Chapitre IV SPECTROSCOPIE DE RESONANCE MAGNETIQUE NUCLEAIRE DU PROTON (RMN 1 H)

Documents pareils
Partie Observer : Ondes et matière CHAP 04-ACT/DOC Analyse spectrale : Spectroscopies IR et RMN

Résonance Magnétique Nucléaire : RMN

Comment déterminer la structure des molécules organiques?

ANALYSE SPECTRALE. monochromateur

Compléments - Chapitre 5 Spectroscopie

Fiche professeur. L analyse spectrale : spectroscopies IR et RMN

ACIDES BASES. Chap.5 SPIESS

Chapitre 02. La lumière des étoiles. Exercices :

Interaction milieux dilués rayonnement Travaux dirigés n 2. Résonance magnétique : approche classique

INTRODUCTION À LA SPECTROSCOPIE

Atelier : L énergie nucléaire en Astrophysique

EXERCICE II. SYNTHÈSE D UN ANESTHÉSIQUE : LA BENZOCAÏNE (9 points)

THEME 2. LE SPORT CHAP 1. MESURER LA MATIERE: LA MOLE

Effets électroniques-acidité/basicité

BACCALAURÉAT GÉNÉRAL

Chapitre 10 : Radioactivité et réactions nucléaires (chapitre 11 du livre)

EXERCİCE N 1 : «Synthèse de l éthanamide» (7 pts)

TS 31 ATTAQUE DE FOURMIS!

EXERCICES SUPPLÉMENTAIRES

Partie 1. Addition nucléophile suivie d élimination (A N + E) 1.1. Réactivité électrophile des acides carboxyliques et groupes dérivés

Molécules et Liaison chimique

Chapitre n 6 MASSE ET ÉNERGIE DES NOYAUX

Transformations nucléaires

Compétence 3-1 S EXPRIMER A L ECRIT Fiche professeur

TD 9 Problème à deux corps

METHODES D ANALYSE DES COMPOSES AMORPHES

BTS BAT 1 Notions élémentaires de chimie 1

BAC BLANC 2014 / CORRECTİON

Équivalence masse-énergie

Une réponse (très) partielle à la deuxième question : Calcul des exposants critiques en champ moyen

Lycée Galilée Gennevilliers. chap. 6. JALLU Laurent. I. Introduction... 2 La source d énergie nucléaire... 2

SPECTROSCOPIE D ABSORPTION DANS L UV- VISIBLE

Interactions des rayonnements avec la matière

Chapitre 11: Réactions nucléaires, radioactivité et fission

SCIENCES PHYSIQUES. Durée : 3 heures. L usage d une calculatrice est interdit pour cette épreuve. CHIMIE

Panorama de l astronomie. 7. Spectroscopie et applications astrophysiques

La physique nucléaire et ses applications

TABLE DES MATIÈRES CHAPITRE I. Les quanta s invitent

Energie Nucléaire. Principes, Applications & Enjeux. 6 ème /2015

A retenir : A Z m n. m noyau MASSE ET ÉNERGIE RÉACTIONS NUCLÉAIRES I) EQUIVALENCE MASSE-ÉNERGIE

Professeur Eva PEBAY-PEYROULA

Physique Chimie. Utiliser les langages scientifiques à l écrit et à l oral pour interpréter les formules chimiques

Caractérisation de défauts par Magnétoscopie, Ressuage, Courants de Foucault

Transformations nucléaires

K W = [H 3 O + ] [OH - ] = = K a K b à 25 C. [H 3 O + ] = [OH - ] = 10-7 M Solution neutre. [H 3 O + ] > [OH - ] Solution acide

Energie nucléaire. Quelques éléments de physique

Université de Nice Sophia Antipolis Licence de physique

BACCALAURÉAT GÉNÉRAL PHYSIQUE-CHIMIE

PHYSIQUE-CHIMIE. Partie I - Spectrophotomètre à réseau

Chapitre 6 : les groupements d'étoiles et l'espace interstellaire

Mesure de la surface spécifique

Groupe Nanostructures et Systèmes Quantiques

Comment réaliser physiquement un ordinateur quantique. Yves LEROYER

Animations. Liste des 114 animations et 145 vidéos présentes dans la Banque de Ressources Physique Chimie Lycée. Physique Chimie Seconde

