TD TCH : THERMOCHIMIE

Documents pareils
AIDE-MÉMOIRE LA THERMOCHIMIE TABLE DES MATIERES

4 ème PHYSIQUE-CHIMIE TRIMESTRE 1. Sylvie LAMY Agrégée de Mathématiques Diplômée de l École Polytechnique. PROGRAMME 2008 (v2.4)

CORRIGE. CHAP 04-ACT PB/DOC Electrolyse de l eau 1/12 1. ALIMENTATION ELECTRIQUE D'UNE NAVETTE SPATIALE

Physique Chimie. Utiliser les langages scientifiques à l écrit et à l oral pour interpréter les formules chimiques

BREVET DE TECHNICIEN SUPÉRIEUR QUALITÉ DANS LES INDUSTRIES ALIMENTAIRES ET LES BIO-INDUSTRIES

THEME 2. LE SPORT CHAP 1. MESURER LA MATIERE: LA MOLE

EXERCICE II. SYNTHÈSE D UN ANESTHÉSIQUE : LA BENZOCAÏNE (9 points)

Exemples d utilisation de G2D à l oral de Centrale

Les Énergies Capter et Stocker le Carbone «C.C.S»

Mesures calorimétriques

Suivi d une réaction lente par chromatographie

Rappels sur les couples oxydantsréducteurs

REACTIONS D OXYDATION ET DE REDUCTION

BTS BAT 1 Notions élémentaires de chimie 1

Chapitre 1 : Qu est ce que l air qui nous entoure?

Vitesse d une réaction chimique

1 ère partie : tous CAP sauf hôtellerie et alimentation CHIMIE ETRE CAPABLE DE. PROGRAMME - Atomes : structure, étude de quelques exemples.

Synthèse et propriétés des savons.

Molécules et Liaison chimique

La gravure. *lagravureparvoiehumide *lagravuresèche

U-31 CHIMIE-PHYSIQUE INDUSTRIELLES

Effets électroniques-acidité/basicité

K W = [H 3 O + ] [OH - ] = = K a K b à 25 C. [H 3 O + ] = [OH - ] = 10-7 M Solution neutre. [H 3 O + ] > [OH - ] Solution acide

Chapitre n 6 MASSE ET ÉNERGIE DES NOYAUX

TP : Suivi d'une réaction par spectrophotométrie

CONCOURS COMMUN 2010 PHYSIQUE

L'ABC. Le gaz naturel

Exercices sur le thème II : Les savons

Table des matières. Acides et bases en solution aqueuse Oxydo Réduction... 26

Intoxications collectives en entreprise après incendies de locaux Proposition d une conduite à tenir

document proposé sur le site «Sciences Physiques en BTS» : BTS AVA 2015

Enseignement secondaire

PHYSIQUE-CHIMIE. Partie I - Propriétés de l atome

Qu'est-ce que la biométhanisation?

LIAISON A50 A57 TRAVERSEE

TS1 TS2 02/02/2010 Enseignement obligatoire. DST N 4 - Durée 3h30 - Calculatrice autorisée

I. Introduction: L énergie consommée par les appareils de nos foyers est sous forme d énergie électrique, facilement transportable.

- pellicule de fruits qui a un rôle de prévention contre l'évaporation, le développement de moisissures et l'infection par des parasites

Partie Observer : Ondes et matière CHAP 04-ACT/DOC Analyse spectrale : Spectroscopies IR et RMN

SP. 3. Concentration molaire exercices. Savoir son cours. Concentrations : Classement. Concentration encore. Dilution :

Présentation générale des principales sources d énergies fossiles.

