ÉQUILIBRES LIQUIDE-VAPEUR DANGERS LIÉS AU COMPORTEMENT DES FLUIDES



Documents pareils
Phénomènes dangereux et modélisation des effets

Chauffage à eau chaude sous pression

MANUEL D INSTALLATION ET DE MISE EN SERVICE SOMMAIRE. Fonction. Avertissements Gamme de produits Caractéristiques techniques

Eau chaude sanitaire FICHE TECHNIQUE

SCHEMATHEQUE 2004 Juin 2005

Variantes du cycle à compression de vapeur

Etudier le diagramme température-pression, en particulier le point triple de l azote.

LA MESURE DE PRESSION PRINCIPE DE BASE

2 Trucs et Astuces 2

NOTICE TECHNIQUE SSC : Système Solaire Combiné eau chaude sanitaire / appui chauffage maison / appui eau chaude piscine

2.0. Ballon de stockage : Marque : Modèle : Capacité : L. Lien vers la documentation technique :

L offre DualSun pour l eau chaude et le chauffage (SSC)


Formulaire standardisé pour un chauffe-eau solaire

Avanttia Solar. Chaudière Hybride CONDENSATION. L innovation qui a du sens

Energie solaire

Formulaire standardisé pour un chauffe-eau solaire

Prescriptions Techniques

Se protéger contre la contamination par les micro-organismes. Gazole, gazole non routier et fioul domestique Cuves de stockage et réservoirs

Grille d'évaluation Compétences reliées aux activités Evaluation du stage en entreprise

Soltherm Personnes morales

Plans API pour Garnitures Mécaniques

Initiation à la Mécanique des Fluides. Mr. Zoubir HAMIDI

Ingrédients No cas % Contrôlé par SIMDUT. Propane >90 Oui Propylène <5 Oui Hydrocarbures, C <2.5 Oui

Notice d'installation et de mise en service Stations de transfert d énergie : DKCS 8-50

Installations de plomberie

INSCRIPTION, CLASSEMENT ET EMBALLAGE. Communication de l expert de l Afrique du Sud

Annexe 3 Captation d énergie

Stockage de chaleur solaire par sorption : Analyse et contrôle du système à partir de sa simulation dynamique

de l Université Laval Orientations et exigences générales et techniques de construction

RELAIS STATIQUE. Tension commutée

Exemples d utilisation de G2D à l oral de Centrale

Premier principe de la thermodynamique - conservation de l énergie

Auré. AuréaSystème. Les solutions solaires. Chauffe-Eau Solaire. Combiné Solaire Pulsatoire 90% Système solaire AUTO-VIDANGEABLE et ANTI-SURCHAUFFE

VERSION Ce document doit être complété et signé par l installateur agréé Soltherm ayant réalisé les travaux

Domosol : Système solaire combiné (SSC) de production d eau chaude et chauffage

4 ème PHYSIQUE-CHIMIE TRIMESTRE 1. Sylvie LAMY Agrégée de Mathématiques Diplômée de l École Polytechnique. PROGRAMME 2008 (v2.4)

VOTRE EAU CHAUDE ELECTRIQUE

Consignes de sécurité Manipulation du dioxyde de carbone CO 2

Qu est ce qu un gaz comprimé?

Equipement d un forage d eau potable

A QUOI SERT LE NIVEAU DE CUVE?

Chaudières et chaufferies fioul basse température. Olio 1500, 2500, 3500, 4500, 7000

Entretien domestique

PROTECTION DEs MAINs ET DEs BRAs INfORMATIONs TEChNIquEs

EasiHeat Unité de production d'eau chaude

Le confort de l eau chaude sanitaire. Gamme complète certifiée ACS pour le traitement de l eau chaude sanitaire

Système de chauffage Alde Sûr, économique et respectueux de l environnement

Détendeur Régulateur de Pression

Production d eau chaude sanitaire thermodynamique, que dois-je savoir?

Notions physiques Niveau 2

Présentation générale des principales sources d énergies fossiles.

GUIDE DE BONNES PRATIQUES POUR LA COLLECTE DE PILES ET ACCUMULATEURS AU LUXEMBOURG

de faible capacité (inférieure ou égale à 75 litres) doivent être certifiés et porter la marque NF électricité performance.

Principes généraux de la modélisation de la dispersion atmosphérique

FICHE DE DONNEES DE SECURITE

Chauffe-eau électrique Chaffoteaux

Chapitre 7: Dynamique des fluides

Installateur chauffage-sanitaire

Description du système. Pompe 1 : Pompe de régulation du retour sur le poêle.

