INTELLIGENCE ARTIFICIELLE

Documents pareils
1ST2S Biophysiopathologie : Motricité et système nerveux La physiologie neuro-musculaire :

Molécules et Liaison chimique

Introduction. I Étude rapide du réseau - Apprentissage. II Application à la reconnaissance des notes.

Caractéristiques des ondes

PRODUIRE DES SIGNAUX 1 : LES ONDES ELECTROMAGNETIQUES, SUPPORT DE CHOIX POUR TRANSMETTRE DES INFORMATIONS

Chapitre 11: Réactions nucléaires, radioactivité et fission

1 ère partie : tous CAP sauf hôtellerie et alimentation CHIMIE ETRE CAPABLE DE. PROGRAMME - Atomes : structure, étude de quelques exemples.

ELECTROPHYSIOLOGIE: PRINCIPES ET TECHNIQUES. Fabrice DUPRAT, Chargé de Recherche

L ELECTRICITE : SON IMPLICATION DANS LE FONCTIONNEMENT DU CERVEAU ET DANS LES SOINS

Champ électromagnétique?

Capteur à CO2 en solution

PHYSIQUE-CHIMIE. Partie I - Spectrophotomètre à réseau

Structure quantique cohérente et incohérente de l eau liquide

Bandes Critiques et Masquage

Comprendre l Univers grâce aux messages de la lumière

Coup de Projecteur sur les Réseaux de Neurones

Chap 1: Toujours plus vite... Introduction: Comment déterminer la vitesse d une voiture?

L apprentissage automatique

- MANIP 2 - APPLICATION À LA MESURE DE LA VITESSE DE LA LUMIÈRE

UE 503 L3 MIAGE. Initiation Réseau et Programmation Web La couche physique. A. Belaïd

Introduction : Les modes de fonctionnement du transistor bipolaire. Dans tous les cas, le transistor bipolaire est commandé par le courant I B.

DIPLÔME INTERUNIVERSITAIRE D ECHOGRAPHIE. Examen du Tronc Commun sous forme de QCM. Janvier h à 16 h

Chapitre 2 Les ondes progressives périodiques

TP 7 : oscillateur de torsion

ACOUSTIQUE 3 : ACOUSTIQUE MUSICALE ET PHYSIQUE DES SONS

2. Couche physique (Couche 1 OSI et TCP/IP)

CODE DU TRAVAIL. Nombre de dégagements réglementaires. Nombre total d'unités de passage Moins de 20 personnes dégagement accessoire (a)

Détecteur de fumée. ALIMENTATION par pile 9V Communication. Modèle Ei 605C Optique. Description du produit. Fonctionnement

ANALYSE SPECTRALE. monochromateur

Cerveau & Psycho - N 28

Des ondes ultrasonores pour explorer le corps humain : l échographie

Approche expérimentale du rayonnement électromagnétique émis par un téléphone portable

Le câble de Fibre Optique dans les installations de Vidéo Surveillance (CCTV)

CARACTERISTIQUE D UNE DIODE ET POINT DE FONCTIONNEMENT

Circuits intégrés micro-ondes

Le bac à graisses PRETRAITEMENT. Schéma de principe. Volume du bac à graisses. Pose

Chapitre 02. La lumière des étoiles. Exercices :

Dr E. CHEVRET UE Aperçu général sur l architecture et les fonctions cellulaires

BTS BAT 1 Notions élémentaires de chimie 1

Observer TP Ondes CELERITE DES ONDES SONORES

Fonction de conduction de la moelle épinière. Dr F. TOUMI

CHAPITRE 2 : Structure électronique des molécules

NEUROPHYSIOLOGIE (2)

Phénomènes dangereux et modélisation des effets

Antenne amplifiée d intérieure SRT ANT 10 ECO

Consensus Scientifique sur. les. Champs statiques

CONTRÔLE DE BALISES TYPE TB-3 MANUEL D'INSTRUCTIONS. ( Cod ) (M H) ( M / 99G ) (c) CIRCUTOR S.A.