LA MESURE DE PRESSION PRINCIPE DE BASE

DM n o 8 TS Physique 10 (satellites) + Chimie 12 (catalyse) Exercice 1 Lancement d un satellite météorologique

TP N 3 La composition chimique du vivant

Baccalauréat STI2D et STL spécialité SPCL Épreuve de physique chimie Corrigé Session de juin 2014 en Polynésie. 15/06/2014

Sujet. calculatrice: autorisée durée: 4 heures

Premier principe : bilans d énergie

PHYSIQUE Discipline fondamentale

Site : mail : mennier@isnab.fr SUJET ES - session 2003 Page 1 68-(7(6VHVVLRQ

Exemple Construction du modèle énergétique du montage Pile-Ampoule. transformateur. Ampoule. Transfert. Chaleur

A retenir : A Z m n. m noyau MASSE ET ÉNERGIE RÉACTIONS NUCLÉAIRES I) EQUIVALENCE MASSE-ÉNERGIE

Transformations nucléaires

EXERCİCE N 1 : «Synthèse de l éthanamide» (7 pts)

À propos d ITER. 1- Principe de la fusion thermonucléaire

C3. Produire de l électricité

CHAPITRE 2 : Structure électronique des molécules

Titre alcalimétrique et titre alcalimétrique complet

10 en agronomie. Domaine. Les engrais minéraux. Livret d autoformation ~ corrigés. technologique et professionnel

Comment suivre l évolution d une transformation chimique? + S 2 O 8 = I SO 4

Propriétés thermodynamiques du mélange. Eau-Ammoniac-Hélium

LABORATOIRES DE CHIMIE Techniques de dosage

Utilisation des 7 cartes d intensité jointes en annexe du règlement. A- Protection d une construction vis-à-vis des effets toxiques :

ne définition de l arbre.

SUIVI CINETIQUE PAR SPECTROPHOTOMETRIE (CORRECTION)

INTRODUCTION À L'ENZYMOLOGIE

Perrothon Sandrine UV Visible. Spectrophotométrie d'absorption moléculaire Étude et dosage de la vitamine B 6

Qu est ce qu un gaz comprimé?

DES ÉCOLES DES MINES D ALBI, ALÈS, DOUAI, NANTES. Épreuve de Physique-Chimie. (toutes filières) Mardi 18 mai 2004 de 08h00 à 12h00

Contenu pédagogique des unités d enseignement Semestre 1(1 ère année) Domaine : Sciences et techniques et Sciences de la matière

1.2 Coordinence. Notion de liaison de coordinence : Cas de NH 3. et NH 4+ , 3 liaisons covalentes + 1 liaison de coordinence.

ACIDES BASES. Chap.5 SPIESS

L échelle du ph est logarithmique, c està-dire

Prescriptions Techniques

ProSimPlus HNO3 Résumé des nouvelles fonctionnalités, décembre 2008

Demande chimique en oxygène

Physique Chimie. Réaliser les tests de reconnaissance des ions Cl -,

Chapitre 11: Réactions nucléaires, radioactivité et fission

Responsabilité sociale et environnementale POLITIQUE SECTORIELLE PRODUCTION D ELECTRICITE A PARTIR DU CHARBON

DEMANDE DE BREVET EUROPEEN. PLASSERAUD 84, rue d'amsterdam, F Paris (FR)

Session 2011 PHYSIQUE-CHIMIE. Série S. Enseignement de Spécialité. Durée de l'épreuve: 3 heures 30 - Coefficient: 8

ANALYSE SPECTRALE. monochromateur

LISTE V AU PROTOCOLE A MAROC. Description des produits

Matériels de Formation du GCE Inventaires Nationaux de Gaz à Effet de Serre. Secteur de l'energie Combustion de Combustibles

CHAÎNES ÉNERGÉTIQUES I CHAÎNES ÉNERGÉTIQUES. II PUISSANCE ET ÉNERGIE

EXERCICES SUPPLÉMENTAIRES

Fiche de révisions sur les acides et les bases

Hydrolyse du sucre. Frédéric Élie, octobre 2004, octobre 2009

Chapitre 5 : Noyaux, masse et énergie

NOTIONS FONDAMENTALES SUR LES ENERGIES

Plan du chapitre «Milieux diélectriques»

