BACCALAUREAT BLANC SESSION 2014 PHYSIQUE-CHIMIE. Série S. DUREE DE L EPREUVE : 3h30 coefficient : 6. L usage des calculatrices est autorisé.

Documents pareils
Chapitre 02. La lumière des étoiles. Exercices :

Correction ex feuille Etoiles-Spectres.

pka D UN INDICATEUR COLORE

EXERCICE II. SYNTHÈSE D UN ANESTHÉSIQUE : LA BENZOCAÏNE (9 points)

EXERCICE 2 : SUIVI CINETIQUE D UNE TRANSFORMATION PAR SPECTROPHOTOMETRIE (6 points)

(aq) sont colorées et donnent à la solution cette teinte violette, assimilable au magenta.»

FICHE 1 Fiche à destination des enseignants

Sujet. calculatrice: autorisée durée: 4 heures

TP 03 B : Mesure d une vitesse par effet Doppler

SUIVI CINETIQUE PAR SPECTROPHOTOMETRIE (CORRECTION)

INTRODUCTION À LA SPECTROSCOPIE

Chapitre 7 Les solutions colorées

ANALYSE SPECTRALE. monochromateur

Spectrophotométrie - Dilution 1 Dilution et facteur de dilution. 1.1 Mode opératoire :

Niveau 2 nde THEME : L UNIVERS. Programme : BO spécial n 4 du 29/04/10 L UNIVERS

Meine Flüssigkeit ist gefärbt*, comme disaient August Beer ( ) et Johann Heinrich Lambert ( )

TP 2: LES SPECTRES, MESSAGES DE LA LUMIERE

DIFFRACTion des ondes

DÉTERMINATION DU POURCENTAGE EN ACIDE D UN VINAIGRE. Sommaire

TEMPÉRATURE DE SURFACE D'UNE ÉTOILE

BACCALAURÉAT GÉNÉRAL PHYSIQUE-CHIMIE

Exemple de cahier de laboratoire : cas du sujet 2014

TS 31 ATTAQUE DE FOURMIS!

Perrothon Sandrine UV Visible. Spectrophotométrie d'absorption moléculaire Étude et dosage de la vitamine B 6

La spectrophotométrie

Observer TP Ondes CELERITE DES ONDES SONORES

EXERCİCE N 1 : «Synthèse de l éthanamide» (7 pts)

Mise en pratique : Etude de spectres

Comprendre l Univers grâce aux messages de la lumière

Application à l astrophysique ACTIVITE

Partie Observer : Ondes et matière CHAP 04-ACT/DOC Analyse spectrale : Spectroscopies IR et RMN

PHYSIQUE-CHIMIE. Partie I - Spectrophotomètre à réseau

SP. 3. Concentration molaire exercices. Savoir son cours. Concentrations : Classement. Concentration encore. Dilution :

A chaque couleur dans l'air correspond une longueur d'onde.

BAC BLANC SCIENCES PHYSIQUES. Durée : 3 heures 30

Synthèse et propriétés des savons.

Un spectromètre à fibre plus précis, plus résistant, plus pratique Concept et logiciel innovants

TP : Suivi d'une réaction par spectrophotométrie

Sujet. calculatrice: autorisée durée: 4 heures

Séquence 9. Étudiez le chapitre 11 de physique des «Notions fondamentales» : Physique : Dispersion de la lumière

TPG 12 - Spectrophotométrie

Rayonnements dans l univers

Si la source se rapproche alors v<0 Donc λ- λo <0. La longueur d onde perçue est donc plus petite que si la source était immobile

CODEX ŒNOLOGIQUE INTERNATIONAL. SUCRE DE RAISIN (MOUTS DE RAISIN CONCENTRES RECTIFIES) (Oeno 47/2000, Oeno 419A-2011, Oeno 419B-2012)

THEME 2. LE SPORT CHAP 1. MESURER LA MATIERE: LA MOLE

Pour commencer : Qu'est-ce que la diffraction? p : 76 n 6 : Connaître le phénomène de diffraction

