle-ci est ensuite nécessaire pour déterminer l intérêt économique des capteurs analysés (présenté en 4.4.3). 3.9 Archivages des données De la conception du capteur à son évaluation, toutes les informations et remarques sont archivées dans un cahier de laboratoire et dans un rapport final. Il s agit de garantir la traçabilité des résultats de la recherche et de pouvoir témoigner ainsi de l antériorité des recherches. D autre part, il permet de capitaliser le savoir-faire et de faciliter ainsi la transmission des connaissances en interne ou lors de transferts de technologie. Il permet de professionnaliser les pratiques liées à la recherche. Par ailleurs, il évite les déperditions liées aux feuilles volantes et aux éléments manuscrits ainsi qu aux départs de chercheurs : tout y est consigné depuis les idées jusqu à la réalisation concrète. Il permet également de consigner les expériences négatives qui peuvent se révéler très utiles pour la suite. 1 Etude de rendement de capteur : http://docs.google.com/viewer?a=v&q=cache:v8cj8tt- EbAJ:www.bysun.fr/Etude%2520de%2520rendemment%2520des%2520capteurs.pdf 13

IV/ Expérimentation des capteurs solaires thermiques du GREB Présentation du fonctionnement des capteurs solaires plans : Les panneaux solaires thermiques se présentent sous la forme de capteurs qui absorbent l énergie solaire, pour la restituer sous forme de chaleur. Les rayons du soleil passent à travers une plaque de polycarbonate transparente à la lumière visible. Sous cette couverture, un absorbeur noir (plaque de métal) absorbe 80 à 90 % des rayons lumineux en fonction de l absorbeur utilisé. L'absorbeur transforme ces rayons lumineux en chaleur, grâce au transfert thermique par rayonnement. En s'échauffant, l'absorbeur émet des infrarouges. Ces Figure 6 : principe de fonctionnement infrarouges sont bloqués entre la plaque de métal et la couverture transparente, c'est le principe de l'effet de serre. Ainsi, l'air entre les deux plaques s'échauffe et améliore le rendement. Il est à noter que l effet de serre n est pas l effet principal recherché, car c est bien le transfert direct par conduction de la chaleur produite dans l absorbeur et transmise vers le fluide caloporteur qui est recherché. Le fluide s'échauffe et est ensuite acheminé pour être stocké ou distribué. 4.1 Description du 1 er Prototype Figure 7 : vue en perspective du capteur 4.1.1 Composition du capteur Le premier capteur, d une surface de 12.5 m² est orienté à 30 SUD-EST et est incliné de 35, avec une réalisation est prévue dès la conception du bâtiment, pour permettre son intégration au bâti. Figure 8 : Composition du capteur solaire thermique 14