Structure quantique cohérente et incohérente de l eau liquide

Chapitre II PHÉNOMÈNES RADIATIFS: PROPRIÉTÉS D EMISSION. f AB = mc 2 e 2. β 1 k(υ)dυ N

LES SUBSTITUTIONS NUCLÉOPHILES EN SÉRIE ALIPHATIQUE S N 1 ET S N 2

TP 03 B : Mesure d une vitesse par effet Doppler

a. Fusion et énergie de liaison des noyaux b. La barrière Coulombienne c. Effet tunnel & pic de Gamov

Lycée français La Pérouse TS. L énergie nucléaire CH P6. Exos BAC

DM 10 : La fusion nucléaire, l énergie de l avenir? CORRECTION

Mise en pratique : Etude de spectres

P17- REACTIONS NUCLEAIRES

Cisco Certified Network Associate

Chapitre 6. Réactions nucléaires. 6.1 Généralités Définitions Lois de conservation

CHAPITRE VI : HYBRIDATION GEOMETRIE DES MOLECULES

Chapitre 4 - Spectroscopie rotationnelle

De l effet Kondo dans les nanostructures à l électronique de spin quantique. Pascal SIMON

TP : Suivi d'une réaction par spectrophotométrie

Chapitre 5 : Noyaux, masse et énergie

8/10/10. Les réactions nucléaires

REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE MINISTERE DE L ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE

Niveau 2 nde THEME : L UNIVERS. Programme : BO spécial n 4 du 29/04/10 L UNIVERS

Figure 1 : Diagramme énergétique de la photo émission. E B = hν - E C

Théorie des multiplets! appliquée à! la spectroscopie d ʼabsorption X!

Géométrie discrète Chapitre V

RAPPORT DE TEST DE CONFINEMENT SELON BS

AIDE-MÉMOIRE LA THERMOCHIMIE TABLE DES MATIERES

CHAPITRE 2 : Structure électronique des molécules

Chap 2 : Noyaux, masse, énergie.

Contenu pédagogique des unités d enseignement Semestre 1(1 ère année) Domaine : Sciences et techniques et Sciences de la matière

L'ÉNERGIE ET LA MATIÈRE PETITE EXPLORATION DU MONDE DE LA PHYSIQUE

5 >L énergie nucléaire: fusion et fission

Application à l astrophysique ACTIVITE

Comprendre l Univers grâce aux messages de la lumière

Rappel. Analyse de Données Structurées - Cours 12. Un langage avec des déclaration locales. Exemple d'un programme

Épreuve collaborative

LE PHYSICIEN FRANCAIS SERGE HAROCHE RECOIT CONJOINTEMENT LE PRIX NOBEL DE PHYSIQUE 2012 AVEC LE PHYSICIEN AMERCAIN DAVID WINELAND

TS1 TS2 02/02/2010 Enseignement obligatoire. DST N 4 - Durée 3h30 - Calculatrice autorisée

BAC BLANC SCIENCES PHYSIQUES. Durée : 3 heures 30

SECTEUR 4 - Métiers de la santé et de l hygiène

TP N 3 La composition chimique du vivant

Erratum de MÉCANIQUE, 6ème édition. Introduction Page xxi (milieu de page) G = 6, m 3 kg 1 s 2

Multichronomètre SA10 Présentation générale

par Alain Bonnier, D.Sc.

1 ère partie : tous CAP sauf hôtellerie et alimentation CHIMIE ETRE CAPABLE DE. PROGRAMME - Atomes : structure, étude de quelques exemples.

Notice d Utilisation du logiciel Finite Element Method Magnetics version 3.4 auteur: David Meeker

1.2 Coordinence. Notion de liaison de coordinence : Cas de NH 3. et NH 4+ , 3 liaisons covalentes + 1 liaison de coordinence.