ROTEX Solaris - Utiliser l énergie solaire gratuite. Nouveau : Chauffe-eau électro-solaire ROTEX HybridCube 343/0/0

NOTIONS FONDAMENTALES SUR LES ENERGIES

2.7 Le bétonnage par temps chaud par temps froid

CIRCUITS DE PUISSANCE PNEUMATIQUES

3. Artefacts permettant la mesure indirecte du débit

GUIDE D'INSTALLATION. Lave-Vaisselle

À DRAINAGE GRAVITAIRE

Série CLE - Chauffe-eau pour douche oculaire Solutions de chauffage d eau sans réservoir

INSTRUCTIONS D INSTALLATION MODÈLE

P7669 MACHINE A VAPEUR MINIATURE P7669R A mouvement alternatif P7669T Turbine

Sécheurs par adsorption à régénération par chaleur

DOSSIER TECHNIQUE INJECTION ELECTRONIQUE GPL MULTIPOINT

ballons ECS vendus en France, en 2010

Diamètres 3" 4" 6" 8" Type de Bride PN 16 PN 16 PN 16 PN 16. Orangé-rouge (RAL 2002) Agrément CE/APSAD CE/APSAD CE/APSAD CE/APSAD

Atelier B : Maintivannes

DROUHIN Bernard. Le chauffe-eau solaire

U-31 CHIMIE-PHYSIQUE INDUSTRIELLES

Alfa Laval échangeurs de chaleur spiralés. La solution à tous les besoins de transfert de chaleur

Fiche de lecture du projet de fin d étude

Vannes à 2 ou 3 voies, PN16

MEDIACLAVE. La stérilisation rapide, reproductible et sûre des milieux

LE CHAUFFAGE. Peu d entretien. Entretien. fréquent. Peu d entretien. Pas d entretien. Pas d entretien. Entretien. fréquent. Peu d entretien.

Le chauffe-eau à pompe à chaleur: fiche technique à l intention des installateurs

CENTRE HOSPITALIER CAHIER DES CLAUSES TECHNIQUES PARTICULIERES MAINTENANCE DES CHAUDIERES ET DES SYSTEMES DE CLIMATISATION

Guide du bon contrôle de fuite

I. Introduction: L énergie consommée par les appareils de nos foyers est sous forme d énergie électrique, facilement transportable.

LES DTU PLOMBERIE SANITAIRE

Aide à l'application Preuve du besoin de réfrigération et/ou d humidification de l air Edition mai 2003

FCT. Robinet à tournant sphérique FCT - type HPA - 150# à 1500# Instructions d installation et de maintenance. Pour les robinets à axe nu :

NOTICE D INSTALLATION

Fiche de données de Sécurité

Matériel de laboratoire

FLUENDO CF E. CHAUFFE-BAINS A GAZ Modèles pour raccordement à un conduit de fumées. Notice d'installation et d'emploi. Sommaire: Description:

Formation Bâtiment Durable :

Filtres pour gaz et air. GF/1: Rp 1/2 - Rp 2 GF/3: DN 40 GF/4: DN 50 - DN 100 GF: DN DN 200

NOTICE DE MISE EN SERVICE

LE FILTRE A PARTICULES : SES PROBLEMATIQUES ET NOS SOLUTIONS

Ballon d'eau chaude sanitaire et composants hydrauliques

Instructions d'utilisation

DOCUMENT RESSOURCE SONDES PRESENTATION

Transcription:

Ingénieurs en Sécurité Industrielle Connaissance et Maîtrise des Phénomènes Physiques et Chimiques ÉQUILIBRES LIQUIDE-VAPEUR DANGERS LIÉS AU COMPORTEMENT DES FLUIDES I - PRESSION RÉGNANT DANS UNE CAPACITÉ... 1 1 - Capacité pleine de gaz...1 2 - Capacité contenant une phase liquide et une phase vapeur...1 3 - Capacité pleine de liquide...4 II - CONSÉQUENCES D UN APPORT OU D UN RETRAIT DE CALEUR À UN CORPS... 5 1 - Apport de chaleur...5 2 - Retrait de chaleur...13 3 - Vaporisation d un liquide par détente...15 III - COUPS DE BÉLIER... 19 1 - Description du phénomène...19 2 - Effets de coups de bélier et prévention...21 ANNEXES Courbes de tension de vapeur de quelques hydrocarbures...23 Courbe de tension de vapeur de l eau...24 Courbes de tension de vapeur de quelques composés chimiques...25 Variation de la densité de quelques liquides avec la température...26 Ce document comporte 27 pages SE PRO - - Rév. 1 04/04/2005

1 I - PRESSION RÉGNANT DANS UNE CAPACITÉ 1 - CAPACITÉ PLEINE DE GAZ PRESSION = COCS DES MOLÉCULES t Un gaz est constitué de molécules qui peuvent se déplacer librement les unes par rapport aux autres et qui sont soumises à une agitation incessante et désordonnée. D MEQ 3008 A Ces molécules sont toutes identiques dans le cas d'un corps pur et elles sont de plusieurs espèces dans le cas d'un mélange. Pression dans une capacité pleine de gaz L'agitation des molécules provoque de multiples chocs contre les parois. Les forces pressantes qui en résultent s'appliquent sur toute la surface interne du ballon et créent donc une pression. Cette pression exercée par le gaz dépend du nombre de chocs par unité de surface (Pression = Force/Surface) et est donc fonction : du nombre de molécules de gaz, c'est-à-dire de la quantité de gaz enfermée dans le ballon de la surface offerte aux chocs, c'est-à-dire des dimensions du ballon ou appareillage contenant le gaz - de l'agitation des molécules qui augmente avec la température 2 - CAPACITÉ CONTENANT UNE PASE LIQUIDE ET UNE PASE VAPEUR Quand dans un équipement quelconque, non relié à l atmosphère, il y a coexistence et contact de deux phases liquide et vapeur à la même température et à la même pression, on dit que les deux phases sont à l équilibre liquide-vapeur. a - Corps pur Pour un corps pur donné, la présence simultanée de ces deux phases suppose des conditions telles que leur point représentatif dans le diagramme pression-température soit sur la courbe de tension de vapeur de ce corps pur. La pression absolue, dans l'équipement, est la tension de vapeur du corps pur à la température de stockage. PRESSION = TENSION DE VAPEUR DU CORPS PUR t Pression dans une capacité contenant une phase liquide et une phase vapeur D MEQ 3008 B