Optimisation de la compression fractale D images basée sur les réseaux de neurones

Leading in Welded Bellows Technology. Soufflets à membranes soudées pour de nombreuses applications.

Ecole Centrale d Electronique VA «Réseaux haut débit et multimédia» Novembre 2009

SUIVI CINETIQUE PAR SPECTROPHOTOMETRIE (CORRECTION)

THEME 2. LE SPORT CHAP 1. MESURER LA MATIERE: LA MOLE

TP Détection d intrusion Sommaire

CHAPITRE VI : HYBRIDATION GEOMETRIE DES MOLECULES

Cisco Certified Network Associate

SYSTEMES LINEAIRES DU PREMIER ORDRE

- I - Fonctionnement d'un détecteur γ de scintillation

Tout sur les Réseaux et Internet

Chapitre 18 : Transmettre et stocker de l information

TP 03 B : Mesure d une vitesse par effet Doppler

Plan du chapitre «Milieux diélectriques»

Notions d acoustique contexte réglementaire et solutions de prévention

Chapitre 6. Réactions nucléaires. 6.1 Généralités Définitions Lois de conservation

Application à l astrophysique ACTIVITE

Chapitre I La fonction transmission

Equipement. électronique

Qu est-ce qu un ordinateur quantique et à quoi pourrait-il servir?

Chapitre 22 : (Cours) Numérisation, transmission, et stockage de l information

PHYSIQUE Discipline fondamentale

Les impulsions laser sont passées en quarante ans de la

G.P. DNS02 Septembre Réfraction...1 I.Préliminaires...1 II.Première partie...1 III.Deuxième partie...3. Réfraction

Chapitre 1: Facteurs d'échelle

Chapitre 6 La lumière des étoiles Physique

Chapitre 2 : communications numériques.

Rayonnements dans l univers

Atelier : L énergie nucléaire en Astrophysique

INTRODUCTION À LA SPECTROSCOPIE

Atlas départemental de la couverture 2G et 3G en France métropolitaine : Bas-Rhin (67)

Chapitre 7. Circuits Magnétiques et Inductance. 7.1 Introduction Production d un champ magnétique

Séquence 9. Étudiez le chapitre 11 de physique des «Notions fondamentales» : Physique : Dispersion de la lumière

IMMUNOLOGIE. La spécificité des immunoglobulines et des récepteurs T. Informations scientifiques

Chapitre 6 : les groupements d'étoiles et l'espace interstellaire

M1107 : Initiation à la mesure du signal. T_MesSig

Recommandations pour la définition des appareils de mesures utilisés en protection cathodique

Comment réaliser physiquement un ordinateur quantique. Yves LEROYER

Cours d Acoustique. Niveaux Sonores Puissance, Pression, Intensité

TRAVAUX PRATIQUES SCIENTIFIQUES SUR SYSTÈME

EMETTEUR ULB. Architectures & circuits. Ecole ULB GDRO ESISAR - Valence 23-27/10/2006. David MARCHALAND STMicroelectronics 26/10/2006

Module de mesure de courant pour relais statiques serie HD Module de mesure de courant HD D0340I

1 Démarrer L écran Isis La boite à outils Mode principal Mode gadget Mode graphique...

TP 2: LES SPECTRES, MESSAGES DE LA LUMIERE

Physique Chimie. Utiliser les langages scientifiques à l écrit et à l oral pour interpréter les formules chimiques

SECTEUR 4 - Métiers de la santé et de l hygiène

Sujet. calculatrice: autorisée durée: 4 heures

Compteurs d Energie Thermique & Systèmes associés

Sujet. calculatrice: autorisée durée: 4 heures

500 W sur 13cm avec les modules PowerWave

V112-3,0 MW. Un monde, une éolienne. vestas.com

Transcription:

INTELLIGENCE ARTIFICIELLE Partie 2: Réseaux de neurones biologiques Unité d'ouverture Systèmes Adaptatifs à Base d Apprentissage (SBA- Ingénieurs I5) Tarik AL ANI, Département Informatique ESIEE-Paris E-mail : t.alani@esiee.fr Url: http://www.esiee.fr/~alanit

