Expression généralisée pour le calcul du rendement exergétique du transfert de chaleur



Documents pareils
2.0. Ballon de stockage : Marque : Modèle : Capacité : L. Lien vers la documentation technique :

SARM: Simulation of Absorption Refrigeration Machine

Performances énergétiques de capteurs solaires hybrides PV-T pour la production d eau chaude sanitaire.

Le chauffe-eau thermodynamique à l horizon

QU EST-CE QU UN CHAUFFE-EAU THERMODYNAMIQUE?

Propriétés thermodynamiques du mélange. Eau-Ammoniac-Hélium

Variantes du cycle à compression de vapeur

Système d énergie solaire et de gain énergétique

Économie d énergie dans les centrales frigorifiques : La haute pression flottante

de l eau chaude pour toute l a famille, disponible à tout moment. Pompe à chaleur pour la production d Eau Chaude Sanitaire pompes á chaleur

de faible capacité (inférieure ou égale à 75 litres) doivent être certifiés et porter la marque NF électricité performance.

Annexe 3 Captation d énergie

Pompe à chaleur Air-Eau. Confort et économies

Premier principe : bilans d énergie

Liste et caractéristiques des équipements et matériaux éligibles au CITE

Stockage de chaleur solaire par sorption : Analyse et contrôle du système à partir de sa simulation dynamique

Domosol : Système solaire combiné (SSC) de production d eau chaude et chauffage

AQUACIAT2 HYBRID LA SOLUTION BI-ÉNERGIES COMPACTE PAC & CHAUDIÈRE GAZ. Puissances frigorifiques et calorifiques de 45 à 80 kw

Production d eau chaude sanitaire thermodynamique, que dois-je savoir?

Liste de l ensemble des publications

ALFÉA HYBRID DUO FIOUL BAS NOX

Pompes à chaleur pour la préparation d eau chaude sanitaire EUROPA

Colloque scientifique

L énergie sous toutes ses formes : définitions

COURS DE THERMODYNAMIQUE

ITEX Échangeur de chaleur à plaques et joints

Étude d un système solaire thermique : Effet de l orientation des panneaux solaires

L énergie de l air extérieur pour une eau chaude sanitaire naturellement moins chère

Incitants relatifs à l installation de pompes à chaleur en Région wallonne

Fiche de lecture du projet de fin d étude

ProSimPlus HNO3 Résumé des nouvelles fonctionnalités, décembre 2008

Thermorégulateurs Easitemp 95 et 150 eau. La solution compacte & économique

SOLAIRE BALLERUP LA VILLE CONTEXTE. (Danemark) Ballerup

Saisie des chauffe-eau thermodynamiques à compression électrique

FICHE TECHNIQUE ENERGIE «Eau Chaude Sanitaire - ECS»

FormaSciences 2014 «Les énergies du futur»

Stockage inter saisonnier de l'énergie solaire par procédé thermochimique

ASSEMBLAGE DE NOEUDS SOCIO-ÉNERGÉTIQUES : CHAINES DE DÉCISIONS ET APPROCHES EXTRA- ELECTRIQUES

Projet SETHER Appel à projets Adrien Patenôtre, POWEO

CAMPUS DES MÉTIERS ET DES QUALIFICATIONS ÉNERGIE ET MAINTENANCE LORRAINE

Une introduction aux chauffe-eau solaires domestiques

Centre Universitaire LA CITADELLE 220, avenue de l Université B.P DUNKERQUE CEDEX 1 GUIDE DES ETUDES LICENCE PROFESSIONNELLE

Chapitre 11 Bilans thermiques

Le chauffe-eau à pompe à chaleur: fiche technique à l intention des installateurs

Infos pratiques. Choisir sa solution de production d eau chaude sanitaire (ECS) Solution économique. Solution confort. Les chauffe-eau solaires

Apports thermiques avec collecteurs solaires pour de l eau chaude sanitaire dans la Maison de retraite Korian Pontlieue