AVERTISSEMENT. Contact SCD INPL: LIENS

RAPPORT D ÉTUDE 10/06/2008 N DRA B. Les techniques de production de l hydrogène et les risques associés

Extinction. Choisissez votre système d extinction. Qu'est-ce qu'un système d extinction? Les principes du feu

EXERCICE 2 : SUIVI CINETIQUE D UNE TRANSFORMATION PAR SPECTROPHOTOMETRIE (6 points)

TECHNIQUES: Principes de la chromatographie

Oléagineux, Corps Gras, Lipides. Volume 9, Numéro 5, 296-8, Septembre - Octobre 2002, La filière

Épreuve collaborative

Stockage de chaleur solaire par sorption : Analyse et contrôle du système à partir de sa simulation dynamique

Séquence 6. Les piles électriques et l énergie chimique. Fabriquons et utilisons une pile de Volta

Transcription:

TD TCH : THERMOCHIMIE But du chapitre Etudier les échanges d énergie lors des transformations chimiques Plan prévisionnel du chapitre I Outils d étude 1 ) Définitions 2 ) Grandeur molaire partielle 3 ) Grandeur de réaction II Energie interne de réaction et enthalpie de réaction 1 ) Premier principe, choix de U ou H 2 ) Approximation des mélanges idéaux 3 ) Chaleur de réaction à P et T constantes 4 ) Aspect thermique de la réaction 5 ) Variation de Δ r H avec la température 6 ) Température maximale d un système en réaction : température de flamme III Détermination de grandeurs de réaction 1 ) Détermination expérimentale 2 ) Détermination «théorique» par le calcul Savoirs et savoir-faire Ce qu il faut savoir : Définir les termes suivants : corps pur, corps pur simple, état standard d un corps, état standard de référence d un élément, grandeur de réaction (standard ou pas), réaction de formation, énergie d ionisation, attachement électronique, énergie de liaison, réaction exo ou endothermique. Ecrire la différentielle de H dans le cas d un système de composition variable quelconque, puis le simplifier dans le cas d un système fermé siège d une unique réaction chimique. Présenter la loi de Hess et l appliquer à deux exemples : calcul d une enthalpie standard de réaction à partir des enthalpies standard de formation et par un cycle enthalpique. Présenter les réactions fondamentales de la thermodynamique (ionisation, attachement électronique, etc ) et commenter leur signe respectif. Relier la chaleur échangée avec le milieu extérieur à l avancement lors d une réaction à T et P constantes. Enoncer la loi de Kirchhoff. Ce qu il faut savoir faire : Ecrire des réactions de formation. Utiliser la calorimétrie pour mesurer une enthalpie de réaction. Faire un raisonnement sur un système adiabatique (température de flamme). Calculer une enthalpie de réaction grâce aux énergies de liaison. Calculer une enthalpie de réaction par un cycle enthalpique (utiliser la loi de Hess).