2 En effet chaque corps pur possède une courbe de tension de vapeur qui délimite, dans le diagramme pression-température, deux zones comme représenté ci-dessous. - une zone liquide à gauche de la courbe (conditions P 1 et t 1 par exemple) - une zone vapeur à droite de la courbe (conditions P 2 et t 2 par exemple) Pression COURBE DE TENSION DE VAPEUR Etat LIQUIDE Etat VAPEUR P 2 V P 3 P 1 L L + V Température D T 009 D t 1 t 3 t 2 Courbe de tension de vapeur Sur la courbe elle-même (conditions P 3 et t 3 par exemple) il y a coexistence des deux phases liquide et vapeur Les planches en annexe présentent les courbes de tension de vapeur de quelques corps purs. À titre d exemple on a représenté ci-dessous une sphère contenant du propane liquide et gazeux à la température de 20 C. Propane gazeux P P Courbe de tension de vapeur du propane Propane liquide 20 C TV 20 C 3 20 C t D SEC 009 A Pression dans une sphère de propane La condition d équilibre liquide-vapeur étant réalisée, puisqu il y a coexistence des deux phases, la pression P régnant dans le ballon est la tension de vapeur du propane à 20 C, que l on note TV 20 C 3.

3 L abaque en annexe permet d en lire la valeur : P = TV 20 C 3 = 8,2 atm La courbe de tension de vapeur d un corps pur permet donc de connaître la pression régnant dans une capacité contenant ce corps à l équilibre liquide-vapeur, à une température connue et ceci quel que soit le niveau de liquide. b - Mélange Si l'on considère un ballon dans lequel un mélange est à l'équilibre liquide-vapeur, la pression P régnant dans le ballon est appelée tension de vapeur du liquide à la température considérée. PRESSION = TENSION DE VAPEUR DU MÉLANGE t D MEQ 3008 C Pression dans une capacité contenant un mélange à l'équilibre liquide-vapeur Dans un tel ballon, une augmentation de température provoque la vaporisation partielle immédiate du liquide; on dit que celui-ci est à son point de bulle. Par contre, une diminution de température provoque la condensation partielle immédiate de la vapeur, on dit que celle-ci est à son point de rosée.

4 3 - CAPACITÉ PLEINE DE LIQUIDE La pression n est pas une propriété du liquide mais dépend de la machine qui a généré la pression (en général une pompe), des systèmes de régulation de pression et des systèmes de protection dont est équipée la capacité. (F - 1) V 1 (F - 2) V 1 P P V 2 V 2 (F - 2) En service (F - 1) En service V1 fermé en premier V2 fermé en second V2 fermé en premier V1 fermé en second P = Presse de refoulement de la pompe à débit nul P = Pression Atmosphérique D C 3001 A Pression dans une capacité pleine de liquide

5 II - CONSÉQUENCES D'UN APPORT OU D'UN RETRAIT DE CALEUR A UN CORPS 1 - APPORT DE CALEUR Un apport de chaleur à un corps peut avoir les deux conséquences suivantes : - augmenter la température du corps sans changement d'état physique, mais entraîner une dilatation - provoquer la changement d'état physique du corps, ce qui signifie vaporisation pour un liquide a - Apport de chaleur sans changement d'état Capacité pleine de gaz La pression augmente. Elle varie approximativement comme la température absolue du gaz qui est mesurée en Kelvin (K = C + 273). Les risques encourus sont faibles. Capacité pleine de liquide Tout liquide tend à se dilater quand la température augmente; il y a une expansion thermique. Cette caractéristique entraîne des risques car l'élévation de température d'un liquide emprisonné dans un récipient peut par expansion thermique entraîner des surpressions considérables capables de rompre tous les équipements non protégés, ce liquide étant incompressible. Dans le cas d'un ballon en acier plein d'eau à 20 C, une élévation de température de 30 C entraîne une pression de l'ordre de 180 bars, soit en moyenne 6 bars/ C d'élévation de température. Aux températures plus élevées le gradient d'élévation de pression est encore plus grand car la dilatation de l'eau est plus élevée. Ceci est illustré par le schéma ci-dessous : 0 175 490 960 bar rel 20 C 50 C 75 C 105 C D SEC 012 A Évolution de la pression dans une capacité pleine d eau liquide