ÉCOCONCEPTION ET ÉTIQUETAGE ÉNERGÉTIQUE

Fiche de Lecture Génie Climatique et Énergétique. Étude d un data center en phase d exécution

Propriétaire Ville de Fort Saskatchewan, Alberta Année de construction 2004 Superficie totale (empreinte au sol) m 2 ( pi 2 )

PARTENAIRE VERS UNE GESTION DURABLE ET PERFORMANTE DE VOTRE ÉNERGIE EQUIPEMENT DE MONITORING

consommations d énergie

Efficacité Energétique Diminuez vos coûts de production. Programme Energy Action pour l industrie

FRIGRO EXPORT

Yutampo La solution 100 % énergie renouvelable

Solar Heating System Factsheet (SHSF) - Dossier guide

ÉJECTEURS. CanmetÉNERGIE Juillet 2009

Premier principe de la thermodynamique - conservation de l énergie

TABLEAU RECAPITULATIF DES CONDITIONS DE REALISATION DE TRAVAUX EN MÉTROPOLE

Forum annuel Plan Climat des Alpes-Maritimes

Information Technique Derating en température du Sunny Boy et du Sunny Tripower

Votre Stratégie Énergétique, Performante et Écologique, avec cette petite flamme en plus qui change tout!

Compte rendu de LA37 B, TP numéro 1. Evolution de la température et du degrée d'hydratation

Everything stays different

Présentation de la société

Multisplit premium Duo / DC Inverter

LE CHAUFFAGE. Peu d entretien. Entretien. fréquent. Peu d entretien. Pas d entretien. Pas d entretien. Entretien. fréquent. Peu d entretien.

Ce dispositif fiscal, mis en place en 2005, est en vigueur jusqu'en 2016.

DESCRIPTION DES DOCUMENTS TECHNIQUES REQUIS

4.14 Influence de la température sur les résistances

Optimisation des performances de refroidissement d un rack à l aide de panneaux-caches

Pompes à chaleur Refroidir et chauffer par l énergie naturelle

Chaudières et chaufferies fioul basse température. Olio 1500, 2500, 3500, 4500, 7000

Production d eau chaude sanitaire. Exploitation des sources de chaleurs liées au logement. Dossier de veille réalisé par Energie Information services

Installateur chauffage-sanitaire

MODE D EMPLOI DES BAINS DE TABLE NUMÉRIQUES À ULTRASONS SONICLEAN SONICLEAN DIGITAL BENCHTOP ULTRASONIC CLEANERS

Datacentre : concilier faisabilité, performance et éco-responsabilité

Accumulateur combiné au service de la chaleur solaire et des pompes à chaleur. Michel Haller, Robert Haberl, Daniel Philippen

Comment économiser de l électricité dans le bloc traite?

GENERALITES SUR LA MESURE DE TEMPERATURE

MESURE DE LA TEMPERATURE

CHAÎNES ÉNERGÉTIQUES I CHAÎNES ÉNERGÉTIQUES. II PUISSANCE ET ÉNERGIE

Mission du facilitateur URE PROCESS

Analyser et concevoir les systèmes énergétiques du futur Méthode et application au concept de la société à 2000 W

Ballon d'eau chaude sanitaire et composants hydrauliques

Aide à l'application Preuve du besoin de réfrigération et/ou d humidification de l air Edition mai 2003

Le monitoring. Chaufferie et réseau de chaleur de St-Vith. André Servais, Stadtwerke St-Vith

REFERENTIEL POUR L ATTRIBUTION DE LA MENTION RGE :

Par: Michel Morin, coordonnateur à l énergie et à l entretien. Président du comité d énergie régional LLL.