TECHNIQUES: Principes de la chromatographie

Transcription:

Chapitre IV SPECTROSCOPIE DE RESONANCE MAGNETIQUE NUCLEAIRE DU PROTON (RMN 1 H) I - INTRODUCTION La résonance magnétique nucléaire (RMN) est une technique spectroscopique qui repose sur le magnétisme du noyau. Elle est fondée sur la mesure de l absorption d une radiation dans le domaine des fréquences radio par un noyau atomique dans un champ magnétique fort. Elle constitue l une des plus puissantes méthodes de détermination de la structure des espèces aussi bien organiques qu inorganiques. II - THEORIE II.1 - Propriétés nucléaires Un noyau peut être considéré comme une particule sphérique chargée tournant autour d'un axe, de moment magnétique : γ: rapport gyromagnétique dépendant du noyau h h = 2 π Le nombre quantique de spin nucléaire I peut avoir une valeur égale à 0, 1/2, 1, 3/2 I=1/2 1 H, 19 F, 13 C, 31 P I=3/2 11 B, 23 Na I=5/2 17 O, 27 AI I=1 2 H, 14 N I=3 10 B I=0 12 C, 16 O Un noyau peut être étudié par RMN si son spin I est non nul. II. 2 - Interaction spin nucléaire-champ magnétique En l'absence de champ magnétique externe, les moments magnétiques de spin sont orientés au hasard. Par contre, sous l'action d'un champ magnétique statique H0, ces moments vont s aligner selon la direction du champ imposé. 29

Selon les lois de la mécanique quantique, seules certaines orientations discrètes de ces vecteurs sont autorisées. Dans le cas du proton, deux orientations sont permises : parallèle et antiparallèle. La différence d énergie, E, entre les deux états (α et β) dépendra directement de la force du champ magnétique H0 selon : II.3 - Condition de résonance La fréquence du mouvement du proton en rotation est appelée fréquence de Larmor. Il sera possible d effectuer une transition entre les deux niveaux d énergie en h fournissant au noyau l énergie électromagnétique hν 0 = γ.. H 0 correspondant à la 2π fréquence de Larmor. Lorsque la transition a lieu, on dit qu'il y a résonance du noyau. Le principe de la RMN du proton (RMN 1 H) consiste à : (1) utiliser un champ magnétique H0 pour orienter les "spins" nucléaires des atomes, (2) exciter ces spins par une onde radio à la fréquence de résonance, ce qui fait basculer certains spins, (3) après l'excitation, les spins reviennent à leur état initial (relaxation). 30

III - TECHNIQUES EXPERIMENTALES III.1 - Appareillage Il existe 2 types de spectromètres, le spectromètre à balayage ou à onde continue (continuous-wave, cw), et le spectromètre par transformée de Fourier (FT-NMR). Les éléments suivants sont indispensables pour constituer un spectromètre : - Un aimant pour produire le champ statique H0. - Une source de radiations électromagnétiques de fréquence appropriée (générateur). - Une unité de balayage de fréquence dans tout le domaine des absorptions. - Une cellule contenant l'échantillon. - Un détecteur (récepteur de radiofréquence) qui mesure la quantité de radiation absorbée par la cellule. - Un enregistreur qui trace l'énergie absorbée en fonction de la fréquence. III.2 - Echantillonnage Pour l étude en solution, l'échantillon est dissous dans un solvant. La quantité de produit nécessaire pour la RMN du proton est de 10 à 50 mg. L'échantillon est placé dans un tube en verre mis en rotation au centre d'une bobine magnétique. Le solvant choisi doit être dépourvu d hydrogènes. En effet, les protons du solvant ne doivent pas masquer les protons de l'échantillon examiné. Solvants employés : CCl4, CDCl3; CD3COCD3; CD3OD3; C5D5N; D2O ; DMSO-d6 IV - PRINCIPALES CARACTERISTIQUES DU SIGNAL RMN IV.1 - Le déplacement chimique La position des différentes raies du spectre RMN est déterminée par rapport à une référence. Dans le cas du proton, on utilise le tétraméthylsilane Si(CH3)4 (noté 31