LE CERVEAU HUMAIN 06/11/2011 1

RESEAUX DE NEURONES BIOLOGIQUES Pèse environs 1500 grammes et contient trois couches successives : le cerveau reptilien, siège des réflexes instinctifs, l hippocampe, siège de l émotivité et de la sensibilité, le cortex, spécifique aux mammifères et siège du raisonnement et de la pensée. 06/11/2011 2

Ces couches successives contiennent deux types du cellules : les gliales constituent le tissu nourricier et la structure du cerveau et représentent environs 99.99% du volume du cerveau. les neurones dont le nombre, estimé à un nombre variant entre 10-100 milliards, forment un réseau interconnecté complexe. 06/11/2011 3

Trois types de neurones : 1. Les neurones sensitifs C est le long de ces neurones que voyagent les signaux nerveux. Exemple : Signaux qui proviennent de récepteurs de la peau et qui sont transférés vers le système nerveux central. 06/11/2011 4

2. Les neurones moteurs C est sont ceux qui transfèrent l impulsion nerveuse vers un organe capable de traduire le message reçu en action. Exemples : un muscle, qui pourra se contracter ou se détendre, une glande qui produira une certaine substance. 06/11/2011 5

3. Les inter-neurones Ils sont très nombreux et constituent tous les circuits complexes du cerveau. Ils peuvent se comparer à des postes de liaisons situés à l intérieur du système nerveux central. 06/11/2011 6

3. Les inter-neurones (suite) Ils permettent de transmettre le message venant des neurones sensitifs aux neurones moteurs et aux centres nerveux supérieurs. Ils assurent aussi le transfert des impulsions des centres nerveux supérieurs aux neurones moteurs. 06/11/2011 7

Tous les neurones sont constitués de 3 parties: 1. Le corps proprement dit de la cellule où se situe le mécanisme de déclenchement du neurone. 2. Son prolongement l axone (qui peut atteindre plusieurs dizaines de centimètres) le long duquel voyagent les impulsions nerveuses dirigées vers la périphérie et de minces ramifications. 06/11/2011 8

3. Les dendrites, qui reçoivent des informations (impulsions nerveuses) des autres neurones et les apportent vers le corps cellulaire. 06/11/2011 9

Les axons sont recouverts de cellules, dites cellules de Schwann, du nom de l anatomiste allemand qui les découvrit au XIX e siècle. Lorsque ces cellules s enroulent autour de l axone, il se forme un revêtement appelé gain myélinique qui présentent des points découverts ou nœuds de Ranvier, nom du savant français qui les a observé le premier. 06/11/2011 10

L impulsion nerveuse voyage par saut d un nœud de Ranvier à un autre à une vitesse d environ 200 m/s. Quand l axone d un neurone rencontre un autre neurone, le contact s établit par l intermédiaire d une structure appelée Synapse. 06/11/2011 11

Tous les neurones sont connectés par des synapses dont le nombre est d environs 10 000 milliards. Ceci signifie qu un neurone reçoit en moyenne des excitations en provenance de 1000 neurones et qu il émet également des informations à 1000 neurones différents. 06/11/2011 12

Il existe 4 modes de communication entre neurones : liaison terminaison axonale-dendrite, liaison terminaison axonale-corps cellulaire, liaison axone-axone, liaison dendrite-dendrite. 06/11/2011 13

Le synapse est une sorte de bulbe : entre la surface du bulbe (bouton terminal) et celle du nouveau neurone, se trouve un espace dit espace synaptique. Pour que l impulsion nerveuse qui est un signal de nature électrique, puisse franchir cet espace, des substances électrochimiques entre en action : les neurotransmetteurs. 06/11/2011 14

Les neurotransmetteurs (les plus connus sont l acétylchlorine et la noradrénine) sont normalement contenus dans le bouton terminal et, une fois libérés, ils modifient les propriétés électriques de neurones suivant, faisant ainsi repartir le signal électrique. 06/11/2011 15