Garder son logement frais en été

Réduction des coûts de consommation dans un datacenter

Conception d un système pour la récupération de l énergie thermique des chaussées

Nouvelle réglementation

armoires de fermentation

Etude Expérimentale d un Echangeur Thermique en Polypropylène Application au Conditionnement des Aquariums

ballons ECS vendus en France, en 2010

Note technique. Consommation électrique d'un poêle à granulés à émission directe

FICHE INFORMATION. Le Comptage comptage individuel. Votre partenaire en économie d énergie

02. Alta Riflettività. Systémes auto-adhésifs á haute réflectance et émissivité

Le séchage des ateliers :

8 Ensemble grand-canonique

Transcription:

Expression généralisée pour le calcul du rendement exergétique du transfert de chaleur Riad BENELMIR ESSTIN - Université Henri Poincaré, LEMTA - umr CNRS 7563 2 Rue Jean Lamour, 54519 Vandoeuvre-Les-Nancy Cedex benelmir@esstin.uhp-nancy.fr, Tél : +33.383685102 Résumé L auteur a développé une relation unique pour la détermination du rendement exergétique associé à un transfert de chaleur quelque soit les niveaux de température des réservoirs mis en jeu. Par ailleurs cet outil analytique permet aussi l optimisation du choix des réservoirs thermiques et est une base pour une théorie «parallèle» à celle des pincements (pinch point théorie). 1. Introduction Un transfert de chaleur entre deux fluides est accompagné d irréversibilités dues à l écart fini de température entre ces deux fluides. Ces irréversibilités sont évaluées directement ou par le biais du rendement exergétique. Suite aux difficultés rencontrées dans le calcul du rendement exergétique des échangeurs de chaleur, en particulier dans les machines frigorifiques, où les niveaux de température sont souvent en dessous de la température du milieu ambiant (milieu de référence), l auteur a entrepris de développer une méthode consolidée pour la détermination du rendement exergétique associé au transfert de chaleur quelque soit les niveaux de température des réservoirs mis en jeu. 2. Premier cas : > > Ca pourrait être le cas par exemple du condenseur d une machine frigorifique. Considérons un transfert de chaleur entre deux réservoirs thermiques se situant au-dessus du niveau de température du milieu ambiant, le réservoir fournisseur de chaleur étant dénommé la et le réservoir receveur de chaleur étant dénommé le puits froid. Ce procédé sera l objet d irréversibilités. On imagine un système équivalent comprenant un ensemble de machines réversibles directes et inverses : une machine motrice alimentant une machine réceptrice avec une perte de travail moteur matérialisé par les irréversibilités. Irréversibilités du transfert de chaleur > > Froid w c w f q oc I Réservoir ambiant q of Figure 1 : transfert de chaleur au-dessus de 1

Considération de la machine motrice : Application du 1 er principe de Thermodynamique (conservation d énergie) : = W c + q oc (1) Application du 2 ème principe de Thermodynamique (machine réversible) : Rendement énergétique : q oc / = / (2) η = W c / = 1 [ / ] = θ c (3) Dans ce cas le rendement énergétique η est identique au facteur de Carnot θ c. L exergie associée à la est le travail produit si une machine réversible motrice était intercalée entre la et le réservoir ambiant : Considération de la machine réceptrice : Ex c = W c = θ c (4) Application du 1 er principe de Thermodynamique (conservation d énergie) : = W f + q of (5) Application du 2 ème principe de Thermodynamique (machine réversible) : Coefficient de performance : q of / = / (6) COP = q of / W f = 1/{1 [ / ]} = 1/θ f (7) Dans ce cas le COP est l inverse du facteur de Carnot θ f. L exergie associée au puits froid est le travail reçu si une machine réversible motrice était intercalée entre le puits froid et le réservoir ambiant : On vérifie aisément que : Et par conséquent : Irréversibilités et rendement exergétique : Selon notre système : Par le biais des relations (1) et (5) on vérifie bien que : Ex f = W f (8) W f = θ f (9) Ex f = θ f (10) I = q of - q oc (11) I = W c - W f (12) On observe bien que les irréversibilités associées à un transfert de chaleur sont bel et bien l équivalent d un travail (mécanique) perdu. 2