6 Le graphique ci-dessous montre dans un récipient plein de gaz liquéfiés, sans phase gazeuse, l élévation de pression approximative en fonction de l élévation de température, en négligeant les variations de volume du récipient. 80 Pression (bar rel) 70 60 50 40 30 20 10 ( C) 0 1 2 3 4 5 6 7 8 9 Élévation de température D SEC 013 A Évaluation de la pression dans une capacité pleine de gaz liquéfiés S il existe un ciel gazeux au-dessus du liquide, lors de l élévation de température, cette phase vapeur est d abord comprimée et la pression à l intérieur du réservoir s élève plus lentement. Mais lorsque le liquide a occupé, après dilatation, tout le volume du récipient, la pression croît de nouveau brutalement. Ces risques peuvent apparaître en particulier dans une capacité isolée (telle que sphère, camionciterne, wagon-citerne, ballon, bouteille d échantillons, ) par élévation de la température ambiante. On ne doit donc jamais remplir une capacité afin qu'il subsiste un ciel gazeux permettant la libre dilatation du liquide par élévation de température. La température maximale de référence pour des conditions normales de stockage en France est de 50 C. Elle est prise à 40 C si l équipement est muni d un pare-soleil (exemple : wagon et camion-citerne). Compte tenu de ce qui précède la règle couramment utilisée est qu'il subsiste un ciel gazeux au moins égal à 3 % du volume total du récipient quand le liquide est à 50 C. La quantité maximale du produit que peut contenir un réservoir se calcule donc en masse.

7 Application : Quelle est la quantité maximale de propane pur à 20 C que l on peut introduire dans une sphère de 1000 m 3? Volume total de la sphère : Ciel gazeux minimal à 50 C : Volume liquide maximal à 50 C : Masse volumique du propane à 50 C : 445 kg/m 3 Masse maximale de propane stocké : Masse volumique du propane à 20 C : 500 kg/m 3 Volume maximal de propane à 20 C : Il en est ainsi pour une bouteille de propane ou de butane commercial qui nouvellement remplie à un ciel gazeux de 15 % à 15 C environ. Celui-ci subsiste à 50 C (3 % minimum). 15 % 3 % 15 C 50 C GPL commerciaux D SEC 019 D Surveiller les niveaux : dans les sphères en particulier, se souvenir que le volume n est pas proportionnel au niveau. Attention aux capacités laissées pleines après les épreuves hydrauliques. Ces risques concernent aussi une tuyauterie isolée. L augmentation de température du produit par la soleil peut entraîner des ruptures de joints et/ou même de la tuyauterie, ou tout au moins empêcher l ouverture de robinet-vanne à opercule.

8 Il faut prendre l une des précautions suivantes : - laisser décollée une vanne vers une capacité - si des soupapes d expansion thermique sont prévues, veiller à ce qu elles ne soient pas isolées DN 25 (1") BAC Vanne cadenassée ouverte (CO) O DN 20(3/4") F F D SEC 014 A Soupape d'expansion thermique sur bac de stockage D MEQ 3009 A Soupape d'expansion thermique sur transfert de liquide

9 Application : Calculer la quantité de propane pur évacuée par une soupape d expansion thermique placée sur une ligne isolée soumise à une élévation de température. Avec : - ligne : longueur 100 m diamètre nominal 4 (DN 100) section de passage : 82,1 cm 2 - température initiale : 20 C - température finale : 40 C sur les échangeurs, s'il n'existe pas de soupape d'expansion thermique : ne jamais isoler le fluide froid si le fluide chaud est en service. Fluide chaud NE JAMAIS ISOLER LE FLUIDE FROID, SI LE FLUIDE CAUD EST EN SERVICE Fluide froid D MTE 1041 B Précaution d'exploitation sur un échangeur

10 Capacité à l équilibre liquide-vapeur Tant qu il subsiste un ciel gazeux, la pression augmente avec élévation de température conformément à la courbe de tension de vapeur du corps concerné. L exemple ci-dessous permet d observer l augmentation de pression avec la température dans une sphère de pur. bar rel. bar rel. 20 C 50 C D SEC 015 A Les pressions qui en découlent sont moins importantes que dans le cas précédent et n engendrent généralement pas de risques particuliers. Néanmoins il faut tenir compte de cette propriété physique lors de toute opération inhabituelle : détournement de produit, démarrage, conditions climatiques inhabituelles, b - Apport de chaleur avec changement d'état La vaporisation du liquide s'accompagne : - d'une consommation d'énergie appelée chaleur latente de vaporisation - d'une augmentation très importante de volume Dans le cas de l'eau : à 100 C et à la pression atmosphérique, l'eau donne un volume de vapeur environ 1600 fois plus grand que son volume à l'état liquide. Aussi l'eau qui entre accidentellement dans une installation, si elle est vaporisée par un produit chaud, peut occasionner une rupture de l'installation. On comprend donc que les surpressions puissent se produire dans des équipements lors de la vaporisation de quantité même faible d'eau si le volume offert à la vapeur n'est pas suffisant. Le risque de surpression augmente bien entendu avec la température. Il peut y avoir destruction de l'équipement intérieur et même éclatement.