L action des neurotransmetteurs est extrêmement brève pour empêcher que la stimulation nerveuse ne se prolonge au-delà du temps nécessaire au transfert de l impulsion nerveuse. 06/11/2011 16

Théorie électrique des réseaux de neurones : La jonction synaptique est le lieu où le neurone perçoit un stimulus par voie électrochimique. La membrane synaptique lorsqu elle ne reçoit pas d excitation, est polarisé à une tension d environs 60 mv. 06/11/2011 17

A l apparition d excitations qui se traduisent au niveau du noyau cellulaire par une tension supérieur à un seuil, le neurone est alors activé et cela déclenche un processus de dépolarisation : le neurone émet sur l axone une tension positive d environs +60 mv en se comportant comme un système non linéaire. 06/11/2011 18

Ces réseaux sont à l'origine des réseaux de neurones formels. Le neurone biologique est l'entité indivisible, l'élément fondamental sur laquelle repose le système nerveux. 06/11/2011 19

Il existe environs 10,000 types distincts de neurones répertoriés [Kandel 87]. Cortex humain 100,000 Millions forme Pyramidal, forme Sphérique. 06/11/2011 20

Un neurone pyramidal du cortex cérébral. 06/11/2011 21

Le neurone pyramidal peut recevoir jusqu'à 200,000 entrées. Qualitativement, le neurone accompli une intégration spatial et temporelle des signaux que perçoit une myriade de récepteurs que l'on nomme dendrites. 06/11/2011 22

Les dendrites interceptent les signaux en provenance des autres neurones. Lorsque le potentiel électrique à proximité de la membrane du corps cellulaire le permet, un potentiel d'action est généré puis propagé le long de la fibre nerveuse principale, l'axone (diamètre:0,2 à 10 micro-mètre). 06/11/2011 23

L'axone est le lien qui unit les neurones les uns aux autres; il agit comme modulateur et amplificateur du signal transmis. 06/11/2011 24

Le processus par lequel les ions sont canalisés le long de la membrane cellulaire est fondamental. Séparation inégale des charges de part et d'autre de la membrane un potentiel électrique capacitance. 06/11/2011 25

Potentiel de membrane Ce potentiel est déterminé par l'équation de Nernst qui exprime le rapport logarithmique entre la concentration ionique intra-et extracellulaire. 06/11/2011 26

Le potentiel s'explique par une différence de perméabilité entre les ions potassium (K+) et les ions sodium (Na-). Les signaux chimiques en provenance des autres neurones modulent la perméabilité ionique de la membrane à la jonction de l'axone et du corps cellulaire pour donner naissance à un potentiel d'action. 06/11/2011 27

Equation de Nernst E k = RT F ln( P P K K [ K [ K + + ] ] ext int + + P P Na Na [ Na [ Na + + ] ] ext int + + P P cl cl [ Cl [ Cl + + ] ] ext int ) Cette équation exprime le potentiel de la membrane en fonction de la concentration des ions potassium K +, sodium Na +, et Chlore Cl - de part et d autre de la membrane à l équilibre. P K, P Na, P Cl représentent les constantes de perméabilité, R est la constante de gaz, T est la température, F est la constante de Faraday. 06/11/2011 28

La propagation des signaux dans l'axone: caractéristiques Cette propagation se caractérise par une série d'impulsions ondulatoires appelées potentiels d'action. Elle est le résultat du flux localisé entrant et sortant des ions sodium et potassium le long de la membrane. Fréquence ~ quelques centaines de HZ. Vitesse de propagation ~ 80 m/sec ~ 200 m/sec. L'axone est un support passif. 06/11/2011 29

La propagation des signaux dans l'axone: le modèle standard En tenant compte de la capacitance, la conductance ionique, et les dimensions physiques de l'axone, ce modèle est représenté par la propagation des ondes électriques dans un câble coaxial. 06/11/2011 30

