PETITES MOLECULES ACIDES GRAS GLUCIDES ACIDES AMINES NUCLEOTIDES Chaque être vivant contient des milliers de molécules différentes. On peut regrouper la plupart de ces molécules en 4 grandes familles: Glucides (sucres ou hydrates de carbone) Lipides (acides gras, huiles et stéroïdes) Protéines Acides nucléiques Les petites molécules en sont les composants 1
Petites molécules Définition composés organiques obtenus par liaisons d atomes essentiellement H, N, O P, S à C de poids moléculaire 100 1000 (soit 30 C) généralement libres dans le cytoplasme. Représentent environ 1/10ème de la matière organique totale et 4 % du poids cellulaire. Glucides : monosaccharides oligosaccharides polysaccharides Sources d énergie pour les cellules, soutien mécanique (cellulose, chitine), Reconnaissance et spécificité cellulaire (groupes sanguins) groupée aux phospholipides ou protéines de membrane Acides gras et lipides complexes Molécules des membranes cellulaires, molécules alimentaires, communication cellulaire (hormones), sources d energie Acides aminés :Oligopeptides Protéines Macromolécules Fonctionnalité cellulaire, éléments bâtisseurs Nucléotides : acides nucléiques Macromolécules (ADN, ARN) Message génétique, énergie, communication cellulaire 2
Structure : Glucides Monosaccharides = Glucides simples ou hydrates de C C N H 2N 0 N où N =3, 4, 5, 6 ou 7 ex: C 6 H 12 O 6 Cette formule ne définit pas complètement la molécule qui est variable selon l orientation des groupements. Polymères Disaccharides obtenus par liaisons covalentes entre 2 monosaccharides. Oligosaccharides 3 Polysaccharides géants milliers de monosaccharides nombre de structure possibles très élevé (liaison OH) => difficulté d analyse de la structure => compétence dans la reconnaissance cellulaire Fonctions : Energie Glucose = source d énergie pour la cellule (dégradation en molécules énergétiques) Polysaccharides simples composés de glucose = réserves énergétiques (glycogène - amidon) Soutien mécanique Polysaccharides base de parois cellulaire végétale = cellulose parois cellulaire champignons et exosquelette insecte = chitine Principaux composants des mucus, bave, cartilage. Reconnaissance cellulaire Oligosaccharide + protéine = glycoprotéine + lipide = glycolipide Membrane cellulaire, souvent présents à la surface (groupes sanguins) 3
Monosaccharides Sucres à 6 carbones (hexoses) Glucose (C 6 H 12 O 6 ) Fructose (C 6 H 12 O 6 ) Galactose (C 6 H 12 O 6 ) Certains sucres ont 5 carbones = pentoses Disaccharides Les monosaccharides peuvent se lier deux à deux : Sucrose (ou saccharose): glucose + fructose glucose-fructose + H 2 O = synthèse par déshydratation (une molécule d'eau est libérée) Le saccharose est un autre nom donné au sucrose 4
Maltose : glucose - glucose Lactose : glucose - galactose Pouvoir sucrant des glucides Sucrose : 100 Les disaccharides ne peuvent pas être directement absorbés par le sang. Ils doivent être séparés en monosaccharides par l'intestin. Ex. Intolérance au lactose car peu ou pas d enzyme (lactase) pour l hydrolyser. Fructose : 114 Glucose : 69 Galactose : 63 Maltose : 46 Lactose : 16 Le miel est formé d'un mélange d'eau (25%) et de glucides (75%): glucose (25 à 35%), fructose (35 à 45%) et saccharose (5%) 5
Polysaccharides = polymères de glucoses (glu-glu-glu-glu.glu) Amidon Glycogène Cellulose Amidon Glycogène Cellulose = polymère pouvant être formé de plusieurs centaines de glucoses liés les uns aux autres. = forme sous laquelle les plantes emmagasinent le glucose. Abondant dans les féculents (céréales, pommes de terre, légumineuses). Digestion de l'amidon = transformation de l'amidon en glucose 6
Grain d'amidon Cellule de pomme de terre Petits sacs remplis d'amidon dans les cellules d'une pomme de terre. L'amidon a ici été coloré en bleu par de l'iode. Amidon Glycogène Cellulose Semblable à l'amidon = façon de faire de réserves de glucose chez les animaux S'il y a des surplus de glucose dans le sang : glu + glu + glu + +glu S'il y a carence de glucose : glycogène Le glycogène s'accumule dans le foie et les muscles glycogène glu + glu + glu + +glu 7