11 Ainsi dans un bac de stockage : - lors de la rupture d un serpentin dans un bac de stockage de produits réchauffés, on se trouve en présence d un débordement avec moussage (FROT-OVER). C est la mise en ébullition d eau dans un produit chaud, non en feu T > 100 C VAPEUR PV CONDENSAT D SEC 016 A - lors d un feu dans le réservoir on peut rencontrer : une émulsion en surface avec débordement par présence d eau provenant de l arrosage ou de la mousse (SLOP OVER) une vaporisation dans la masse (BOIL OVER) provoquée par le produit qui, en brûlant, crée une onde de chaleur qui se déplace vers le fond du réservoir et provoque l ébullition de l eau libre située en fond de bac Ondes de chaleur Fractions légères distillantes Fractions légères remontant Fractions lourdes coulant D SEC 3000 A Eau libre ou en émulsion Phénomène de boil-over

12 Le produit enflammé, projeté dans les airs, génère une véritable boule de feu. D SEC 018 A Rupture d un bac de stockage lors d'un boil-over (toit sans soudure frangible) En opération, les précautions suivantes sont à prendre : contrôle de l'absence d eau dans les coulages vers les bacs de stockage traitant des produits chauds non aqueux purge en point bas dans les tuyauteries et les capacités de stockage où peut s accumuler de l eau drainage complet de l eau résiduelle après des épreuves d étanchéité hydraulique avant tout démarrage des unités à risques vérification de l absence d eau dans les réservoirs de vidange (fût, tonne à vide, ) avant l admission de produit chaud vérification du bon fonctionnement des purgeurs sur les lignes de vapeur d eau pour éviter les "marteaux d'eau". Vapeur PV Condensats D SEC 021 A pas d utilisation de la vapeur d eau dans les serpentins de réchauffage de réservoir de stockage contenant des produits stockés à une température supérieure à 80-90 C.

13 2 - RETRAIT DE CALEUR Un retrait de chaleur a les conséquences inverses : diminution de la température du corps sans changement d état physique avec contraction par augmentation de la masse volumique changement d état physique, ce qui signifie : condensation pour une vapeur solidification pour un liquide Dans les deux cas, une mise sous vide est à craindre si la capacité considérée est isolée. Elle sera néanmoins bien plus importante lors de condensation de vapeur. Il peut y avoir déformation et même implosion du matériel. Les exemples ci-dessous illustrent ce risque. F F 120 C retrait de chaleur eau 50 C F F Mise sous vide d'un récipient sous pression D SEC 030 A Mise sous vide d un bac de stockage

14 Les accidents les plus fréquents sur les équipements isolés se produisent lors de refroidissement inopinés (pluie, baisse de la température extérieure, ) : - par condensation de la vapeur d eau lors de manœuvre de dégazage ou de désaération - par condensation de la vapeur d eau contenue dans l air (bac de stockage, silos, ) - pendant le transport de produits chauds Les précautions nécessaires sont les suivantes : - mettre les évents et les purges à l air libre s il n y a pas de risque de mélange explosif, et vérifier qu ils ne sont pas bouchés - maintenir une légère surpression par : l addition d un corps pur léger (exemple : propane dans butane) du gaz inerte du gaz de chauffe - vérifier le bon fonctionnement des soupapes de respiration double effet sur les bacs de stockage Les risque existe aussi dans une capacité contenant un corps à l équilibre liquide-vapeur. En effet, selon la température certains corps ont une tension de vapeur inférieure à la pression atmosphérique. Dans le cas du n-butane pur, ceci est illustré par l exemple dessous : Bar rel. Bar rel. 20 C 0 C n. Butane gazeux n. Butane à l'équilibre D SEC 1223 B Évolution de la pression dans un wagon-citerne de butane Par temps froid pour éviter la mise sous vide, il peut être nécessaire de pressuriser les capacités (sphère, wagons-réservoirs, habituellement en pression).

15 3 - VAPORISATION D UN LIQUIDE PAR DÉTENTE a - Risques de givrage Lors d une vaporisation par baisse de pression dans une vanne, il n y a pratiquement pas d échange thermique avec le milieu ambiant. La chaleur latente nécessaire à la vaporisation du liquide est prise au liquide lui-même. La baisse de température qui en découle amène en présence d humidité, un givrage au point de détente et peut créer des blocages par le gel de l eau ou par la formation d hydrates. Lors d une prise d échantillon de gaz liquéfiés pour permettre en cas d incidents chaque vanne soit manœuvrable : 1 2 3 D SEC 024 A ouvrir dans l ordre, les robinets 1 puis 2 lorsque la prise est terminée, fermer 2 puis 1 décomprimer le flexible en ouvrant 3 décomprimer la ligne entre 1 et 2 en ouvrant 2, puis fermer 2 Ceci est bien entendu aussi valable pôur une purge de gaz liquéfiés. b - Formation d hydrates ydrates d'hydrocarbures Les hydrates sont des structures cristallines qui peuvent se former lorsqu on met des hydrocarbures et de l eau en présence dans certaines conditions. Il est admis que les hydrates sont des inclusions de molécules de gaz dans les espaces laissés libres dans un réseau cristallin de molécules d eau avec de faibles liaisons chimiques entre le gaz et l eau. Deux types d hydrates ont été mis en évidence : Molécules d'ydrocarbures D C 3000 A Réseau cristallin de molécules d'eau Exemple de structure cristalline d'un hydrate (propane)