Dans ce cas (lorsque > > ), on a θ c > θ f > 0 et par conséquent Ex c > Ex f. Par conséquent, les irréversibilités peuvent être exprimées comme suit : I = Ex c - Ex f = max(ex c,ex f ) min(ex c,ex f ) (13) On introduit le facteur dissipatif qui mesure le ratio des irréversibilités par rapport au travail moteur : Soit : ξ = I/ W c (14) ξ = [max(ex c,ex f ) min(ex c,ex f )] / max(ex c,ex f ) (15) Le rendement exergétique est le complémentaire du facteur dissipatif : η ΙΙ = 1 - ξ (16) L indice «II» du rendement exergétique est une indication que ce rendement est calculé selon le 2 ème principe de la thermodynamique. Pour illustrer l handicap des rendements énergétiques, il suffit de considérer le cas d un échangeur de chaleur isolé thermiquement où le rendement énergétique serait de 100 % (η I =1 ξ I = 1 [ q/]=1) quelque soit les niveaux de températures. Il existe aussi une expression de rendement que l auteur qualifie d exergoénergétique qui surestime le rendement exergétique car le facteur dissipatif peut être très faible (η III = 1 ξ III = 1 [Ι/] 1) car il mesure le ratio des irréversibilités par rapport à la quantité de chaleur échangée. Généralement, l efficacité est utilisée pour mesurer la performance d un l échangeur (ratio de la chaleur échangée réellement par rapport à la chaleur maximale qui pouvait être échangée). La valeur de l efficacité est proche de celle du rendement exergétique lorsque l échange de chaleur n est pas «éloigné» du niveau de température ambiante. 3. Deuxième cas : > > Considérons cette fois-ci un transfert de chaleur entre deux réservoirs thermiques se situant au-dessous du niveau de température du milieu ambiant. Ca pourrait être le cas par exemple de l évaporateur d une machine frigorifique. On imagine, dans ce cas aussi, le système équivalent décrit par la figure 2. Les développements sont similaires à ceux de la section précédente. On vérifie aisément que : Ex f = W f = - θ f (17) Ex c = W c = - θ c (18) Dans ce cas (lorsque > > ), on a 0 > θ c > θ f et par conséquent Ex f > Ex c. Selon notre système : I = q of - q oc (19) Par le biais des relations de conservation d énergie pour les deux machines on vérifie bien que dans ce cas : I = W f - W c (20) Par conséquent, les irréversibilités peuvent être exprimées comme suit : I = Ex f Ex c = max(ex c,ex f ) min(ex c,ex f ) (21) 3

Le facteur dissipatif mesure le ratio des irréversibilités par rapport au travail moteur : Soit : ξ = I/ W f (22) ξ = [max(ex c,ex f ) min(ex c,ex f )] / max(ex c,ex f ) (23) En conclusion, l expression généralisée du facteur dissipatif est aussi valable pour ce 2 ème cas. Irréversibilités du transfert de chaleur > T C > T F Réservoir ambiant q of I q oc w f w c Froid Froid Figure 2 : transfert de chaleur au-dessous de 4. Troisième cas : > > Considérons cette fois-ci un transfert de chaleur entre deux réservoirs thermiques chevauchant le niveau de température du milieu ambiant. Ce cas est plus complexe et de nombreuses erreurs de calcul dans les travaux d analyse exergétique. Ca pourrait être le cas par exemple d un évaporateur où le fluide «chaud» est à température plus élevée que celle du milieu ambiant. Les développements sont, dans ce cas aussi, similaires à ceux des sections précédentes. On vérifie aisément que : Ex f = W f = - θ f (24) Ex c = W c = θ c (25) Dans ce cas (lorsque > > ), on a θ c > 0 > θ f et par conséquent Ex f > Ex c. Selon notre système : I = q of - q oc (26) 4