Erreurs fréquentes / Conseils La clé de la réussite en thermodynamique est avant tout de maîtriser parfaitement les définitions des grandeurs manipulées! Attention à bien faire la différence entre grandeur et grandeur de réaction. Pour déterminer des enthalpies de réaction, il est souvent utile de tracer des cycles thermodynamiques en utilisant le fait que les variations d'enthalpie sont indépendantes du chemin suivi (H est une fonction d'état). Attention aux unités, certaines données comme les enthalpies de réaction sont en kj.mol -1 d'autres comme les capacités calorifiques molaires sont en J.mol -1.K -1. Ne pas oublier de tenir compte des produits inertes présents dans milieu réactionnel. Eux aussi doivent être chauffés ou refroidis si la température varie. En particulier il faut généralement tenir compte de l'azote de l'air (~ 80%) pour déterminer la température de flamme si la combustion a lieu dans l'air. Un état standard de référence est défini pour un élément chimique donné et pas pour un composé chimique. Dans les réactions utilisées pour les définitions des énergies de liaison, etc il faut faire très attention à l état physique des réactifs et produits. En particulier, ceux-ci sont à l état gazeux pour l EI, l AE et l EL. Il faudra donc penser dans les cycles de transformations à faire apparaître si nécessaires des étapes de changement d état. Application du cours Les applications sont intégrées dans le polycopié de cours. Exercices Exercice 1 : Application de la loi de Hess On cherche à déterminer l'enthalpie standard Δ r H de la réaction de conversion de l'éthanol CH 3 CH 2 OH en acide éthanoïque CH 3 COOH, connaissant l'enthalpie de combustion de l'acide éthanoïque Δ r H 1 = - 875 kj.mol -1, et de l'éthanol Δ r H 2 = -1368 kj.mol -1. 1. Sachant que lors d'une réaction de combustion, le carbone se retrouve sous forme de dioxyde de carbone gazeux et l'hydrogène sous forme d'eau liquide, écrire les équations des réactions de combustion mises en jeu. Le nombre stœchiométrique de l'espèce considérée aura pour valeur 1 (en valeur absolue). 2. Écrire l'équation traduisant l'oxydation de l'éthanol en acide éthanoïque et en déduire la valeur de Δ r H. 3. Retrouver cette valeur à partir des enthalpies standard de formation suivantes : Δ f H (CH 3 COOH(1)) = - 484,5 kj.mol -1, Δ f H (H 2 O(1)) = - 285,8 kj.mol -1, Δ f H (CH 3 CH 2 OH(1)) = - 277,7 kj.mol -1. Exercice 2 : Réaction endothermique ou exothermique Déterminer l'enthalpie standard de la réaction associée à chacune des équations suivantes, à 298 K. En déduire si la réaction est endothermique ou exothermique. Indiquer selon le cas d'où provient l'énergie ou quelle utilisation peut être faite de l'énergie produite. 1. La combustion du méthane fournit du dioxyde de carbone et de l'eau selon : CH 4 (g) + 2 O 2 (g) = CO 2 (g) + 2H 2 O (l) 2. La photosynthèse se déroule dans les plantes et permet de convertir dioxyde de carbone et eau en sucre et dioxygène selon : 6 CO 2 (g) + 6 H 2 O (l) = C 6 H 12 O 6 (l) + 6 O 2 (g) Données : CH 4 (g) O 2 (g) CO 2 (g) H 2 O (1) C 6 H 12 O 6 (l) Δ f H (298 K) en kj.mol -1-74,87 0-393,5-285,8-1268