16 - le premier intéressant les molécules de faibles tailles (méthane, éthane, éthylène) avec pour formules : C 4 7,6 2 O C 2 6 7,6 2 O - le second relatif aux molécules plus grosses (propylène, propane, isobutane) comportant 17 molécules d eau Les tailles des molécules au-delà du n-butane sont trop importantes pour permettre la pénétration dans une cavité du réseau cristallin de sorte que les homologues supérieurs au butane ne peuvent donner lieu à des formations d hydrates. Les hydrates sont des solides de couleur blanche qui peuvent revêtir différents aspects (neige, givre, cristaux ou arborescences) et dont la densité est d environ 0,98. Les températures de formation des hydrates dépendent de la pression et de l hydrocarbure concerné et peuvent être largement situées au-dessus de 0 C. Le diagramme ci-dessous représente les domaines de formation d hydrates ou d eau libre pour quelques hydrocarbures : 100 90 80 70 atm Méthane 60 50 40 Éthane 30 20 10 9 8 7 6 5 4 Propane Pression ZONE DE FORMATION D'YDRATES Eau liquide + C liquide 3 2 Isobutane n-butane Eau liquide + vapeur d'c 1 0,9 0,8 0,7 0,6 0,5-5 0 5 10 15 20 30 C Température ( C) Eau solide + vapeur d'c 0 C Température D T 008 B Domaine de formation des hydrates

17 Ces températures n ont bien entendu aucun rapport avec les températures de solidification des hydrocarbures résumées dans le tableau ci-dessous. Constituants Température de solidification ( C) Méthane 182,5 Éthane 183 Propane 187 Isobutane 159,4 Éthylène 169,4 Propylène 185,4 Lorsque l'hydrate se décompose, il y a libération du gaz contenu dans le réseau cristallin. Ex : 164 cm 3 de méthane gazeux par cm3 d'hydrate solide. Autres hydrates Il peut y avoir formation d'hydrates avec d'autres gaz tels que le gaz carbonique, l'hydrogène sulfuré, le chlore, le brome. Gaz ydrate / Formule Couleur CO 2 CO 2 / 7,6 2 O Blanchâtre 2 S 2 S / 5,07 2 O Jaunâtre Cl 2 Cl 2 / 5,75 2 O Légèrement coloré Br 2 Br 2 / 10 2 O Rougeâtre Risques liés aux hydrates Les hydrates occupent un volume important étant donné leur faible masse volumique. Ils sont capables de boucher en partie ou en totalité les équipements tels que lignes, filtres, robinetterie, Ils peuvent s'accumuler dans les échangeurs, se déposer dans les machines tournantes en entraînant un balourd du rotor générateur de vibrations. L adhérence aux parois et la dureté du bloc d hydrates est telle qu aucun moyen mécanique normal de débouchage ne peut être mise en œuvre. Seul le réchauffage (ex : lance à vapeur) s'avère efficace.

18 Pour éviter ces risques il faut : diminuer la teneur en eau dans le gaz (ex : 0,01 % à 15 C dans le propane) injecter du méthanol, avide d'eau c - Fuite à l atmosphère de gaz liquéfiés sous pression Lors d une fuite de gaz liquéfiés sous pression il y a détente brusque de la pression interne du récipient à pression atmosphérique et donc vaporisation instantanée d une partie du gaz liquéfié libéré. La partie non vaporisée s écoule en nappes circulaires et se vaporise lentement grâce aux apports thermiques de l environnement (conduction et convection avec le sol ou de l eau, rayonnement solaire, température ambiante, ). Le phénomène est différent dans le cas d un gaz liquéfié cryogénique stocké à la pression atmosphérique puisque la vaporisation instantanée n apparaît pas, le produit libéré se répand sur le sol, formant une nappe qui se vaporise peu à peu.

19 III - COUPS DE BÉLIER 1 - DESCRIPTION DU PÉNOMÈNE Un coup de bélier est une brusque variation de pression et a pour cause une brutale variation de débit : fermeture / ouverture de robinets démarrage / arrêt de pompe (en particulier à distance) Dans une tuyauterie où circule du liquide, une fermeture brusque de vanne ne bloque pas immédiatement toute la masse de liquide se trouvant dans la tuyauterie. Ce liquide encore en mouvement vient s écraser sur la face amont de l opercule de la vanne en produisant une augmentation de pression et de la même façon, la pression en aval de la vanne chute brutalement. Amont Aval Amont Aval D SEC 025 A Cette surpression (ou dépression) localisée sur une petite longueur va se déplacer sous forme d une onde le long de la conduite (à la vitesse du son dans le liquide 1 km/s) jusqu à ce qu elle rencontre un obstacle qui la fait repartir dans l autre sens. On crée ainsi un mouvement de va et vient de surpression et de dépression qui diminue avec le temps grâce aux frottements qui amortissent le mouvement. La valeur de la surpression atteinte est fonction de la vitesse de fermeture de la vanne. Une formule simplifiée permet d estimer cette surpression. P = L. (V 1 V 2 ) t. 50 P = surpression en bar L = longueur de la tuyauterie en m t = durée de la fermeture de la vanne en s v 1 = vitesse du produit ligne en service en m/s v 2 = vitesse après fermeture vanne = 0 m/s