Site : mail : mennier@isnab.fr SUJET ES - session 2003 Page 1 68-(7(6VHVVLRQ

Résonance Magnétique Nucléaire : RMN

101 Adoptée : 12 mai 1981

BACCALAURÉAT PROFESSIONNEL EPREUVE DE TRAVAUX PRATIQUES DE SCIENCES PHYSIQUES SUJET A.1

Titre alcalimétrique et titre alcalimétrique complet

TECHNIQUES: Principes de la chromatographie

Activité 1 : Rayonnements et absorption par l'atmosphère - Correction

Une application de méthodes inverses en astrophysique : l'analyse de l'histoire de la formation d'étoiles dans les galaxies

SESSION 2013 ÉPREUVE À OPTION. (durée : 4 heures coefficient : 6 note éliminatoire 4 sur 20) CHIMIE

Chapitre 6 : les groupements d'étoiles et l'espace interstellaire

TS1 TS2 02/02/2010 Enseignement obligatoire. DST N 4 - Durée 3h30 - Calculatrice autorisée

Comment suivre l évolution d une transformation chimique? + S 2 O 8 = I SO 4

Caractéristiques des ondes

PHYSIQUE-CHIMIE DANS LA CUISINE Chapitre 3 : Chimie et lavage

TP 3 diffusion à travers une membrane

EFFET DOPPLER EXOPLANETES ET SMARTPHONES.

SCIENCES PHYSIQUES. Durée : 3 heures. L usage d une calculatrice est interdit pour cette épreuve. CHIMIE

TP Détection d intrusion Sommaire

Présentation du programme. de physique-chimie. de Terminale S. applicable en septembre 2012

Session 2011 PHYSIQUE-CHIMIE. Série S. Enseignement de Spécialité. Durée de l'épreuve: 3 heures 30 - Coefficient: 8

Classe : 1 ère STL Enseignement : Mesure et Instrumentation. d une mesure. Titre : mesure de concentration par spectrophotométrie

TP n 1: Initiation au laboratoire

ACIDES BASES. Chap.5 SPIESS

SVE 222 & PCL-442. Fascicule de Travaux Pratiques

259 VOLUMETRIE ET TITRATION DOSAGE DU NaOH DANS LE DESTOP

Fiche 19 La couleur des haricots verts et cuisson

LABORATOIRES DE CHIMIE Techniques de dosage

CHAPITRE IX : Les appareils de mesures électriques

BREVET DE TECHNICIEN SUPÉRIEUR QUALITÉ DANS LES INDUSTRIES ALIMENTAIRES ET LES BIO-INDUSTRIES

BREVET D ÉTUDES PROFESSIONNELLES AGRICOLES SUJET

PRISE EN MAIN DU SPECTROPHOTOMETRE UV-VISIBLE SHIMADZU U.V. 240

PRINCIPE MICROSCOPIE CONFOCALE

Mesures et incertitudes

Exercices d application

D ETECTEURS L UXMETRE SUR TIGE C OMPTEUR DE FRANGES A FIBRE OPTIQUE. Détecteurs

Chapitre 2 Caractéristiques des ondes

Exercices sur le thème II : Les savons

Didier Pietquin. Timbre et fréquence : fondamentale et harmoniques

PHYSIQUE 2 - Épreuve écrite

Atelier : L énergie nucléaire en Astrophysique

Une nouvelle technique d'analyse : La spectrophotométrie

Bleu comme un Schtroumpf Démarche d investigation

Les solutions. Chapitre 2 - Modèle. 1 Définitions sur les solutions. 2 Concentration massique d une solution. 3 Dilution d une solution

Chapitre 4 - Spectroscopie rotationnelle

GAMME UVILINE 9100 & 9400

Fiche de révisions sur les acides et les bases

DETERMINATION DE LA CONCENTRATION D UNE SOLUTION COLOREE

A B C Eau Eau savonneuse Eau + détergent

Sensibilisation à la Sécurité LASER. Aspet, le 26/06/2013

TD 9 Problème à deux corps

TP N 3 La composition chimique du vivant

Chapitre 22 : (Cours) Numérisation, transmission, et stockage de l information

AGREGATION DE BIOCHIMIE GENIE BIOLOGIQUE

Transcription:

BACCALAUREAT BLANC SESSIN 2014 PHYSIQUE-CHIMIE Série S DUREE DE L EPREUVE : 3h30 coefficient : 6 L usage des calculatrices est autorisé. Ce sujet ne nécessite pas de feuille de papier millimétré. La feuille annexe de l exercice I (page 9/10) EST A RENDRE AVEC LA CPIE La feuille annexe de l exercice III (page 10/10) EST A RENDRE AVEC LA CPIE Ce sujet comporte trois exercices présentés sur 10 pages numérotées de 1 à 10, y compris celle-ci. Le candidat doit traiter les trois exercices, qui sont indépendants les uns des autres. Page 1 sur 10

EXERCICE I. L ARÔME DE VANILLE (9 points) La vanille est le fruit d'une orchidée grimpante, le vanillier, qui a besoin d'un climat tropical chaud et humide pour se développer. n la cultive à Madagascar, à Tahiti, à La Réunion, en Amérique du Sud... Elle est utilisée dans de nombreux domaines comme par exemple la parfumerie, l'industrie agroalimentaire, en tant qu'intermédiaire de synthèse dans l'industrie pharmaceutique. La composition de la gousse de vanille est très riche en arômes dont le principal est la vanilline. Du fait de son coût d'extraction élevé, on lui préfère souvent aujourd'hui la vanilline de synthèse ou encore l'éthylvanilline qui a un pouvoir aromatisant 2 à 4 fois plus grand. H H Molécule de vanilline Molécule d'éthylvanilline 1. À propos de la molécule de vanilline. 1.1. La molécule de vanilline possède plusieurs groupes caractéristiques. Après avoir recopié la formule de la molécule sur votre copie, entourer et nommer deux d'entre eux. 1.2. Indiquer en justifiant brièvement si la proposition suivante est vraie ou fausse : Les molécules de vanilline et d'éthylvanilline sont isomères. 2. Dosage spectrophotométrique de la vanilline contenue dans un extrait de vanille acheté dans le commerce Principe du dosage Protocole du dosage La vanilline contenue dans un échantillon du commerce (solution aqueuse sucrée) est extraite par du dichlorométhane. Un traitement basique à l'aide d'une solution aqueuse d'hydroxyde de sodium (Na + (aq) + H (aq)) permet ensuite de faire repasser la vanilline en solution aqueuse sous forme d'ion phénolate représenté ci-contre. n réalise ensuite un dosage par étalonnage de cet ion par spectrophotométrie UVvisible afin de déterminer la concentration en vanilline de l'échantillon du commerce. Etape 1 : Extraction de la vanilline et passage en solution basique - À 1,0 ml d'échantillon de vanille liquide, on ajoute 10 ml d'eau distillée. - n procède à trois extractions successives en utilisant à chaque fois 20 ml de dichlorométhane. - À partir de la phase organique, on extrait trois fois la vanilline avec 50 ml d'une solution aqueuse d'hydroxyde de sodium de concentration 0,1 mol.l 1. - n rassemble les phases aqueuses. Page 2 sur 10