TMS). Par commodité, on utilise une échelle de notation : le déplacement chimique noté δi, exprimé en partie par million (ppm). δ ν ν i ref 6 ppm =. 10 ν 0 νi : fréquence de résonance du noyau i νref : fréquence de résonance de la référence (TMS) ν0 : fréquence du champ statique H0 δ est caractéristique de l environnement du proton. Les protons de même environnement sont dits magnétiquement équivalents et ont le même δ. Les noyaux ayant des environnements différents sont dits magnétiquement différents. Si un signal sort à un champ voisin de celui de la référence (TMS), on dit qu'il sort à champ fort : il est blindé. Inversement, si un signal sort à un déplacement chimique élevé, on dit qu il sort à champ faible : le signal est déblindé. Le déplacement chimique d un proton dépend : - essentiellement de la nature de l'atome qui le porte (carbone, azote ou oxygène le plus souvent) - des substituants portés par cet atome - de la nature des atomes adjacents et des substituants portés par ces derniers (OH, Cl, NO2 ) Les effets attracteurs (inductif ou mésomère) s exerçant sur un carbone portant H induisent un déblindage. Un effet donneur induira au contraire un blindage. Un deuxième effet important est la présence d électrons π au voisinage du proton étudié (cycle aromatique ou liaison multiple). Les déplacements chimiques nous donnent donc des indications sur l'environnement chimique du groupe auquel appartient le proton considéré. On pourra ainsi identifier des groupes de protons à partir de la valeur de δ. Des tables donnent les plages de ces déplacements en fonction de divers environnements. 32

Table simplifiée d'attribution en RMN 1 H VI.2 - Courbe d intégration Dans un spectre RMN, l intensité d un signal est mesurée par sa surface. L intégration des surfaces des signaux se présente sous la forme d une série de paliers. La hauteur de chaque palier est proportionnelle au nombre de H correspondants. Exemple : Spectre RMN 1 H du p-xylène 33

VI.3 - Couplage spin-spin Les protons portés par un même carbone ou des atomes adjacents vont présenter des couplages spin-spin. Le couplage ne peut avoir lieu qu entre protons magnétiquement différents. Le couplage avec un autre proton se traduit par la formation d'un doublet, avec 2 protons par un triplet etc. Lorsqu un hydrogène possède n hydrogènes voisins équivalents entre eux, son signal apparaît sous la forme d un multiplet à (n+1) pics : Si, pour des protons, il y a couplage avec deux groupes voisins de n1 et n2 protons, la multiplicité est donnée par : (n1+1) (n2+1). Exemple : CH3-CH2-CHCl2 La multiplicité du signal du CH2 est égale à : (n1+1)(n2+1) = (3+1)(1+1) = 8. Les rapports d intensité des composantes suivent la règle du triangle de Pascal. nombre de voisins nombre de pics et intensité relative Nom du signal 0 1 singulet 1 1-1 doublet 2 1-2 - 1 triplet 3 1-3 - 3-1 quadruplet 4 1-4 - 6-4 - 1 quintuplet 5 1-5 - 10-10 - 5-1 sextuplet 6 1-6 - 15-20 - 15-6 - 1 septuplet Les pics d un multiplet sont espacés d'une quantité notée J appelée constante de couplage et exprimée en hertz. La valeur de la constante de couplage dépend de plusieurs facteurs tels que les distances et les angles (Cf tables de RMN 1 H). 34

V - EXEMPLES DE SPECTRES RMN 1 H Exemple 1 : (CH 3 ) 3 -CH 2 -OH Ce spectre présente 3 signaux de surfaces relatives intégrant 9, 2 et 1 H. Le premier signal (δ = 1,4 ppm ; 9H) est dû au groupe tertiobutyle. Les 9 protons équivalents donnent un même signal en RMN. Le signal suivant est celui des deux protons du groupe CH2. La valeur plus élevée de δ (3,9 ppm) s interprète par l effet attracteur de l oxygène. Le dernier signal est celui du proton du groupement O-H. Exemple 2 : acétate de benzyle Trois pics attribuables respectivement aux protons du méthyle, du méthylène et du cycle aromatique. 35

Exemple 3 : Ethanol Triplet à δ = 1,20 ppm; intégration : 3 H -CH3 Quadruplet à δ = 3,63 ppm; intégration : 2 H -CH2 déblindé par la proximité de O. Singulet à δ = 4,80 ppm; intégration : 1 H -OH Exemple 4 : 36

VI - EXERCICES 1 - Combien de types de protons magnétiquement équivalents y-a-t-il dans chacun des composés suivants? 1) (CH3)2CH-OH 2) (CH3)3C-CHCl=CH2 3) 2 - Déterminer la structure du produit de formule brute C 4 H 8 O 2, dont le spectre RMN 1 H est présenté ci-dessous. 3 - Analyser le spectre RMN du composé de formule brute C 7 H 9 N et proposer une structure. 37