20 Application : Calculer la surpression atteinte dans le cas suivant : Débit = Diamètre tuyauterie = Longueur de la tuyauterie = Temps de fermeture de la vanne = 11 10 9 8 7 Vitesse en m/sec. DN 50 Série F - 2" Sch 40 DN 80 Série F - 3" Sch 40 DN 100 Série F - 4" Sch 40 DN 125 Série F - 5" Sch 40 6 5 DN 150 Série F - 6" Sch 40 4 3 DN 200 Série F - 8" Sch 40 2 1 DN 250 Série F - 10" Sch 40 DN 300 Série F - 12" Sch 40 DN 400 Série F - 16" Sch 40 Débits en m 3 /h 50 100 150 200 250 300 350 400 D SEC 032 A Relation vitesse-débit dans une conduite en fonction du diamètre

21 2 - EFFETS DE COUPS DE BÉLIER ET PRÉVENTION Les coups de bélier par la surpression ou la dépression qu ils occasionnent peuvent être la cause de chocs et de ruptures d éléments de tuyauterie (en particulier en plastique où les phénomènes sont fréquents) ou de pièces mécaniques : joints, corps de pompe, boulonnerie de brides, clapets, Pour prévenir ces incidents, deux solutions peuvent se présenter : - la non création du coup de bélier - la surpression de la variation de pression par un équipement approprié Éviter le coup de bélier L amplitude de la surpression dépend essentiellement de la vitesse de variation du débit. Il suffit donc de s attacher à ne produire que des variations lentes du débit. Il est ainsi recommandé de : démarrer une pompe vanne de refoulement fermée d arrêter une pompe après avoir fermé la vanne de refoulement d ouvrir ou fermer les robinets manuels progressivement (attention aux vannes 1/4 tour) de prévoir des temps raisonnables d'ouverture / fermeture des robinets motorisés de remplir lentement une canalisation vide vanne ouverte brusquement Vanne fermée Air Impact du front du liquide = surpression D SEC 026 A Coup de bélier à l'ouverture d'une vanne Se prémunir contre les coups de bélier Il est cependant très difficile d éviter tous les coups de bélier : un arrêt brutal de pompe n est pas souvent précédé par la fermeture de la vanne de refoulement les automatismes de chargement créent systématiquement des coups de bélier Des équipements de protection peuvent être prévus : soit pour amortir les coups de bélier par exemple avec une capacité antipulsatoire soit pour se protéger contre des surpressions occasionnelles importantes par exemple avec une soupape ou un disque d éclatement.

22 Pour éviter la dissolution du gaz dans le liquide, on utilise des bouteilles à membranes de type Olaer. La pression de gonflage est fonction des caractéristiques du circuit. Une bouteille ne peut amortir qu une seule fréquence. On n'est donc pas protégé dans le cas d'une pompe à vitesse variable Orifice de gonflage Gaz comprimé Ouvert Vessie D SEC 027 B Bouteille anti-pulsatoire de type Olaer Clapet Neyric sur réseau d'eau incendie Systèmes de protection contre les surpressions et les dépressions

23-200 -100 0 100 200 50 Pression (Atm) 50 40 40 30 30 20 15 15 6 5 4 9 8 7 10 20 Méthane Ethane Ethylène n-butane isobutane Propane Propylène 10 9 n-pentane isopentane 6 5 4 8 7 n-eptane n-exane 3 3 2 2 0,9 0,8 0,7 0,6 0,5 1 1 0,9 0,8 0,7 0,6 0,5 0,4 0,3 0,2 COURBES DE TENSION DE VAPEUR DE QUELQUES YDROCARBURES (Origine équation d'antoine) 0,4 0,3 0,2 0,1-190 -180-170 -160-140 -130-120 -110-150 -200-100 -90-80 -70-60 -50 Température ( C) 0,1-40 -30-20 -10 10 20 30 40 60 70 80 90 110 120 130 140 160 170 180 190 0 50 100 150 200 D PPC 010 A

24 500 400 300 200 Pression (bar) 221,29 bar Point critique C 100 90 80 70 60 50 40 374,15 C 30 20 10 9 8 7 6 5 4 3 2 0,9 1 0,8 0,7 0,6 0,5 0,4 0,3 COURBE DE TENSION DE VAPEUR DE L'EAU DE 50 C AU POINT CRITIQUE 0,2 0,1 Température ( C) 50 100 150 200 250 300 350 400 D T 018 E