Etape 2 : Préparation de la solution à doser et mesure de son absorbance n introduit les phases aqueuses précédentes dans une fiole jaugée de 250 ml et on complète jusqu'au trait de jauge avec la solution aqueuse d'hydroxyde de sodium de concentration 0,1 mol.l 1. La mesure de l'absorbance de la solution à doser donne A = 0,88. Etape 3 : Préparation d'une gamme étalon de solutions de vanilline basique et mesure de leur absorbance À partir d'une solution mère de vanilline, on prépare par dilution dans une solution aqueuse d'hydroxyde de sodium de concentration 0,1 mol.l 1 des solutions filles et on mesure leur absorbance. Les résultats sont rassemblés dans le tableau ci-dessous : Solution fille S 1 Concentration en vanilline (mol.l 1 ) 5,0 10 5 5 Absorbance 1,36 S 2 S 3 S 4 4,0 10 5 3,0 0 5 2,0 10 1,08 0,81 0,54 5 S 5 1,0 10 5 0,27 Données : - Couples acido-basiques de l'eau : H 3 + / H 2 et H 2 / H - Dichlorométhane CH 2 CI 2 : densité d = 1,33 ; non miscible à l'eau. - Vanilline C 8 H 8 3 : Solubilité : soluble dans la plupart des solvants organiques, très peu soluble dans l'eau. Masse molaire moléculaire : M vanilline = 152 g.mol 1. 2.1. Lors de l'extraction par le dichlorométhane de la vanilline, indiquer sur le schéma donné sur le document 1 de l'annexe, À RENDRE AVEC LA CPIE. - le nom de l'instrument de verrerie utilisé. - en justifiant sa position, la phase dans laquelle se trouve la vanilline en fin d'extraction. 2.2. L équation de réaction de la vanilline avec les ions hydroxyde de la solution d hydroxyde sodium s'écrit : H + H + H 2 Dans la théorie de Brönsted, la vanilline est-elle un acide ou une base? Expliquer la réponse. 2.3. Le spectre d'absorption UV-visible de l'ion phénolate est donné ci-dessouss : Page 3 sur 10

2.3.1. Cet ion absorbe-t-il dans le domaine du visible? Justifier la réponse à l'aide du graphe. 2.3.2. n rappelle que la présence de sept liaisons conjuguées ou plus dans une molécule organique qui ne présente pas de groupe caractéristique forme le plus souvent une substance colorée. Les solutions basiques de vanilline sont-elles colorées? Expliquer pourquoi à l'aide de la structure de l'ion phénolate. 2.4. 2.4.1. Tracer sur papier millimétré donné le document 2 de l ANNEXE, À RENDRE AVEC LA CPIE la courbe d'étalonnage A = f(c) (Échelle : 1 cm pour 0,10 en absorbance et 1 cm pour 0,50 10 5 mol.l 1 en concentration). 2.4.2. La loi de Beer-Lambert est vérifiée. À l'aide du graphique précédent, expliquer pourquoi elle s'énonce sous la forme A = k.c. 2.5. Déterminer en détaillant ta méthode utilisée la concentration en vanilline dans la solution à doser. n précise que la concentration en vanilline est égale à celle de l'ion phénolate. 2.6. Compte tenu du protocole suivi, en déduire la concentration en g.l 1 de vanilline dans l'échantillon de vanille liquide du commerce. 3. Étude spectrale d un arôme vanille. n réalise le spectre IR d un arome ayant un goût vanille : 3.1 Quels groupements caractéristiques pouvez-vous identifier? Données : Table des spectres d absorption IR. Page 4 sur 10

3.2 Peut-on savoir s il s agit de la vanilline ou de l éthylvanilline? Justifier votre réponse. 3.3 Quelle différence y a-t-il entre un carbone C tri et un carbone C tétra? 3.4 Expliquer la différence entre -H libre et -H lié. 3.5 Comment nomme-t-on la grandeur située en abscisse, et la grandeur située en ordonnée? 3.6 Donner sous forme d encadrement les longueurs d onde des ondes utilisées en spectroscopie infrarouge. EXERCICE II. INTERFERENCES (6 points) 1. Interférences lumineuses Voulant observer des interférences, Julien perce un petit trou avec la pointe de son compas dans un carton. En voulant l'agrandir, il se trompe et perce un deuxième trou juste à côté du premier. Après avoir éclairé le carton avec une source laser rouge, il observe des raies lumineuses et sombres sur un écran placé loin du carton : il vient de réaliser une expérience d'interférences (cf. figure ci-dessous)! Le dispositif de Julien comprend donc une plaque percée de deux trous distants de a = 500µm. La source émettrice S est un laser hélium-néon, de longueur d'onde λ = 633nm. La plaque est placée à une distance d = 20cm de la source, et l'écran à une distance D = 4,0m de la plaque. Les deux trous S 1 et S 2 de même diamètre sont placés à égale distance de la source et se comportent comme deux sources synchrones. 1.1 Indiquer les conditions pour que deux sources émettrices d'ondes S 1 et S 2 puissent interférer. 1.2 Au point, la frange est-elle brillante ou sombre? Justifier votre réponse. 1.3 Les franges brillantes sont équidistantes. La distance qui les sépare est appelée interfrange et notée i. n cherche à connaître les paramètres dont peut dépendre i (nature de la source, distances a, d, D) et à en donner une expression parmi les propositions suivantes : 1.3.1 Par une analyse dimensionnelle, éliminer l'une des propositions. 1.3.2 En réalisant plusieurs expériences, où l'on fait varier un seul paramètre en laissant les autres identiques, on effectue les constatations suivantes : L'utilisation d'un laser vert (à la place du laser hélium-néon rouge) montre que l'interfrange diminue. Si on éloigne l'écran, l'interfrange augmente. La position du laser S sur l'axe zz' ne modifie pas l'interfrange. Les deux trous étant rapprochés de l'axe, les franges s'écartent les unes des autres. Pour chaque constatation, indiquer les relations qui ne sont pas compatibles avec les résultats expérimentaux. En déduire l'expression correcte de l'interfrange i. 1.4 Donner la valeur de i obtenue avec le laser hélium-néon. Page 5 sur 10