Par le biais des relations de conservation d énergie pour les deux machines on vérifie bien que dans ce cas : I = W c + W f = Ex c + Ex f (27) Par conséquent, afin de généraliser leur expression pour les 3 cas, les irréversibilités peuvent être exprimées comme suit : I = max(ex c,ex f ) signe(θ c,θ f ) min(ex c,ex f ) (28) Le facteur dissipatif mesure le ratio des irréversibilités par rapport au travail moteur : ξ = I/{ W c + W f } = I/{Ex c + Ex f } (29) Par conséquent, afin de généraliser son expression pour les 3 cas, le facteur dissipatif peut être exprimé comme suit : Par ailleurs, il ressort que pour ce 3 ème cas : ξ = I / {max(ex c,ex f ) + 0,5 [1- signe(θ c,θ f )] min(ex c,ex f )} (30) ξ = 1 et η II = 0 (31) En effet, l analyse exergétique nous alerte sur l aberration d avoir omis d utiliser le milieu ambiant comme réservoir ( ou puits de chaleur) et dans ce cas le rendement exergétique est nul quelque soit les niveaux de température. C est la clé de l approche «optimisation». Irréversibilités du transfert de chaleur T C > > T F W c froid milieu de référence q of q oc milieu de milieu de référence référence w f I froid Figure 1 : transfert de chaleur chevauchant 5

5. Application numérique Afin de vérifier les expressions généralisées développées, une application numérique est présentée ci-dessous. 6. Conclusion Tableau 1 : application numérique Cas I Cas II Cas III chaleur kj 500 500 500 Température ambiante C 18 18 18 Température C 40 10 40 Température puits froid C 20 0 0 facteur de Carnot chaud 0,070-0,028 0,070 facteur de Carnot froid 0,007-0,066-0,066 exergie kj 35,1 14,1 35,1 exergie puits froid kj 3,4 32,9 32,9 Irréversibilités kj 31,7 18,8 68,1 ξ II 90,3% 57,1% 1 η II 10% 43% 0% η III 94% 96% 86% Une expression généralisée des irréversibilités, du facteur dissipatif et du rendement exergétique pour le transfert de chaleur sont développées en fonction des niveaux de températures. Ces expressions généralisées sont reprises ci-dessous : I = max(ex c,ex f ) signe(θ c,θ f ) min(ex c,ex f ) (32) ξ = I / {max(ex c,ex f ) + 0,5 [1- signe(θ c,θ f )] min(ex c,ex f )} (33) η ΙΙ = 1 - ξ (34) Par ailleurs, ce résultat permettra aussi l optimisation des choix des réservoirs thermiques. Références [1]. R. Benelmir, «Second Law Analysis of a Cogeneration System», Ph.D. thesis, Georgia Institute of Technology, Atlanta, USA, septembre 1989. [2]. R. Benelmir, «Optimisation Thermoéconomique des Systèmes et Procédés Energétiques», mémoire de H.D.R., Université Henri Poincaré Nancy I, novembre 1998. [3]. R. Benelmir, A. Lallemand, M. Feidt, «Analyse exergétique», Techniques de l Ingénieur, pp. BE8015-1à BE8015-15, 2002. [4]. R. Benelmir, M. Feidt, «Thermoeconomics and finite size thermodynamics for the optimization of a heat pump», International Journal of Energy Environment Economy, Nova Science Publishers, vol.5, no.1, pp. 129-133, 1997. [5]. R. Benelmir, «Exergy Analysis», International Journal of Energy Environment Economy, Nova Science Publishers, vol.11, no.1, pp.15-30, 2001. [6]. R. Benelmir, «An exergy indicator for the characterization of the performance of heat transfer», International Journal of Energy Environment Economy, Nova Science Publishers, vol.11, no.4, pp. 27-38, 2003. [7]. L. Grosu, M. Feidt, R. Benelmir, «Study of the improvment in the performance coefficient of machines operating with three reservoirs», International Journal of Exergy, vol. 1, no. 1, pp. 147-162, 2004. 6