Amidon Glycogène Cellulose = chaînes linéaires de glucose Liaisons entre les glucoses différentes de celles de l'amidon ou du glycogène (liaisons plutôt que ) Forme des fibres. Ces fibres se collent ensemble pour former les tissus durs des végétaux. Papier, bois, coton = cellulose Les animaux ne peuvent pas digérer la cellulose: ne peuvent pas briser les liaisons Fonctions des glucides (p. 45) Rôle principal = fournir de l'énergie aux cellules Tous les glucides peuvent se transformer en glucose. Glucose = "carburant" dans la respiration cellulaire 1 glucose + 6 O 2 6 CO 2 + 6 H 2 O + Énergie 8
Structure : Lipides Molécules = acides gras, isoprènes ou stéroïdes Acides gras = acides carboxyliques à longue chaîne hydrocarbonée Propriétés dérivées de cette structure spécifique en 2 régions : une région hydrophile (CooH) <=> liaisons une région hydrophobe (chaîne hydrocarbonée ou cycle aromatique )<=> caractéristique spécifique longueur de la chaîne, présence de double liaisons => chaîne insaturée ou cycle insaturé (margarine dure = saturée, margarine molle = insaturée). Dans l organisme, présence presque toujours sous forme de molécules liées par liaison covalente à d autres molécules par le gpt COOH. Molécules caractérisées par leur insolubilité dans l eau et leur solubilité dans les solvants organiques. 9
Fonctions : Construction des membranes cellulaires Souvent composées de phospholipides. Molécules faites d acides gras et de glycérol. Le glycérol est lié à 2 molécules d acides gras et une molécule de phosphate lui-même couplé à un groupement hydrophile type choline. Dans l eau, les phospholipides forment soit un film lipidique, soit éventuellement une organisation en double couche phospholipidique => micelles ou parois cellulaires. Energie Réserve 6 fois plus productive d énergie que le glucose. Stock = triacylglycerol (TAG) (ou triglycérides) Graisses animales : viande, beurre, crème Graisse végétales : maïs, olives Gras saturés et gras insaturés : On ne peut pas ajouter d'hydrogène On pourrait ajouter 2 hydrogènes en transformant la liaison double en liaison simple Plusieurs doubles liaisons 10
Gras saturés et gras insaturés Gras saturés: Gras animal en général Solide à la température de la pièce Consommation liée à des problèmes cardio-vasculaires Gras insaturés: Gras végétal en général (beaucoup d'exceptions quand même) Liquide à la température de la pièce 11
Hydrogénation d'une huile insaturée: Triglycérides = molécules formées de 1 glycérol lié à 3 acides gras 12
Rôle principal des triglycérides: = Réserve d'énergie Surplus en lipides, glucides ou protéines alimentaires peuvent se transformer en gras. 1 g graisse = 2 fois plus d'énergie que 1 g de glucide 13
Phospholipides (constituants des membranes cellulaires) Formé de : 1 glycérol 2 acides gras 1 groupement phosphate Forment les membranes des cellules Groupement chimique contenant du P et du N Glycérol Acides gras 14
Comportement des phosphoglycérolipides face à l'eau: Groupement phosphate hydrophile Acides gras hydrophobes 15
Les stéroïdes = molécules formées d'un squelette de 4 cycles de carbone (noyau stérol). Le plus connu = cholestérol Entre dans la composition des membranes cellulaires. Sert à fabriquer certaines hormones (hormones stéroïdes, testostérone et oestrogènes, par exemple). 16
Acides Aminés Molécule de structure commune Gpt Coo - sur le même C Gpt NH + 2 Chaîne latérale variable NH 2 + COO - C R 20 acides aminés tous identiques dans matière vivante : bactéries, végétaux, animaux, résultant d un choix ou hasard et d une sélection par l évolution. Sous unités des protéines : polymères linéaires d acides aminés. 17
Il y a 20 sortes différentes d'acides aminés 18
Liaison peptidique:permet la construction des protéines Ex. le lysosyme : 129 acides aminés 1er acide aminé (Lysine) 129e acide aminé (Leucine) Structure primaire de la protéine = ordre dans lequel sont placés les acides aminés. 19
Les protéines sont des molécules très variées: On peut imaginer: 3,6 millions de protéines différentes de 10 acides aminés chacune, 1,3 milliards de 15 acides aminés, 15,5 milliards de 25 acides aminés. Si on assemblait au hasard 129 acides aminés piqués au hasard parmi les 20, il y aurait une chance sur 20 129 d'obtenir du lysosyme. Nucléotides Structure : Base pyrimidine cycle azoté purine + Sucre pentose (5 C) en cycle + gpt phosphate Fonction : Conservation de l information biologique => acides nucléiques => transmission génétique Transport de l énergie chimique Vecteur des communications cellulaires 20
21
22
23