2.3 Les diagrammes de phases liquide-liquide

Documents pareils
Exemples d utilisation de G2D à l oral de Centrale

THEME 2. LE SPORT CHAP 1. MESURER LA MATIERE: LA MOLE

Etudier le diagramme température-pression, en particulier le point triple de l azote.

Sujet proposé par Yves M. LEROY. Cet examen se compose d un exercice et de deux problèmes. Ces trois parties sont indépendantes.

pka D UN INDICATEUR COLORE

' Département de Chimie Analytique, Académie de Médecine, 38 rue Szewska,

AC AB. A B C x 1. x + 1. d où. Avec un calcul vu au lycée, on démontre que cette solution admet deux solutions dont une seule nous intéresse : x =

K W = [H 3 O + ] [OH - ] = = K a K b à 25 C. [H 3 O + ] = [OH - ] = 10-7 M Solution neutre. [H 3 O + ] > [OH - ] Solution acide

Exercices sur le thème II : Les savons

Exercices Alternatifs. Une fonction continue mais dérivable nulle part

Exercices Alternatifs. Une fonction continue mais dérivable nulle part

EXERCICE II. SYNTHÈSE D UN ANESTHÉSIQUE : LA BENZOCAÏNE (9 points)

AIDE-MÉMOIRE LA THERMOCHIMIE TABLE DES MATIERES

chapitre 4 Nombres de Catalan

Transformations nucléaires

Rappels sur les couples oxydantsréducteurs

Plan du chapitre «Milieux diélectriques»

SUIVI CINETIQUE PAR SPECTROPHOTOMETRIE (CORRECTION)

document proposé sur le site «Sciences Physiques en BTS» : BTS AVA 2015

Vitesse d une réaction chimique

Chapitre 11: Réactions nucléaires, radioactivité et fission

L E BILAN DES ACTIVITÉS

Les composites thermoplastiques

SP. 3. Concentration molaire exercices. Savoir son cours. Concentrations : Classement. Concentration encore. Dilution :

Physique Chimie. Utiliser les langages scientifiques à l écrit et à l oral pour interpréter les formules chimiques

TECHNIQUES: Principes de la chromatographie

CORRIGE. CHAP 04-ACT PB/DOC Electrolyse de l eau 1/12 1. ALIMENTATION ELECTRIQUE D'UNE NAVETTE SPATIALE

Comment expliquer ce qu est la NANOTECHNOLOGIE

DOCM Solutions officielles = n 2 10.

BREVET DE TECHNICIEN SUPÉRIEUR QUALITÉ DANS LES INDUSTRIES ALIMENTAIRES ET LES BIO-INDUSTRIES

Fonctions de deux variables. Mai 2011

COMPTABILITE GENERALE ETAPE 2 : LE COMPTE

Fonctions linéaires et affines. 1 Fonctions linéaires. 1.1 Vocabulaire. 1.2 Représentation graphique. 3eme

TP base de données SQLite. 1 Différents choix possibles et choix de SQLite : 2 Définir une base de donnée avec SQLite Manager

Mario Geiger octobre 08 ÉVAPORATION SOUS VIDE

DimNet Gradateurs Numériques Evolués Compulite. CompuDim 2000

IFUCOME Sciences et Technologie en Cycle 3 6 0

Salle de technologie

Des molécules hydrophobes dans l eau

ACIDES BASES. Chap.5 SPIESS

Eteindre. les. lumières MATH EN JEAN Mme BACHOC. Elèves de seconde, première et terminale scientifiques :

Chapitre 7. Circuits Magnétiques et Inductance. 7.1 Introduction Production d un champ magnétique

Projet de Traitement du Signal Segmentation d images SAR

TD1 PROPAGATION DANS UN MILIEU PRESENTANT UN GRADIENT D'INDICE

L équilibre Ressources Emplois de biens et services schématisé par une balance

1 ère partie : tous CAP sauf hôtellerie et alimentation CHIMIE ETRE CAPABLE DE. PROGRAMME - Atomes : structure, étude de quelques exemples.

FRANCAIS MANUEL D UTILISATION THERMOMETRE MEDICAL SANS CONTACT A INFRAROUGE MODELE LX-26

Suivi d une réaction lente par chromatographie

Les solutions. Chapitre 2 - Modèle. 1 Définitions sur les solutions. 2 Concentration massique d une solution. 3 Dilution d une solution

Les solutions solides et les diagrammes d équilibre binaires. sssp1. sssp1 ssss1 ssss2 ssss3 sssp2

Circuits RL et RC. Chapitre Inductance

Mesures calorimétriques

Comment sélectionner des sommets, des arêtes et des faces avec Blender?