La propagation des signaux dans l'axone: le modèle standard V 2 λ 2 V V τ x 2 t où x : distance le long de l'axe, τ : constante temporelle de la membrane, λ : un paramètre sans dimension, V : potentiel d'action. = 0 06/11/2011 31

Lorsque l'influx nerveux atteint les terminaisons de l'axone, des molécules appelées neuromédiateurs diffusent dans l'espace synaptique de 20 à 30 nm de profondeur séparant les neurones pré-synaptiques et postsynaptiques et se fixent aux récepteurs des dendrites post-synaptique. 06/11/2011 32

La transmission synaptique Fonctionnellement, la synapse agit comme un modulateur de conductance, dont l'action est soit excitatrice soit inhibitrice. En état d'équilibre, le potentiel post-synaptique est approximativement proportionnel au stimulus d'entrée donnant ainsi une justification expérimentale à la pondération linéaire. 06/11/2011 33

Au vu des observations expérimentales, la conductance suit, en réponse à une excitation nerveuse, une fonction alpha: 2 α t exp( αtα t) ) La synapse a la propriété d'amplifier le signal de sorte que des courants faibles sont capables de dépolariser les cellules postsynaptiques. 06/11/2011 34

L'intégration spatial et temporelle des signaux Les potentiels post-synaptiques poursuivent leur propagation à travers les dendrites du neurone récepteur. L'opération effectué au sein de la dendrite et du corps cellulaire est une intégration spatiale et temporelle de l'ensemble des signaux d'entrée. 06/11/2011 35

L'action des dendrites est passive: les dendrites agissent en dispersant dans l'espace et retardant des signaux incidents de façon à réduire leur amplitude et à suspendre leur effet dans le temps. 06/11/2011 36

Les signaux convergent vers le corps cellulaire du neurone. A un potentiel électrique constant en entrée correspond un potentiel à décroissance exponentielle en fonction de la distance: V( x) = V0 exp( x/ λ) 06/11/2011 37

L'intégration spatiale et temporelle des signaux ondulatoires incidents s'explique par le recouvrement des signaux retardés et répartis à travers les dendrites. 06/11/2011 38

De courtes rafales de haute fréquence s avèrent plus à même de maintenir le potentiel de la membrane cellulaire qu un chapelet d impulsions basse fréquence. Parce que le processus de conduction passive est linéaire en essence, l intégration des signaux est effectivement une sommation linéaire. 06/11/2011 39

Un potentiel dépassant un certain seuil suscite la génération d un potentiel d action à la jonction du corps cellulaire et de l axone. Il s ensuit une courte période durant laquelle toute impulsion est inhibée. 06/11/2011 40

La fréquence de génération des potentiels d action est approximativement proportionnelle au stimulus d entrée saturant à quelques centaines de Hertz. Elle trouve son origine dans l alternance de la perméabilité ionique. 06/11/2011 41

La découverte majeure de ce processus de perméabilité [Hodgkkin 52], constitue une étape importante de la neurobiologie moderne. Le processus est régi par un système d équations hautement nonlinéaires. 06/11/2011 42

Le modèle de Hodgkin - Huxley C m V t 2 V = k 2 x g Na 3 m h( V E dm = (1 m) αm( V ) βm( V ) dt dh = (1 h) αh ( V ) β h( V ) dt dn = (1 n) αn ( V ) β n( V ) dt V la potentiel de la membrane, C k la constante de diffusion, g E g E g E m Na l Na K K la conductance de fuite, le potentiel de fuite. Na la capacitance de la membrane, le potentiel au repos du sodium, ) g la conductance maximale de sodium, la conductance maximale de potassium, le potentiel au repos du potassium, K n 4 ( V E K ) g 06/11/2011 l 43 l ( V E l )

Simulation La résolution analytique des équations non-linéaires couplées est un tâche ardue. La préférence se porte sur les modèles compartimentés représentant indépendamment mais très fidèlement des régions distinctes du neurone. En dépit de l extrême complexité des processus biologiques qui s accomplissent dans le cerveau humain, des modèles rudimentaires ont été échafaudés. 06/11/2011 44