25 150-130 -120-110 -100-90 -80-70 -50-60 -40-30 -20-10 100 90 80 70 60 50 40 30 20 9 10 4 0,08 0,07 0,06 0,05-130 D T 1005 A -120-110 -100-90 -80-70 -60-40 -30-20 -10-50 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 8 7 6 5 3 2 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 1 0,9 0,8 0,7 0,6 0,5 0,4 0,3 0,2 0,1 0,09 150 100 90 80 70 60 50 40 30 20 10 9 8 7 6 5 4 3 2 1 0,9 0,8 0,7 0,6 0,5 0,4 0,3 0,2 0,1 0,09 0,08 0,07 0,06 0,05 Cl 2 F CCl 4 COURBES DE TENSION DE VAPEUR DE QUELQUES COMPOSÉS CIMIQUES Origine équation d'antoine BrF 3 Température ( C) N 3 CI CO 2 BF 3 Pression (bar) PT PT PT PT

26 VARIATION DE LA DENSITÉ DE QUELQUES LIQUIDES AVEC LA TEMPÉRATURE Nom Formule Densité d -80 C -60 C -40 C -20 C 0 c 20 C 40 C 60 C 80 C 100 C 150 C 200 C Acétaldehyde C 2 4 O 0,78 Acétate de butyle C 6 12 O 2 0,882 Acétate d'éthyle C 4 8 O2 0,901 Acétone C 3 6 O 0,855 0,832 0,811 0,791 0,765 0,74 Acide acétique C 2 4 O 2 1,049 1,028 1,003 0,98 0,96 Acide formique C 2 O 2 1,221 1,192 1,169 Acrylonitrile C 3 3 N 0,806 Anhydride acétique C 4 6 O 3 1,082 Benzène C 6 4 0,879 0,858 0,836 0,815 0,793 0,731 0,661 Butane n-butane C 4 10 0,674 0,658 0,640 0,621 0,601 0,579 0,555 0,528 0,500 0,488 isobutane 0,605 0,584 0,559 0,534 0,505 Chlore (liquide) Cl 2 1,571 1,522 1,448 1,411 1,348 1,279 1,203 1,113 Chlorobenzène C 6 5 Cl 1,13 1,108 1,087 1,065 1,04 1,02 0,96 0,896 Chloroforme CCl 3 1,64 1,60 1,56 1,52 1,48 1,43 1,40 1,36 1,32 1,21 1,06 Chlorure de méthyle C 3 Cl 1,101 1,067 1,031 0,997 0,960 0,921 0,881 0,837 0,790 0,733 Chlorure de méthylène C 2 Cl 2 1,49 1,455 1,42 1,385 1,35 1,318 1,28 1,248 1,212 1,175 1,06 0,90 Chlorure de vinyle C 2 3 Cl 1,06 1,03 1,00 0,975 0,945 0,915 0,88 0,845 0,80 0,745 0,51 Cyclohexane C 6 12 0,78 0,76 0,74 0,72 Diéthylène glycol C 4 10 O 3 1,135 1,122 1,107 1,091 1,075 1,06 1,02 Éthanol C 2 6 O 2 0,855 0,835 0,82 0,806 0,789 0,765 0,745 0,736 0,716 0,645 0,50 Éthylène glycol C 2 6 O 2 1,127 1,113 1,098 1,083 1,069 1,054 1,017 0,974 Formaldéhyde C 2 O 0,815 Fréon 22 CClF 2 1,512 1,465 1,411 1,350 1,285 1,213 1,133 Furfural C 5 4 O 2 1,16 Glycérine C 3 8 O 3 1,263 1,251 1,237 1,224 1,21 1,17 1,132 Méthanol C 4 O 0,880 0,862 0,845 0,827 0,810 0,792 0,774 0,755 0,736 0,714 0,646 0,563 Mercure g 13,64 13,60 13,55 13,50 Nitrobenzène C 6 3 NO 2 1,203 1,182 1,163 1,142 1,122 1,071 1,018 Oxyde d'éthylène C 2 4 O 0,95 0,92 0,891 0,864 0,834 0,804 0,78 0,75 0,63 Propane (liquide) C 3 8 0,624 0,603 0,579 0,556 0,530 0,502 0,469 0,433 Soufre fondu S 1,80 1,78 1,76 Styrène C 8 8 0,907 Tetrachl. de carbone CCl 4 1,67 1,63 1,585 1,545 1,505 1,46 1,42 1,31 1,18 Toluène C 7 8 0,960 0,942 0,923 0,905 0,886 0,868 0,849 0,830 0,811 0,791 0,739 0,679 Trichloréthylène C 2 Cl 3 1,60 1,57 1,535 1,50 1,465 1,43 1,395 1,36 1,33 1,24 1,13 Urée (fondue) C 4 N 2 O 1,335 m-xylène 0,885 0,866 0,851 0,833 0,814 0,793 0,738 0,68 Xylène o-xylène C 8 10 0,91 0,881 0,865 0,846 0,83 0,812 0,764 0,708 p-xylène 0,861 0,84 0,823 0,805 0,786 0,738 0,682