U-31 CHIMIE-PHYSIQUE INDUSTRIELLES

EXCEL PERFECTIONNEMENT SERVICE INFORMATIQUE. Version /11/05

Équations non linéaires

- pellicule de fruits qui a un rôle de prévention contre l'évaporation, le développement de moisissures et l'infection par des parasites

Différents types de matériaux magnétiques

Chapitre 11 Bilans thermiques

HRP H 2 O 2. O-nitro aniline (λmax = 490 nm) O-phénylène diamine NO 2 NH 2

Chapitre 6. Réactions nucléaires. 6.1 Généralités Définitions Lois de conservation

Propriétés thermodynamiques du mélange. Eau-Ammoniac-Hélium

BTS BAT 1 Notions élémentaires de chimie 1

Correction sujet machine à pain

République Algérienne Démocratique et Populaire

Notion de fonction. Résolution graphique. Fonction affine.

SINE QUA NON. Découverte et Prise en main du logiciel Utilisation de bases

Solution IT Power Management Gérer la consommation électrique de toute votre infrastructure IT

CHAPITRE VI : HYBRIDATION GEOMETRIE DES MOLECULES

Spectrophotométrie - Dilution 1 Dilution et facteur de dilution. 1.1 Mode opératoire :

UNE EXPERIENCE, EN COURS PREPARATOIRE, POUR FAIRE ORGANISER DE L INFORMATION EN TABLEAU

C. C. F TECHNOLOGIES CATALOGUE. Nos solutions pour le contrôle de la chaîne du froid

Solutions informatiques

TPG 12 - Spectrophotométrie

Mesures et incertitudes

Sommaire. Séquence 2. La pression des gaz. Séance 1. Séance 2. Séance 3 Peut-on comprimer de l eau? Séance 4 Je fais le point sur la séquence 2

TS1 TS2 02/02/2010 Enseignement obligatoire. DST N 4 - Durée 3h30 - Calculatrice autorisée

ANALYSE SPECTRALE. monochromateur

Fonctions homographiques

Biochimie I. Extraction et quantification de l hexokinase dans Saccharomyces cerevisiae 1. Assistants : Tatjana Schwabe Marcy Taylor Gisèle Dewhurst

A chaque couleur dans l'air correspond une longueur d'onde.

INVERSIO. N Azur Service consommateur Castorama BP Templemars. réf. R

Spectrophotométrie. Spectrophotomètre CCD2. Réf : Version 1.0. Français p 2. Version : 4105

Date : Note /20 : EVALUATION Nom : Prénom : Classe : Traitement sur mots

5.5.5 Exemple d un essai immunologique

Premier principe : bilans d énergie

A. Énergie nucléaire 1. Fission nucléaire 2. Fusion nucléaire 3. La centrale nucléaire

FctsAffines.nb 1. Mathématiques, 1-ère année Edition Fonctions affines

4 ème PHYSIQUE-CHIMIE TRIMESTRE 1. Sylvie LAMY Agrégée de Mathématiques Diplômée de l École Polytechnique. PROGRAMME 2008 (v2.4)

31 Coûts complets

Tutoriel sur l enregistrement en classe Janvier Jean-Claude Boudet (académie de Bordeaux) 1. Le matériel

Titre alcalimétrique et titre alcalimétrique complet

Le Marketing au service des IMF

2.4 Représentation graphique, tableau de Karnaugh

FIN-INTER-01 LE CONTEXTE

FORMATION ET FONCTIONNEMENT D'UNE ETOILE

Manuel Utilisateur RF Monitor Tracker

- I - Fonctionnement d'un détecteur γ de scintillation

Représentation d une distribution

Documentation Technique du programme HYDRONDE_LN

Transcription:

2.3 Les diagrammes de phases liquide-liquide Les diagrammes de phases peuvent être utilisés pour analyser la composition de liquides partiellement miscibles (liquides qui ne se mélangent pas en toutes proportions). Le mélange d hexane et de nitrobenzène en est un exemple. La solubilité du nitrobenzène dans l hexane ainsi que celle de l hexane dans le nitrobenzène varie avec la température et par conséquent, les compositions et les proportions des deux phases changent en même temps que la température. On construit donc un diagramme température-composition pour représenter la composition du système à chaque température. Le diagramme de phases est illustré à la Figure 6.27. La courbe en forme de est la courbe de solubilité donnant la composition en nitobenzène des deux phases liquides en équilibre. Choisissons une température constante de 275 K (correspondant au point I sur la Figure 6.27). De l hexane pur est présent au point I. Si une petite quantité de nitrobenzène est ajoutée à l echantillon d hexane, il se dissout complètement et seulement une phase est présente. Toutefois, à mesure qu on ajoute du nitrobenzène, il arrive un moment où l hexane devient saturée en nitrobenzène et la dissolution s arrête (point II sur le diagramme de phases). L échantillon est alors constitué de deux phases en équilibre l une avec l autre. La phase la plus abondante étant une solution de nitrobenzène dans l hexane et la phase la moins abondante étant une solution d hexane dans le nitrobenzène. Sur le diagramme température-composition de la Figure 6.27, la composition de la phase majoritaire est donnée par le point a et celle de la phase la moins abondante est donnée par le point a. NITROBENZÈNE NITROBENZÈNE NITROBENZÈNE NITROBENZÈNE HEXANE SOLUTION SATURÉE NITROBENZÈNE- HEXANE phase 1 phase 1 phase 2 SOLUTION HEXANE- NITROBENZÈNE phase 2 phase 1: solution de nitrobenzène dans l'hexane phase 2: solution d'hexane dans le nitrobenzène 60