Exercice 3 : Oxydation du diazote On étudie l'oxydation du diazote en monoxyde d'azote, se produisant à haute température dans les chambres de combustion des moteurs à explosion. L'enthalpie standard de réaction associée à l'équation 2 1 N2 (g) + 2 1 O2 (g) = NO (g) vaut Δ f H (298K) = 90 kj.mol -1. 1. a) Quel nom porte la grandeur Δ f H? b) Quelles sont les conditions thermodynamiques qui doivent être réunies pour que Δ f H corresponde à une quantité de chaleur échangée? Préciser alors si la réaction est endothermique ou exothermique. c) Justifier à l'aide de la loi de Kirchhoff le fait que Δ f H ne dépende que très faiblement de la température (variation inférieure à 1 J.mol -1.K -1 à 298 K). On considérera les capacités thermiques 7 molaires à pression constante des gaz diatomiques voisines de C p,m = R. 2 2. Le monoxyde d'azote s'oxyde rapidement dans l'air en dioxyde d'azote, gaz toxique à l'origine des pluies acides et de la destruction de la couche d'ozone. L'enthalpie standard de formation du dioxyde d'azote NO 2 (g) étant de 34 kj.mol -1, calculer l'enthalpie standard Δ r H de la réaction d'oxydation du monoxyde d'azote en dioxyde d'azote : NO(g) + 2 1 O2 (g) = NO 2 (g) Exercice 4 : Synthèse industrielle de l ammoniac On étudie la synthèse de l'ammoniac qui se réalise industriellement selon l'équilibre : N 2 (g) + 3H 2 (g) =2NH 3 (g). 1 ) Déterminer l'enthalpie standard de la réaction à 298 K connaissant l'enthalpie standard de formation de l'ammoniac gazeux à 298 K : Δ f H (NH 3 (g)) = -46,2 kj.mol -1. 2. a) Déterminer l'enthalpie standard de la réaction à 770 K sachant que tous les constituants restent gazeux. b) La réaction est elle endothermique ou exothermique? Données : N 2 (g) H 2 (g) NH 3 (g) C p,m J.mol -1.K -1 29,6 28,9 28,0 Exercice 5 : Synthèse de l acide fluorhydrique L'acide fluorhydrique est obtenu industriellement par réaction du fluorure de calcium solide avec l'acide sulfurique anhydre liquide. Ces deux réactifs, préalablement préchauffés à la température de 573 K sous 1 bar sont introduits dans un four tournant, lui-même maintenu à la même température par un chauffage externe. La réaction de formation de l'acide fluorhydrique gazeux peut s'écrire : CaF 2 (s) + H 2 SO 4 (1) = 2 HF (g) + CaSO 4 (s) 1. Calculer l'enthalpie standard de la réaction à 298 K, puis à 573 K. La réaction est-elle endothermique ou exothermique? 2. 220 kg de fluorure de calcium et 280 kg d'acide sulfurique, tous les deux initialement à la température de 298 K, sont traités dans le réacteur précédent. Déterminer le transfert thermique reçu par les réactifs pour les chauffer à la température de 573 K, puis celui reçu par le système pour la transformation en produits à 573 K.

Exercice 6 : Oxydation du monoxyde de carbone On étudie la réaction en phase gazeuse d'équation : CO (g) + H 2 O (g) = CO 2 (g) + H 2 (g) 1. Rappeler la définition de l'enthalpie standard de réaction et de l'enthalpie standard de formation. Pourquoi l'enthalpie standard de formation du dihydrogène gazeux est-elle nulle? 2. Déterminer l'enthalpie standard de la réaction à la température T i = 500 K. 3. Déterminer la température de flamme atteinte par le mélange réactionnel en fin de réaction, sachant que les réactifs sont introduits dans les proportions stœchiométriques (n moles engagées) à la température initiale T i = 500 K dans une enceinte adiabatique maintenue à la pression standard P, et que la réaction est rapide et totale. Exercice 7 : Grandeurs thermodynamiques relatives à des composés du soufre Nous nous proposons de calculer l'enthalpie standard de formation de COS à partir de données thermodynamiques relatives à CO 2 et CS 2. On définit l'énergie d'une liaison A-B comme l'enthalpie standard de réaction associée à la rupture de la liaison en phase gaz selon : A-B(g) = A (g) + B (g) 1. Le sulfure de carbone, de formule CS2, est un solvant chimique très toxique. C'est un liquide dense et volatil, avec un haut degré d'inflammabilité dans l'air et un point d'autoignition bas. Calculer l'enthalpie standard de formation du sulfure de carbone gazeux CS 2, sachant que la chaleur latente massique de vaporisation de CS 2 est de 360 J.g -1. 2. Écrire la formule de Lewis du sulfure de carbone et calculer l'enthalpie de dissociation de la liaison entre le carbone et le soufre dans cette molécule. 3. Déterminer l'enthalpie de dissociation de la liaison entre le carbone et l'oxygène dans la molécule de dioxyde de carbone CO 2. 4. Déduire des résultats précédents l'enthalpie standard de formation de l oxysulfure de carbone gazeux COS. Données : CS 2 (l) CO 2 (g) C (g) O (g) S (g) ΔrH (298K) en kj.mol - 1 88-393 717 249 277 Exercice 8 : Détermination d une énergie de liaison On définit l'énergie d'une liaison A-B comme l'enthalpie standard de réaction associée à la rupture de la liaison en phase gaz selon : A B (g) = A (g) + B (g). On cherche à calculer l'énergie de la liaison C - H à partir des valeurs des enthalpies standard de combustion du méthane, du dihydrogène et du carbone graphite déterminées expérimentalement à 298 K : Δ comb H (CH 4 (g)) = - 890, 4 kj.mol -1, Δ comb H (H 2 (g)) = -285, 8 kj.mol -1, Δ comb H (C(s,gr)) - -393,3 kj.mol -1. 1. Ecrire les équations des différentes réactions de combustion mises enjeu. 2. On définit l'enthalpie standard d'atomisation d'une molécule Δ atom H comme l'enthalpie standard de réaction associée à la dissociation totale de la molécule en ses atomes constitutifs en phase gaz. a) Écrire l'équation de la réaction d'atomisation du méthane. b) Quel est le lien entre Δ atom H (CH4) et l'énergie de la liaison C - H? 3. On donne également l'enthalpie standard de formation du carbone gazeux Δ f H (C(g)) = 718,4 kj.mol -1 et l'enthalpie standard d'atomisation du dihydrogène gazeux Δ atom H (H 2 (g)) = 436,0 kj.mol -1. Ecrire les équations relatives à ces réactions. 4. Établir un cycle thermodynamique faisant intervenir ces réactions et permettant de calculer l'énergie de la liaison C - H.