2. Interférences à la surface de l eau Diverses expériences sont réalisées dans une cuve à ondes, afin de déterminer certaines caractéristiques de l'onde. 2.1 n produit des ondes progressives circulaires à la surface de l'eau en utilisant une cuve à ondes. La célérité c de l'onde est mesurée et vaut c = 40cm.s 1. Le point source S de la surface du liquide contenu dans la cuve à ondes est animé d'un mouvement vertical sinusoïdal de fréquence f = 20Hz et d'amplitude a supposée constante a = 2mm (on néglige l'amortissement dû aux forces de frottement). 2.1.1 Calculer la longueur d'onde λ de l'onde progressive. 2.1.2 n considère un point M de la surface de l'eau situé à d = 12cm du point S. Le point M vibre-t-il en phase ou en opposition de phase avec le point source S? Justifier. 2.2 n réalise maintenant des interférences à la surface de l'eau. Deux points sources synchrones (même fréquence), notés S 1 et S 2, vibrant en phase et ayant même amplitude a, émettent chacun une onde progressive. n s'intéresse à la zone où les deux ondes interfèrent. En un point P de la région où se superposent les ondes issues des deux sources, δ = S 2 P S 1 P représente la différence de marche entre les deux ondes qui arrivent en P. La longueur d'onde est égale à 2,0cm. Donner l'état vibratoire d'un point noté P 1 de la surface de l'eau tel que S 1 P 1 = 8,0cm et S 2 P 1 = 17cm en justifiant. EXERCICE III : EFFET DPPLER ET ASTRPHYSIQUE (5 points) L effet Doppler constitue un moyen d investigation utilisé en astrophysique Il permet de déterminer la vitesse des astres à partir de l analyse spectrale de la lumière que ceux-ci émettent. Cet exercice s intéresse à deux applications distinctes, à savoir le modèle d Univers en expansion et la détection d une étoile double «spectroscopique». Les parties 1 et 2 sont indépendantes. Les documents utiles à la résolution sont rassemblés en fin d exercice. Donnée : 1 Å = 0,1 nm 1. Preuve de l expansion de l Univers 1.1. En utilisant le document 3, déterminer la longueur d onde médiane du doublet de Ca 2+ dans le spectre de la galaxie nommée : NGC 691. Sachant que la longueur d onde médiane λ 0 de ce doublet mesurée sur Terre pour une source au repos est de 5268 Å, calculer le «redshift» z caractérisant le décalage vers le rouge de cette galaxie, défini dans le document 1. 1.2. Calculer la vitesse d éloignement de la galaxie NGC 691 par rapport à la Terre. 1.3. À l aide des documents 1 et 2, établir la relation entre la vitesse d éloignement V de la galaxie et sa distance d à la Terre, montrant que V est proportionnelle à d. 2. Détection d une étoile double «spectroscopique». n appelle «étoile double» un système stellaire composé de deux étoiles proches en orbite autour du même point (ce point étant le centre d inertie G du système). Une étoile double «spectroscopique» est constituée de deux astres trop proches pour être séparés par un télescope optique et ne peut être détectée que par l étude de son spectre à haute résolution. Le mouvement des deux étoiles provoque en effet un léger déplacement des raies d absorption du spectre par effet Doppler. Dans les questions suivantes, on suppose que les deux étoiles A et B décrivent des orbites circulaires de même rayon R, avec la même vitesse V = V A = V B. Page 6 sur 10