T cs 292 K I II III 0.45 Figure 6.27 Diagramme température-composition de l hexane et du nitrobenzène à 1 atm 61

Si on poursuit l addition de nitrobenzène, l hexane s y dissout et la quantité de matière de la seconde phase (la phase la moins abondante) augmente au dépens de la première phase (la phase majoritaire) jusqu au point III (indiqué sur la courbe) où la composition globale du mélange est a. À partir du point III, on est en présence d une quantité telle du nitrobenzène qu il peut dissoudre la totalité de l hexane et le système repasse à une seule phase à la droite du point III. Au delà du point III, une addition supplémentaire de nitrobenzène ne fait que diluer la solution. Une droite de raccordement joignant a et a relie les deux phases qui sont en équilibre l une avec l autre. Comment peut-on déterminer l abondance relative des deux phases à une composition donnée du mélange, x A, à partir de la droite de raccordement (voir Figure 6.28)? Figure 6.28 Coordonnées et compositions prises en compte pour calculer l abondance relative des deux phases 62

Si n est le nombre de molécules (A + B) dans une phase et n est le nombre de molécules (A + B) dans l autre phase, le nombre total n de molécules dans l échantillon est donc: n = n + n La quantité de matière totale de A dans l échantillon est nx A où x A représente la fraction molaire globale de A dans l échantillon (c est la quantité reportée sur l abscisse du diagramme température-composition). Il s ensuit que le nombre totale de molécules de A est aussi la somme de la quantité de matière de A dans chaqu une des deux phases, où les fractions molaires sont x A et x A : nx A = n x A + n x A Sachant que n = n + n, on peut aussi écrire nx A = n x A + n x A En réarrangeant ces deux expressions on obtient: n x A + n x A = n x A + n x A n ( x A x A ) = n (x A x A ) Comme on peut le voir sur la Figure 6.28, il s ensuit que: n l = n l ou montant de la phase de composition a montant de la phase de composition a = l l (règle des segments) Pour une composition donnée du mélange, le température au-dessus de laquelle le système existe en une seule phase est donnée par l intersection de la droite verticale (tirée de l abscisse x A ) avec la courbe de solubilité. Par exemple, pour x nitrobenzène =0.45, le diagramme de phases montre que ce mélange nitrobenzènehexane doit être chauffé à 292 K pour obtenir une seule phase (Figure 6.27). 63

Exercice: Interprétation d un diagramme de phases liquide-liquide On a préparé un mélange de 50 g (0,59 mol) d hexane et 100 g (0,82 mol) de nitrobenzène à 273 K. Quelles sont les compositions des phases et dans quelles proportions les trouve-t-on? À quelle température doit-on chauffer l échantillon pour obtenir une seule phase? Solution: La réponse s appuie sur la Figure 6.27. La composition du mélange (en nitrobenzène) est donnée par: x N = 0.82 mol 0.82 mol + 0.59 mol = 0.58 À 273 K, la droite de raccordement coupe la frontière de phases en x N =0.18 et x N = 0.94 et donc ces fractions molaires représentent les compositions des deux phases. Le rapport des quantités de matière de chaque phase est donné par la règle des segments: l' l" X= 0.18 X= 0.58 X= 0.94 l l = 0.58 0.18 0.94 0.58 = 1.11 La phase riche en nitrobenzène est 1.11 fois plus abondante, à cette température, que la phase riche en hexane. En chauffant l échantillon à 293K, on place l échantillon dans le domaine à une seule phase. 64

Comme le montre le diagramme de phases, la composition à laquelle se produit la séparation des phases et les compositions des phases en équilibre l une avec l autre dépend de la température. La température de solution critique supérieure, T cs, est la limite supérieure des températures auxquelles il y a séparation de phases (voir Figure 6.27). Audessus de la température de solution critique supérieure, les deux composants sont totalement miscibles. Cette température existe car la plus grande agitation thermique des molécules conduit à une plus grande miscibilité des deux constituants. Pour certains systèmes, il existe une température de solution critique inférieure, T ci, au-dessous de laquelle ils se mélangent en toutes proportions et au-dessus de laquelle ils forment deux phases. L eau et le triéthylamine (voir Figure 6.29) en sont un exemple. Dans ce cas, à basses températures les deux composantes sont plus miscibles car ils forment un complexe faible; aux températures supérieures, les complexes se dissocient et les composants sont moins miscibles. CH 3 H 3 C N H O CH 3 H Quelques systèmes présentent une température critique supérieure ainsi qu une température inférieure. La nicotine et l eau en sont un exemple (voir Fig. 6.30). 65

