Transformations nucléaires Stabilité et instabilité des noyaux : Le noyau d un atome associé à un élément est représenté par le symbole A : nombre de masse = nombre de nucléons (protons + neutrons) Z : numéro atomique = nombre de protons Deux noyaux isotopes ont le même nombre de protons mais un nombre de neutrons diférents. Un noyau radioactf est capable de se désintégrer spontanément en un autre noyau en émetant une partcule. Un noyau est instable si : - il est trop lourd - il possède trop de neutrons par rapport aux protons - il possède trop de protons par rapport aux neutrons Diagramme N, Z (de Segré) : Pour connaitre la stabilité des diférents noyaux atomiques, on trace un diagramme qui représente N = (A -Z) en foncton de Z. On peut dégager deux tendances : - pour A < 20, pratquement tous les noyaux stables vérifent la relaton Z = N - pour A > 20, les noyaux stables ont un excès de proton c'est-à-dire que N > Z Nature de la radioactvité : Lors d une réacton nucléaire, un noyau père se désintègre en un noyau fls et émet une partcule. Lois de Soddy : Lors d une réacton nucléaire, il y a conservaton de la charge électrique et du nombre de nucléons. Radioactvité α (noyau trop gros) : Emission d un noyau d hélium appelé partcule α. Radioactvité β - (trop de neutrons) : Emission d un électron appelé partcule β -.
Radioactvité β + (trop de protons) : Emission d un positon appelé partcule β +. Désexcitaton γ : A la suite d une désintégraton α ou β, le noyau fls Y peut être dans un état plus énergétque que son état fondamentalement stable. Il se trouve alors dans un état di «excité» noté. Il va alors se désexcité en perdant de l énergie sous forme d un rayonnement γ. γ Caractère aléatoire d une désintégraton radioactve : La radioactvité est un phénomène aléatoire : il ne semble pas possible de prévoir à l avance la date de la désintégraton d un noyau, ni de modifer les caractéristques de ce phénomène. Cela ne sert donc à rien d étudier l évoluton d un échantllon radioactf d un point de vue microscopique ; il faut avoir une approche statstque. Actvité d une source : L actvité d une source est le nombre de désintégraton qu elle produit par seconde : ( : moyenne du nombre de désintégraton enregistrées, [ ] = Ø). Si est très pett, on peut écrire : (N : nombre de noyaux radioactfs de l échantllon à un instant t, [N] = Ø). On peut aussi écrire la relaton suivante : A = λn (λ : constante radioactve du noyau, [λ] = s) L actvité A d une source s exprime en s -1 = Bq (Becquerel). Loi de décroissance radioactve : avec le nombre de noyaux initalement présents. Temps de demi-vie : Le temps de demi-vie t 1/2 d un échantllon est la durée nécessaire pour que STATISTIQUEMENT la moité des noyaux de l échantllon soit désintégré. Au bout de t 1/2, il reste noyaux radioactfs. On peut calculer t 1/2 suivant la relaton :. Constante de temps τ :. Pour déterminer graphiquement τ, on trace la tangente à l origine. Celleci coupe l axe des abscisses en τ. À t = τ :.
Efets biologiques de la radioactvité : L acton sur les tssus dépend : - du nombre de partcules reçues - de l énergie et de la nature des partcules - de la nature des tssus - du fractonnement de la dose reçue Lorsqu un organisme est soumis à un rayonnement inhabituel (radiothérapie, ), il est irradié. Lorsqu un organisme absorbe un échantllon radioactf, il est contaminé. Dataton au carbone 14 : On pose deux hypothèses : - la teneur en est identque dans les matères vivantes actuelles et dans celles de l époque de l échantllon - la répartton du dans l organisme est homogène Un organisme vivant a la même teneur en que l atmosphère. A sa mort, le n est plus renouvelé et son taux décroit car il se désintègre. On peut dater la mort de l organisme en mesurant l actvité de l échantllon selon la relaton :. Energie et masse d un noyau : Défaut de masse : = m après - m avant. Le défaut de masse est à l origine de l énergie libérée lors d une réacton nucléaire. L unité de masse atomique est noté u : 1 u = 1,660 54 10-27 kg En 1905, Einstein a défnit le principe d équivalence : toute perte de masse s accompagne de libératon d énergie : (c : célérité de la lumière dans le vide = 3.00 10 8 m.s -1, : variaton de masse, [ ] = kg ; : variaton d énergie (J) ; [ ] = J). On peut aussi exprime l énergie en électronvolt (ev) : 1 ev = 1,60 10-19 J. Si m après m avant alors donc : il y a une libératon d énergie.
Si m après m avant alors donc : il faut fournir de l énergie. Energie de liaison d un noyau : L énergie de liaison est l énergie libérée par la formaton d un noyau au repos à partr de ses nucléons séparés, au repos. avec L énergie de liaison par nucléon est égale à. Plus l énergie de liaison par nucléon est importante, plus le noyau est stable. La courbe d Aston permet de rechercher la stabilité d un noyau : - les noyaux les plus stables sont en bas de la courbe - les noyaux les plus lourds peuvent se briser pour former des noyaux plus légers et plus stables : fssion - les noyaux les plus légers peuvent fusionner pour donner un noyau plus lourd et plus stable : fusion Fission nucléaire : Une fssion nucléaire est une réacton provoquée dans laquelle un noyau lourd éclate généralement en deux noyaux plus légers sous l impact d un neutron lent. Cete réacton libère de l énergie. Les produits de la fssion nucléaire sont radioactfs : certains ont un t 1/2 très long ce qui rend difcile leur geston. Les neutrons produits peuvent à leur tour casses des noyaux : c est une réacton en chaîne. Une fssion nucléaire peut-être : - non contrôlée : bombe A - contrôlée : centrale de producton d électricité Fusion nucléaire :
Une fusion nucléaire est une réacton provoquée au cours de laquelle deux noyaux légers fusionnent pour former un noyau plus lourd. Cete réacton libère de l énergie. Les produits de la fusion nucléaire ne sont pas radioactfs. Une fusion nucléaire peut-être : - non contrôlée : bombe H - contrôlée : ITER (producton d électricité)