Annexe : Définitions à retenir Constituant physico-chimique : espèce chimique dont on a précisé l état physique. Corps pur : corps qui ne comporte qu une espèce chimique par opposition à un mélange qui en comporte plusieurs. Corps pur simple : corps constitué des atomes d un seul élément chimique : Cu, O 2, N 2. Etat standard d un constituant physico-chimique : C est l état réel ou hypothétique du constituant à la température T et sous la pression standard P = 100000 Pa = 1,00000 bar dans le même état physique. L état standard d un constituant dépend de la température. Etat standard de référence d un élément chimique : L état standard d un constituant peut être un état physique hypothétique ou réel. Lorsque l on considère un élément chimique il peut donner lieu à divers états d agrégation (divers corps simples) dans différents états physiques. On peut donc avoir plusieurs états standards à une même température. L état standard de référence d un élément chimique est l état d agrégation le plus stable de l élément chimique à la température T et à la pression P. Grandeur molaire partielle Grandeur de réaction Réaction standard de formation d un constituant physico-chimique

Réaction d ionisation Réaction d attachement électronique Changement d état d un corps pur

Dissociation homolytique d une liaison : Energie réticulaire On appelle énergie réticulaire d un cristal ionique AB l énergie interne standard Δ ret U (0 K) de la réaction de dissociation du cristal à partir des ions constitutifs pris à l état gazeux, à T = 0 K et en prenant ν = +1 pour le cristal : AB (s) = A - (g) + B + (g) Bien entendu, on adaptera cette définition à toute stoechiométrie autre que 1:1 mais en gardant toujours un nombre stoechiométrique de 1 pour le cristal. L état gazeux à T = 0 K signifie que les ions constitutifs sont initialement isolés et possèdent une énergie cinétique nulle. On remarque qu on a toujours Δ ret U (0 K) > 0 en raison de l attraction naturelle entre les ions : le cristal est dans un état énergétique inférieur aux ions isolés, la dissociation d un cristal en ses ions est endothermique. Remarque : à T = 0 K, Δ ret U (0 K) = Δ ret H (0 K) = E ret ; on aurait pu aussi donner les définitions avec l enthalpie standard de réaction.