La période de rotation commune aux deux étoiles A et B est notée T : c est la période de l étoile double. 2.1. Expliquer pourquoi, dans la situation décrite sur le document 4, on λ A > λ B. 2.2. Sachant que l effet Doppler ne se manifeste pas lorsque le vecteur vitesse de la source est perpendiculaire à la direction de visée, compléter en justifiant le tableau de l ANNEXE À RENDRE AVEC LA CPIE. Schématiser sans souci d échelle le spectre correspondant à chaque configuration et montrer que l évolution temporelle de ces spectres est périodique de période T/2. 2.3. En utilisant les spectres du document 5 qui montrent l évolution temporelle de la position de la raie Hα dans le spectre de l étoile double HD 80715, vérifier que la période T de celle-ci est voisine de 3,8 jours. Document 1 : principe de l effet Doppler DCUMENTS DE L EXERCICE III n note λ 0 la longueur d onde de référence de la raie étudiée dans le spectre (source immobile par rapport à l observateur) et λ la longueur d onde de la radiation émise par la source en mouvement. Lorsqu une étoile s éloigne de la Terre, on observe un décalage vers les grandes longueurs d onde appelé λ λ0 «redshift» et caractérisé par le nombre z = λ 0 La formule de Doppler donne la vitesse d éloignement V de la source lumineuse par rapport à l observateur terrestre: λ λ0 V = c λ c est la célérité de la lumière dans le vide (c = 2,99792 10 8 m.s -1 ) 0 Document 2 : Décalage vers le rouge En 1930, Edwin HUBBLE avait constaté expérimentalement que plus les galaxies étaient lointaines, plus leur spectre présentait un décalage vers le rouge important. Le «décalage vers le rouge», qui sera appelé «redshift» apparaît, quand il est petit, comme proportionnel à la distance : z = H0d c où H 0 est une constante appelée constante de Hubble. Ce décalage est traditionnellement interprété comme étant dû à la vitesse d éloignement des galaxies. Cette interprétation, si elle est vraie pour les «redshifts» petits est en fait fondamentalement erronée dans une perspective de relativité générale. Les «redshifts» observés vont d une fraction de l unité pour la plupart des galaxies, à 4 ou 5 pour les objets plus lointains, quasars, ou certaines autres galaxies. D après «Cosmologie : Des fondements théoriques aux observations» Francis Bernardeau (CNRS Éditions EDP sciences) Page 7 sur 10

Document 3 : Extrait du spectre NGC 691 Doublet de Ca 2+ 5300 5400 Longueurs d onde en Å Source : observatoire de Haute Provence, logiciel libre SalsaJ. Document 4 : Effet du mouvement des deux composantes d une étoile double sur une raie d absorption si l axe reliant les deux étoiles est perpendiculaire à l axe de visée. a) Configuration : b) Spectre observé (extrait) : n note : λ A la longueur d onde de la raie provenant du spectre de l étoile A et λ B la longueur d onde de la raie provenant du spectre de l étoile B. Document 5 : Évolution temporelle de la position de la raie Hα dans le spectre de l étoile HD 80715. Crédit : «bservatoire de Paris / U.F.E.» Page 8 sur 10

ANNEXE DE l EXERCICE I À RENDRE AVEC LA CPIE Document 1 Nom de le l instrument de verreriee :. Document 2 Page 9 sur 10

Question 2.2. ANNEXE DE l EXERCICE III À RENDRE AVEC LA CPIE Pour chaque proposition, indiquer la (les) configurations correcte(s). Relation entre λ A et λ B λ A = λ B λ A > λ B λ A < λ B Configuration(s) Sur ces schémas, l observateur n est pas représenté car il est à une très grande distance. Page 10 sur 10