1. La couverture transparente est composé de plaques de polycarbonates ondulées de type «Suntuf». Son rôle est de laisser passer le rayonnement solaire tout en bloquant le rayonnement infrarouge émis par l absorbeur en se réchauffant, créant ainsi l effet de serre. Cette couverture permet également de limiter les pertes par convection au-dessus de l absorbeur. Elle repose sur des lattes périphériques en bois, surmontées de lattes plastiques dont le profilé correspond à celui de la couverture. Les caractéristiques de cette couverture et un comparatif avec une autre couverture en verre plus souvent utilisée sont présenté en annexe 2. 2. L absorbeur est composé de tôle architecturale en acier léger de couleur noire de marque «ideal revêtement» type Ameri-cana permettant une bonne intégration au bâti. L absorbeur a pour rôle de capter un maximum de lumière pour la transformer en chaleur et ainsi la transmettre au fluide caloporteur, circulant dans le collecteur en tube de cuivre. Figure 9 : dimension absorbeur et collecteur 3. Le collecteur est un tuyau de cuivre souple de 0.95 cm de diamètre (3/8 de pouces) placé sous le profilé de tôle architecturale de 1.9 cm (3/4 de pouces) d épaisseur. Pour assurer le contact entre le collecteur et l absorbeur, l espace manquant (de 0.95 cm d épaisseur) est assuré par un tasseau en bois, fixé à même le contre-plaqué. Le collecteur serpente ainsi sur toute la surface du contreplaqué par l intermédiaire de tasseaux, avec un espacement en collecteur de 23 cm (9 pouces). A chaque extrémité du capteur, le tuyau est courbé à l aide d un patron en bois pour éviter tout pincement du cuivre (voir 4.3.2 Courbure du collecteur). Le fluide caloporteur circule à l intérieur. Sa longueur totale est de 150 pieds soit 45 mètres. 4. Le fluide caloporteur : compte tenu de son prix et de son impact environnemental en cas de fuite et de remplacement, l utilisation du glycol n est pas retenue. il a été remarqué sur une installation existante, que le glycol provoquait une corrosion importante des réseaux au niveau des jointures, impliquant des fuites. L utilisation de soudure à l argent était alors nécessaire. Ceci implique alors des frais importants nécessaires pour le remplacement et l élimination du glycol et la réparation des réseaux. Ceci impose alors un système auto-vidangeable évitant l'utilisation d'antigel dans le circuit primaire et permettant de se passer de certains composants (vase d'expansion, soupape de sécurité). En période hivernale, il n y a pas de risque de gel puisque le capteur ne fonctionne que lorsque la température à l intérieur du capteur est supérieure à 0 C. Par contre, ils nécessitent une pompe plus puissante capable de remettre en charge le circuit lorsqu'il est vide. Ils permettent également de résoudre le problème de la surchauffe estivale si l eau stagne dans le capteur. Par ailleurs, leur mise en œuvre est plus délicate : les tuyaux doivent absolument avoir une pente descendante, sans aucun point haut, du capteur jusqu'au réservoir de réception du fluide. 5. Le support est assuré par la charpente qui est recouverte d une plaque de contre-plaqué d épaisseur 1.6 cm (5/8 de pouces). Elle est isolée en sous face par de la laine de roche de 9 cm d épaisseur (3.5 pouces) d un RSI de 2.4 m².k/w, réduisant les pertes thermique au dos du capteur. 4.1.2 Description du réseau Le circuit est alimenté par une pompe avec un débit de 5.09 litres/min. La température à l entrée du capteur est mesurée directement dans le réservoir de 220 litres en partie centrale. La perte thermique liée à la conduite est négligée étant donné la présence d une isolation et d une faible longueur. La 15

température de l air est mesurée sous abris. Deux vannes permettent une circulation par le plancher ou directement dans le réservoir en circuit fermé (voir figure 10 ci-après). Figure 10 : principe de fonctionnement du réseau Utilisation alternative du plancher chauffant pour la détermination du rendement Pour tracer la courbe de rendement du prototype, toute la plage de température doit être considérée, dans notre cas de 0 à 35 C (entre la température dans le capteur et la température extérieure). Il est donc nécessaire de pouvoir faire varier la température à l entrée du capteur ou la température extérieure. Il est d usage de considérer un DT «moyen» de 30 C. Analyser le comportement d un capteur solaire thermique au delà des 50 C de DT n apporte rien : nous sommes en dehors de la plage de fonctionnement pour les applications traditionnelles de l eau chaude sanitaire. Les courbes de rendement sont déterminées en fonction de l écart de température entre l air ambiant et le capteur et également en fonction du rayonnement solaire reçu ((Tm-Ta)/Ic). Dans notre cas, il n est possible d agir que sur la température du fluide caloporteur dans le capteur. En effet, les tests sont réalisés en conditions réelles d utilisation, il est donc impossible d influencer le rayonnement ou la température extérieure, à moins de prendre des mesures sur l ensemble de l année ce qui n était pas possible dans notre cas. Pour réduire l écart de température entre l air l ambiant et le capteur et ainsi déterminer le rendement sur une plage maximum de température, l utilisation du plancher comme masse de stockage thermique est nécessaire. Le fluide se refroidit en cédant alors les calories emmagasinées dans le capteur à la dalle de béton et se retrouve donc plus froid en entrée de capteur. Au contraire, en contournant le plancher, la température du fluide augmente, permettant d obtenir les valeurs dans la plage haute des températures, équivalente à un rendement plus faible. La difficulté première est ainsi d obtenir des valeurs de rendement sur toute la plage de données considérée. 4.2 Recueil de mesures et analyse du premier capteur Pour la suite de cette étude, il est important de rappeler que l analyse des performances des capteurs du GREB et surtout, la comparaison avec d autres capteurs solaires thermiques analysés en laboratoire en condition optimale (rayonnement artificiel, incidence parfaitement perpendiculaire au plan du capteur etc ) nécessite une certaine prise de recul (voir 3.1.2 ; limites et contraintes des mesures in- 16