T ci Figure 6.29 Diagramme température-composition du mélange eau et triéthylamine 66

N N CH 3 Figure 6.30 Diagramme température-composition du mélange eau et nicotine 67

2.4.1 Les diagrammes de phases liquide-solide Les diagrammes de phases sont aussi utilisés pour montrer les domaines de température et de composition dans lesquels les solides et les liquides existent sous forme de systèmes binaires. Le diagramme de phases d un système composé de deux métaux presque totalement non miscibles jusqu à leurs points de fusion (comme l antimoine et le bismuth) est illustré à la Figure 6.31. Ce diagramme de phases a été construit en mesurant les points de congélation (ou de solidification) d une serie de mélanges liquides de différentes compositions à pression constante. La courbe asymmétrique en forme de «V» représente le point de congélation du mélange en fonction de sa composition. Au-dessus de cette courbe le mélange est liquide. Prenons le liquide fondu de composition a 1. Quand on le refroidit jusqu à a 2 il entre dans une zone à deux phases, composée d un solide A presque pur et d un liquide enrichit en B. En poursuivant le refroidissement jusqu en a 3, une plus grande quantité de solide se forme et les proportions relatives de solide et de liquide qui sont en équilibre sont obtenues en appliquant la règle des segments. La phase liquide est plus riche en B qu avant (sa composition est donnée par b 3 ) car A s est déposé. En a 4 il y a moins de liquide qu en a 3 et sa composition est donnée par e. Ce liquide se solidifie maintenant en donnant un système à deux phases de A pratiquement pur et de B pratiquement pur. Il n y a pas de changement de composition lorsque la température est diminuée jusqu au point a 5. La ligne verticale passant par e sur la Figure 6.31 correspond à la composition eutectique (terme grec signifiant «qui fond bien»). Un liquide dont la composition correspond à celle du point eutectique se solidifie à température constante, sans dépôt préalable du solide A ou B. Un solide eutectique fond, sans variation de composition, à la température la plus basse de tout mélange. Les solutions dont la composition se situe à droite de e déposent A en refroidissant et les solutions dont la composition se situe à gauche déposent B: seul le mélange eutectique se solidifie à une température définie constante sans perdre graduellement l un ou l autre des constituants. 68

Les alliages métalliques sont des mélanges eutectiques importants en technologie. Ces solides eutectiques cristallisent en donnant des mélanges pratiquement homogènes de microcristaux. La structure du diagramme de phases solide-liquide est établie par des courbes de refroidissement obtenues par analyse thermique. Des courbes de refroidissement qui correspondent au diagramme de phases donné sur la Figure 6.31 sont illustrées à la Figure 6.32. La frontière solide-liquide est déterminée par les points où la vitesse de refroidissement change. Le plateau eutectique le plus long situe la composition de l eutectique et sa température de fusion. A pur composition eutectique B pur T T Liquide (6) (1) (2) Liquide + A solide (4) (5) Liquide + B solide (3) (1) (2) (3) (4) (5)(6) 0 1 X B temps 69

Figure 6.31 Digramme température-composition de deux solides quasi non miscibles 70

Figure 6.32 Courbes de refroidissement du système illustré à la Figure 6.31 71

2.4.2 Les diagrammes de phases de mélanges lipidiques O O R'CO CH 2 OCR CH O - = CH 2 OPOCH 2 CH 2 N(CH 3 ) 3 O phosphatidylcholine T phase "gel" phase "liquide-cristalline" 72

Glycérophospholipides 80 o C 60 Température / 40 20 0 10 15 20 25 nb. de carbones 73

Diagramme de phases de lipides (DC 14 PC-DC 18 PC) 330 liquide-cristallin DC 18 PC 320 T / K 310 gel (DC 18 PC) + liquide-cristallin (DC 14 PC) 300 DC 14 PC 290 gel 0 0.2 0.4 0.6 0.8 1 x DC 18 PC 74

340 Diagramme de phases de lipides (DC 12 PC-DC 18 PC) 330 liquide-cristallin 320 310 T / K 300 290 gel 2 (DC 18 PC) + liquide-cristallin (DC 12 PC) 280 270 gel 1 (DC 12 PC) + gel 2 (DC 18 PC) 260 0 0.2 0.4 0.6 0.8 1 DC 12 PC x DC 18 PC DC 18 PC 75